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Understanding Network Processors 

0 Intended Audience 
This document presents a survey and analysis of network processors.  It is intended 
primarily for four major audiences: 
· Network processor architects who want to know the technical details about current 
network processor offerings 
· Network processor product managers who want to know the features, performance, 
and range of target applications of their competitors' products 
· Users of network processors who want to incorporate them into their products but are 
having trouble choosing which device best suits them 
· Developers and designers in network processor related fields, like network processing 
software, network co-processors, and network testing equipment 
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1 Introduction 
The bandwidth explosion of the past couple years has impacted every part of our lives and 
this exponential growth will continue for many more years.  The dropping cost of bandwidth 
allows the masses to take full advantage of the connectivity the Internet provides.  This will 
result in more bandwidth-hungry and computationally intensive applications, like Voice over 
IP (VoIP), streaming audio and video, Peer-to-Peer (P2P) applications, Virtual Private 
Networks (VPNs), and many others that we have not even thought of yet. 
 
For networks to effectively handle these new applications, they will need to support new 
protocols that include differentiated services, security, and various network management 
functions.  While networks are demanding equipment with very high throughput, they also 
need the flexibility to support new protocols and applications.  In addition, the ever-
changing requirements of network equipment require solutions that can be brought to 
market quickly.   
 
Today’s legacy network implementations are based on Field Programmable Gate Arrays 
(FPGAs) for lower level processing and General Purpose Processors (GPPs) for higher layer 
processing.  Neither of these solutions meets all the requirements that network processing 
demands.  Consider the broad categories of alternatives for system implementation: 
· ASIC (Application Specific Integrated Circuit) – any hardwired solution 
· ASIP (Application Specific Instruction Processor) – an instruction set processor 
specialized for a particular application domain 
· Co-processor – a hardwired, possibly configurable solution with a limited programming 
interface 
· FPGA (Field Programmable Gate Array) – a device that can be reprogrammed at the 
gate level 
· GPP (General Purpose Processor) – a programmable processor for general purpose 
computing 

 
Figure 1 maps these categories on two axes: flexibility and performance.  As shown, ASICs 
are the most hardwired (least flexible), but provide the highest performance.  At the opposite 
end of the spectrum, GPPs are the most general (flexible) at the cost of the lowest 
performance.  FPGAs provide an interesting value proposition: in the absence of ASIPs or 
co-processors, they are higher performance than GPPs with more flexibility than ASICs.   
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Figure 1. Space of System Implementations. 

We further compare these system implementations in Figure 2.  From this comparison, it is 
pretty clear that an ASIP is the best approach for most networking system implementations.  
An ASIP for networking, or Network Processor (NP), provides the right balance of 
hardware and software to meet all the requirements stated above: 
· Performance – by executing key computational kernels in hardware, NPs are able to 
perform many applications at wire speed 
· Flexibility – having software as a major part of the system allows network equipment to 
easily adapt to changing standards and applications 
· Fast TTM – designing software is much faster (and cheaper) than designing hardware 
of equivalent functionality 
· Power – while NPs may not be embedded in energy-sensitive devices (like handhelds), 
their power consumption is important for cost reasons (e.g. implications on packaging). 
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Figure 2. Comparison of System Implementations. 

Network processors are part of a broader movement from ASICs to programmable system 
implementations.  Numerous trends have come to light recently that are making the design 
of ASICs more difficult [1]: 
· Deep submicron (DSM) effects are exacerbating circuit design difficulties 
· Exponentially increasing number of devices on-chip 
· On-chip integration of increasingly diverse elements 
· Shrinking time-to-market 

The combination of these pressures has resulted in a shift in system implementations to 
more programmable solutions.  The recent explosion in network processor architectures 
supports this observation.   
 
