A quick tutorial on IP Router design

Outline

• Where IP routers sit in the network
• What IP routers look like
• What do IP routers do?
• Some details:
 • The internals of a "best-effort" router
 • Lookup, buffering and switching
 • The internals of a "QoS" router
• Can optics help?
Outline (next time)

• The way routers are really built.
• Evolution of their internal workings.
• What limits their performance.
• The effect that DWDM is having on switch/router design.
• The way the network is built today.
• Discussion: The scope for optics

Outline

Where IP routers sit in the network
• What IP routers look like
• What do IP routers do?
• Some details:
 - The internals of a “best-effort” router
 • Lookup, buffering and switching
 - The internals of a “QoS” router
• Can optics help?
The Internet is a mesh of routers (in theory)

What do they look like?

Access routers
e.g. ISDN, ADSL

Core router
e.g. OC48c POS

Core ATM switch
Per-packet processing in an IP Router

1. Accept packet arriving on an incoming link.
2. Lookup packet destination address in the forwarding table, to identify outgoing port(s).
3. Manipulate packet header: e.g., decrement TTL, update header checksum.
4. Send packet to the outgoing port(s).
5. Buffer packet in the queue.
6. Transmit packet onto outgoing link.
Outline

• Where IP routers sit in the network
• What IP routers look like

What do IP routers do?

• Some details:
 - The internals of a “best-effort” router
 • Lookup, buffering and switching
 - The internals of a “QoS” router
• Can optics help?

Basic Architectural Components

Datapath: per-packet processing

1. Ingress
 Forwarding Table
 Forwarding Decision

2. Interconnect

3. Egress
Forwarding Engine

Packet

payload header

Router

Destination Address

Routing Lookup Data Structure

Outgoing Port

Forwarding Table

<table>
<thead>
<tr>
<th>Dest-network</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.0.0.0/8</td>
<td>3</td>
</tr>
<tr>
<td>128.9.0.0/16</td>
<td>1</td>
</tr>
<tr>
<td>149.12.0.0/19</td>
<td>7</td>
</tr>
</tbody>
</table>

The Search Operation is not a Direct Lookup

(IP incoming port, label)

Address

Memory

(Outgoing port, label)

Data

IP addresses: 32 bits long ⇒ 4G entries
The Search Operation is also not an Exact Match Search

Exact match search: search for a key in a collection of keys of the same length.

Relatively well studied data structures:
- Hashing
- Balanced binary search trees
Prefixes can Overlap

Routing lookup: Find the longest matching prefix (aka the most specific route) among all prefixes that match the destination address.

Difficulty of Longest Prefix Match

Prefixes
Lookup Rate Required

<table>
<thead>
<tr>
<th>Year</th>
<th>Line</th>
<th>Line-rate (Gbps)</th>
<th>40B packets (Mpps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998-99</td>
<td>OC12c</td>
<td>0.622</td>
<td>1.94</td>
</tr>
<tr>
<td>1999-00</td>
<td>OC48c</td>
<td>2.5</td>
<td>7.81</td>
</tr>
<tr>
<td>2000-01</td>
<td>OC192c</td>
<td>10.0</td>
<td>31.25</td>
</tr>
<tr>
<td>2002-03</td>
<td>OC768c</td>
<td>40.0</td>
<td>125</td>
</tr>
</tbody>
</table>

31.25 Mpps \Rightarrow 33 ns

DRAM: 50-80 ns, SRAM: 5-10 ns

Size of the Forwarding Table

Source: http://www.telstra.net/ops/bgptable.html
Basic Architectural Components
Datapath: per-packet processing

1. Ingress
 - Forwarding Table
 - Forwarding Decision

2. Interconnect

3. Egress
 - Forwarding Table
 - Forwarding Decision

Interconnects
Two basic techniques

Input Queueing
- Usually a non-blocking switch fabric (e.g. crossbar)

Output Queueing
- Usually a fast bus
Interconnects
Output Queueing

Individual Output Queues
Centralized Shared Memory

Memory b/w = (N+1).R
Memory b/w = 2N.R

Numerous work has proven and made possible:
- Fairness
- Delay Guarantees
- Delay Variation Control
- Loss Guarantees
- Statistical Guarantees

Large, single dynamically allocated memory buffer:
N writes per "cell" time
N reads per "cell" time.
Limited by memory bandwidth.
Output Queueing
How fast can we make centralized shared memory?

- 5ns per memory operation
- Two memory operations per packet
- Therefore, up to 160Gb/s
- In practice, closer to 80Gb/s

Interconnects
Input Queueing with Crossbar

Memory b/w = 2R
Input Queueing
Head of Line Blocking

Head of Line Blocking
Input Queueing
Virtual output queues

Input Queueing
Virtual Output Queues

Load
100%

Delay
Input Queueing
Virtual output queues

Memory b/w = 2R
Complex!

Other Non-Blocking Fabrics
Clos Network
Other Non-Blocking Fabrics

Clos Network

Expansion factor required = \(\frac{2}{1/N} \)

Other Non-Blocking Fabrics

Self-Routing Networks
Other Non-Blocking Fabrics

Self-Routing Networks

The Non-blocking Batcher Banyan Network

- Fabric can be used as scheduler.
- Batcher-Banyan network is blocking for multicast.

Outline

- Where IP routers sit in the network
- What IP routers look like
- What do IP routers do?
- Some details:
 - The internals of a "best-effort" router
 - Lookup, buffering and switching
 - The internals of a "QoS" router
- Can optics help?
Basic Architectural Components

Control Plane

- Admission Control
- Packet Classification
- Policing & Access Control
- Forwarding Table
- Switching
- Output Scheduling
- Reservation

Datapath: per-packet processing

1. Ingress
2. Interconnect
3. Egress

Limitations:
- Memory b/w
- Power & Arbitration
Outline

• Where IP routers sit in the network
• What IP routers look like
• What do IP routers do?
• Some details:
 - The internals of a “best-effort” router
 • Lookup, buffering and switching
 - The internals of a “QoS” router

Can optics help?

Can optics help?

Cynical view:
1. A packet switch (e.g. an IP router) must have buffering.
2. Optical buffering is not feasible.
3. Therefore, optical routers are not feasible.
4. Hence, “optical switches” are circuit switches (e.g. TDM, space or Lambda switches).
Can optics help?

Open-minded view:
• Optics seem ill-suited to processing intensive functions, or where random access memory is required.
• Optics seems well-suited to bufferless, reconfigurable datapaths.

Typical IP Router Linecard

- OC192c linecard:
 - ~10-30M gates
 - ~2Gbits of memory
 - ~2 square feet
 - >$10k cost
Can optics help?

- **Linecard?**
 - The linecard is processing & memory intensive.
- **Interconnect?**
 - Arbitration is very processing intensive.
 - The fabric can be a bufferless datapath...
 - How fast can an optical datapath be reconfigured?

Outline for next time...

- The way IP routers are really built.
- Evolution of their internal workings.
- What limits their performance.
- The effect that DWDM is having on switch/router design.
- The way the network is built today.
- Discussion: The scope for optics