Twenty-four months ago, there were only a few network processors in development and 
only one shipping product (MMC Networks, now Applied Micro Circuits).  Now, it seems 
every month a new network processor is announced.  In an attempt to alleviate the 
bandwidth bottleneck, numerous solutions have emerged.  They vary greatly in micro-
architectural and architectural complexity, memory architecture, software support, and 
physical implementation.  The purpose of this report is to survey and make sense of the fast 
growing network processing space. 
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We start with a definition of network processors and give a brief history of network 
processors.  Then we profile common networking standards and applications and define 
their key characteristics.  Next, we survey current network processors and detail their 
features.  This allows us to analyze the network processor field and define market segments.  
Lastly, we identify some trends and provide some conclusions. 

1.1 What is a Network Processor? 
A network processor is an ASIP for the networking application domain – a software 
programmable device with architectural features and/or special circuitry for packet 
processing.  While network processors do not cover all solutions to networking applications, 
we believe it covers the most exciting and high growth parts of the space.  Our definition is 
broad to reflect the wide range of programmable architectures proposed for network 
processing.  As a result, network processors share characteristics with many different 
implementation choices: 
· network co-processors 
· communication processors used for networking applications 
· “programmable” state machines for routing 
· reconfigurable fabrics (e.g. FPGAs) 
· GPPs used for routing 

 
Figure 3 shows the space of solutions for network processing.  While network processors are 
not the only solution to network processing, they are the focus of this report. 
 

Network Processors

General Purpose 
Processors

Communication 
Processors

ASIC Solutions

Network Co-Processors

Digital Signal 
Processors

 
Figure 3. The Solution Space of Network Processing 

1.2 A Brief History 
Until recently, most networking functions above the physical layer have been implemented 
by software running on a general-purpose processor.  The past few years have been witness 
to the exponential growth of the Internet.  This super-Moore’s law growth has wreaked 
havoc on networking implementations.  To cope with this traffic explosion, new solutions 
have emerged.  First, many hardwired solutions appeared for layer 2 and 3 processing [2].  
With the rapid change in lower layer protocols (e.g. MPLS, DiffServ) and higher layer 
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applications (e.g. Peer-to-Peer, streaming video), this solution will not scale.  The need for 
customizability, in-the-field programmability, and shrinking time to market windows in 
network processing implementations has focused most of the activity on network 
processors. 
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2 A Profile of  Network Applications 
Before surveying network processors, we examine common networking applications.  Since 
NPs are “application-specific” to networking, it is only natural to examine these applications 
first.  We decompose each application into their computational kernels.  By enumerating 1) 
the specific operations required for networking applications; and 2) the architectural features 
of network processors, we can identify the mapping of common applications on to target 
architectures.  This mapping is the key to evaluating network processors.   

2.1 Network applications 
In this section, we describe the characteristics of various networking applications that would 
execute on a network processor.  Our goal here is not to give a full tutorial of networking 
applications, rather give a flavor of them.  The reader is referred to [3], [10], and [4] for an 
in-depth tutorial on networking applications. 
 
For context, we first describe the OSI stack model [5].  We’ve classified different networking 
applications that could be found in a variety of network equipment (for example, core and 
edge routers, backbone switches, URL load balancers, traffic shapers, firewall appliances) 
into three categories: protocol standards, gateway applications, and Quality of Service (QoS) 
related applications. 
 

Application7

Presentation6

Session5

Transport4

Network3

Data Link2

Physical1

 
Figure 4. OSI Protocol Stack. 

 
The following is a brief description of layers in the OSI stack as they relate to this report: 
· Layer 1: The Physical layer defines the medium over which point-to-point links are 
established. 
· Layer 2: The Data Link layer provides for a point-to-point link between two 
computers.  It provides reliability on top of an otherwise unreliable physical link.  While 
most Layer 2 operations have historically been performed in hardware, NPs are also 
attacking this task.   
· Layer 3: The Network layer enables communication between any two computers on 
the network using the point-to-point communication facility provided by the Data Link 
layer.   
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· Layer 4: The Transport layer defines a socket, a point of access for a higher layer 
application to communicate with another end-station.  Both TCP and UDP provide a port 
number to higher layers for applications to identify the endpoints of the communication.  
The combination of IP address and port number uniquely identify a socket.  Since much 
of the Layer 4 functionality is only executed on an end-station, we describe only the parts 
of the protocol that are relevant to NPs. 
· Layers 5-7: While network equipment in the fabric may access Layer 5-7 information, 
most of the Layer 5-7 tasks are executed on an end-station. 

Protocol Standards 
The following is a breakdown of applications related to protocol standards across different 
layers.  We do not describe the details of each protocol in depth; rather, we highlight the 
operations that need to be performed within the fabric at wire speed (data-plane operations).  
Management- and control-plane applications are mostly control-dominated and best suited 
for a general-purpose processor.   

Asynchronous Transfer Mode (ATM) Switching 

Asynchronous Transfer Mode (ATM) [6] is a connection-oriented standard in which the 
end-stations determine a virtual circuit (VC), or path, through an ATM network.  The VCs 
are made up of different virtual paths (VPs), or paths between switches.  Once control-plane 
functions setup a VC, an ATM switch simply switches ATM cells from input ports to output 
ports.  This switching is based on consulting a lookup table indexed by two fields in ATM 
cells: 
· virtual circuit identifier (VCI): 8-bit VC identifier 
· virtual path identifier (VPI): 16-bit VP identifier 

A switch may then alter the VPI and VCI fields of the cell to update the new link the cell is 
traveling on. 
 

Generic Flow
Control (GFC)

Virtual Path
Identifier (VPI)

Virtual Circuit Identifier (VCI)

Virtual Circuit
Identifier (VCI)

Payload
Type (PTI)

8 bits

Virtual Path
Identifier (VPI)

Virtual Circuit
Identifier (VCI)

Header Error Control (HEC)

CPI

 
Figure 5. ATM cell header. 

ATM Adaptation Layer 5 (AAL5) 
The ATM Adaptation Layers (AALs) provide different ways for ATM to communicate with 
higher layer protocols (see  
Figure 6).  The most popular method is AAL5, which is often used for IP over ATM.  Since 
IP packets are larger than ATM cells (48 byte payload), AAL5 provides a guideline by which 
to segment IP packets so they can travel over an ATM network and a facility to reassemble 
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ATM cells back into IP packets.  To accomplish this, AAL5 defines its own Packet Data 
Unit (PDU) with the following contents [6]: 
· Payload: Higher layer PDU, maximum 65,535 bytes 
· Padding: for AAL5 PDUs to evenly fit into some number of ATM cells 
· 8-byte trailer: 

o User-to-User (UU) field: 1 byte 
o Common Part Indicator (CPI) field: 1 byte 
o Length field: 2 bytes 
o CRC field: 4 bytes 

After calculating the amount of padding needed, the length field, and the CRC field, the 
AAL5 PDU is simply sliced into 48 bytes chunks that are used as the payload for ATM cells.   
 

IP3

AAL2.5

ATM2

Physical1

 
Figure 6. The protocol stack for IP over ATM. 

Virtual Local Area Network (VLAN) 

A VLAN is a group of end-stations, perhaps on multiple physical LAN segments, that 
communicate as if they were on one LAN.  There are four major approaches to defining 
VLAN membership.  While each of these approaches has their advantages and 
disadvantages, our goal is not evaluate them, but rather describe the operations needed to 
support VLANs [7] [8]. 

1. Port grouping: A set of ports on a switch defines a VLAN 
2. MAC layer grouping: VLANs based on MAC layer addresses 

This approach requires a switch or router to inspect the MAC address of each frame. 
3. Network layer grouping: VLAN membership based on network layer address 

This approach requires a switch to examine the network layer address (e.g. subnet address for 
TCP/IP) to determine VLAN membership. 

4. IP multicast grouping: VLAN defined as an IP multicast group 
This approach requires a router to simply support IP multicast. 

Regardless of the approach used, once the VLAN group is determined for a frame, the 
switch is required to add a unique identifier to the header that designates VLAN 
membership. 

Multi-Protocol Label Switching (MPLS) 

MPLS [9] is a protocol for efficient routing, forwarding, and switching that is independent of 
layer 2 and layer 3 protocols.  A router that supports MPLS is known as a Label Switch 
Router (LSR).  The main task for an LSR is to switch packets based only upon an MPLS 
label.  The knowledge of where to direct packets is either setup beforehand (via a control 
protocol, like ATM) or is determined based on packet flow.  A Label Edge Router (LER) is a 
node that sits on the boundary of an MPLS network (and another network, like ATM or 
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Ethernet).  Its primary function is to categorize and add labels to ingress packets, ensure 
enforce Service-Level Agreements (SLAs), and remove MPLS labels for egress packets.   
 
Since an MPLS label is only 20 bits long, an LSR should be able to switch packets with high 
throughput.  For each incoming packet, an LSR will lookup its label, determine the output 
port, decrement the Time-To-Live field and update the label (labels are of only local 
significance).  An LER has considerably more work to do, as it must assign labels to 
incoming packets and ensure incoming flows conform to predetermined traffic patterns.   

Internet Protocol Version 4 (IPv4) 

Internet Protocol version 4 (IPv4) is the most widely used protocol for layer 3 
communication.  Figure 7 shows the header format of an IPv4 packet.  The major 
processing steps for IPv4 packets are routing, fragmentation and reassembly, and address 
resolution protocol (ARP).  Descriptions of the different algorithms and implementations 
are given below [10]. 
 

Ver IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

PaddingOptions

32 bits

 
Figure 7. Internet Protocol (IP) Header Format. 

Routing 
The major steps in routing a packet are: 
· Remove the packet from an input queue 
· Check the version of the packet: verify the 4-bit Version field equals 4 
· Check the Destination Address: make sure it is not in IP Address Class E (240.0.0.0 to 
254.255.255.254), which is reserved for experimental use 
· Verify checksum:  

o Store the Checksum field and clear it  
o Treat the header as a series of 16-bit integers 
o Compute the 16-bit one’s complement of the one’s complement sum these 

integers 
o Compare this sum to the Checksum field 

· Lookup route: 
o Lookup the destination IP address in the routing table 
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There are many different algorithms for performing routing table lookups.  However, they 
all use longest prefix matching, which allows entries to contain wildcards and find the entry 
that most specifically matches the input address.  For example, all packets going to subnet 
128.32.xxx.xxx may have the same next hop.  While this significantly reduces the size of 
the routing table, multiple lookups may be required, depending on the data structures and 
algorithms used. 

o Get the IP address of the next hop 
· Update Time-To-Live (TTL): decrement the TTL field by one and correspondingly 
adjust the Checksum field 
· Insert the packet in one of the output queues 

Fragmentation & Reassembly 
Fragmentation and Reassembly is the result of IP insulating higher layer protocols from the 
implementation of the Data Link layer.  An IP packet may need to be fragmented if it is 
larger than the Maximum Transmission Unit (MTU) of the Data Link layer.  For example, 
the maximum size of an Ethernet frame is 1518 bytes (12 bytes for the header, up to 1500 
bytes for the payload, and 6 bytes for the trailer).  For IP over Ethernet, all IP packets larger 
than 1500 bytes must be fragmented.  The reverse of fragmentation is reassembly.  This is 
required for any device on the network that wants to perform higher layer processing.   
 
Fragmentation occurs just before a datagram is placed in the queue to a network interface.  
The major steps in fragmentation are: 
· Verify that it’s legal to fragment the datagram: check the Don’t Fragment flag 
· Determine how many datagrams are needed, based on the size of the original datagram 
and MTU 
· Create each new fragment datagram: 

o Copy the header from the original datagram 
o Copy the appropriate section of the payload from the original datagram 
o Set the More Fragments flag to 1 (except for the last fragment datagram) 
o Set the Total Length field 
o Set the Fragment Offset field 
o Calculate the Checksum field 

 
Reassembly requires some more data structures because IP does not guarantee ordered 
packet delivery.  Since there are many different implementations of this, we only provide 
some requirements for reassembly: 
· Quick location of the group fragments that comprise the original datagram 
· Fast insertion of new fragment into a group 
· Efficient test of whether a complete datagram has arrived 

 
An example implementation of reassembly uses a table of queues.  If an incoming packet is a 
fragment, attempt to match its source and destination addresses to an existing entry in the 
table.  If there is a match, enqueue the fragment into the appropriate queue and check if the 
complete datagram has arrived.  Otherwise, the fragment is a part of a new datagram; 
therefore, create a new entry in the table. 
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Address Resolution Protocol (ARP) 
Address Resolution Protocol (ARP) [11] provides the data link layer with a mapping of 
network (IP) addresses to physical network addresses (e.g. MAC addresses).  This insulates 
higher layer protocols from the physical implementation details.  For a network interface to 
send a datagram, it needs the physical address of the destination.  ARP support can be 
described as a cache: given an IP address, return the corresponding physical address.  If the 
IP address does not exist in the cache, generate a request for it (using a control protocol) and 
queue the packet.  This approach is similar to managing a routing table – some control-plane 
processing is required to manage the cache (populate entries, evict expired entries, etc.). 

Internet Protocol Version 6 (IPv6) 

Internet Protocol Version 6 (IPv6) is a next generation Internet protocol designed to 
overcome some of the limitations of the current protocol, IPv4.  The major differences 
between the two protocols are: 
· IPv6 uses 128-bit addresses (instead of 32-bit IPv4 addresses). 
· IPv6 has a Flow Label field for Quality of Service support. 
· IPv6 does not calculate a checksum, rather, it relies on other layers ensure data 
integrity. 
· IPv6 routers do not perform fragmentation or reassembly; they rely on higher layer 
protocols to fragment large packets. 
· IPv6 includes a security protocol, IPSec. 

 
Figure 8 shows the format of IPv6 packets [12].  In addition to the standard header, IPv6 
defines header extensions for specifying additional information about the packet (either to 
routers in the fabric or to end-stations).  The headers defined to date include: 
· Hop-by-Hop Options: examined by every router 
· Routing: specifies one or more intermediate nodes the packet must visit 
· Fragment: additional information for packets which have been fragmented by the 
source 
· Destination Options: optional information for the destination node 
· Authentication: for IPSec 
· Encapsulating Security Payload (ESP): for IPSec 
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Version Traffic Class Flow Label

Payload Length Next Header

Source Address

32 bits

Hop Limit

Destination Address

 
Figure 8. IPv6 Packet Header Format. 

Routing 
Basic IPv6 routing is similar to IPv4 (i.e. Longest Prefix Match), except source and 
destination address are 128 bits.  One of the most common implementations of LPM 
routing tables is the Patricia Tree algorithm [13] – a path compressed binary trie algorithm.  
Another common implementation is a hash table-based approach that maps different bit 
lengths into separate hash tables.  Binary search is then used on these hash tables to find the 
next hop address.   
 
The Flow Label is a 20-bit field used by packets to request special handling from routers the 
packet encounters.  A flow is uniquely identified by a source address and flow label.  It can 
be used a number of ways: interaction with various control protocols (e.g. RSVP), traffic 
classes for differentiated services, treatment of TCP connections.  For example, if a unique 
flow label is used for each TCP connection, a receiver could use it to de-multiplex 
connections [14].  However, this could impact routing caches because they would no longer 
be based on just the destination, but the flow label as well.   

Hop-by-Hop Options 
Hop-by-hop header extensions need to be examined by every router the packet encounters.  
The extensions, which are inserted after the main IPv6 header, have a separate header that 
specifies the presence of another extension field and the length of the extensions.  An 
extension option is defined as a set of three values: type (8 bits), length (8 bits), and data 
(variable length).   

Routing Header Extensions 
The Routing Header Extensions define one or more intermediate nodes to be visited by a 
packet.  The only type of routing header extension defined so far is Type 0 Routing, which 
has the following format: 
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Next Header

reserved

Address 1

32 bits

Address 2

Header Ext Len Routing Type Segments Left

Address n

 
Figure 9. Type 0 Routing Extension. 

Every router must examine the addresses not yet visited by the packet and base routing 
decisions on the remaining addresses. 

IP Security (IPSec) 

IP Security (IPSec) provides an extensible security platform at layer 3 for higher layer 
protocols.  This relieves higher layer protocols from defining their own ad-hoc security 
measures.  IPSec consists of two protocols [15]: 
· Authentication Header (AH): proof-of-data origin, data integrity, and anti-replay 
protection 
· Encapsulated Security Payload (ESP): AH plus data confidentiality, limited traffic flow 
confidentiality 

 
Either of these protocols can be implemented in transport mode (protects higher layer 
protocols only) or tunnel mode (protects IP layer and higher layer protocols by 
encapsulating the original IP packet in another packet).   
 

IP header TCP header data

IP header IPSec header TCP header data

IP header IPSec header IP header TCP header data

Original 
IP packet

Transport mode 
protected packet

Tunnel mode 
protected packet

 
Figure 10. Difference between Transport and Tunnel mode. 

To ensure all participating network equipment is consistent, some connection-related state 
(how to protect traffic, what traffic to protect, and with whom protection is performed) 
must be stored at each of the endpoints of a secure connection.  This state is called a 
Security Association (SA).  The SA is updated using various control protocols and is 
consulted for data-plane operations.   
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IPSec is implemented in IPv6 as an extension header.  For IPv4, an IPSec header is inserted 
after the IP header. 

Authentication Header (AH) 
Authentication Header (AH) does not provide data confidentiality, but it does verify the 
sender and data integrity.  The Security Parameters Index (SPI), along with the destination 
address, helps identify the Security Association (SA) used to authenticate the packet.  The 
Sequence Number field is a monotonically increasing counter that is used for anti-replay 
protection, which protects against replay attacks.  Anti-replay service is implemented by a 
sliding window of acceptable Sequence Numbers.  
 

Next
Header

Payload
Length Reserved

Security Parameters Index (SPI)

Sequence Number

Authentication data

32 bits
 

Figure 11. AH Header Format. 

For ingress packets, a device that supports AH must execute the following operations: 
1. If the packet is fragmented, wait for all fragments and reassemble 
2. Find SA used to protect the packet (based on destination address and SPI) 
3. Check validity of sequence number 
4. Check Integrity Check Value (ICV) 

a. Save authenticated data and clear authentication field 
b. Clear all mutable fields 
c. Pad packet, if necessary 
d. Execute authenticator algorithm to compute digest 
e. Compare this digest to the authenticated data field 

5. Possibly increment window of acceptable sequence numbers 
 
The following list enumerates the steps involved in supporting AH for egress packets: 

1. Increment sequence number in SA 
2. Populate fields in AH header 
3. Clear mutable fields in IP header 
4. Compute Integrity Check Value (ICV) using authentication algorithm and key 

defined in SA 
5. Copy ICV to authentication data field 

Encapsulating Security Payload (ESP) 
Encapsulating Security Payload (ESP) provides data confidentiality and authentication.  ESP 
defines a header and trailer that surround the protected payload.  The presence of the trailer 
means that the payload may have to be padded (with zeros) to ensure 32-bit alignment.  
Some data encryption algorithms require a random initialization vector; if necessary, this is 
stored just before the protected data.   
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Security Parameters Index (SPI)

Sequence Number

Authentication data

32 bits

Initialization Vector

Protected Data

Pad Pad Length Next HeaderPad

 
Figure 12. ESP Header Format. 

The list below illustrates the major steps that are required to support ESP in ingress packets: 
1. Wait for additional fragments, if applicable 
2. Check for SA, drop packet if one does not exist 
3. Check sequence number, drop if outside of window or duplicate 
4. Authenticate packet (same as 4 in AH ingress support) 
5. Decrypt payload using key and cipher from SA 
6. Check validity of packet with mode (transport vs. tunnel) 
7. Check address, port, and/or protocol, depending on SA 

 
On the egress side, the following functions must be executed for each packet: 

1. Insert ESP header and fill in fields 
For transport mode, an ESP header just needs to be inserted.  For tunnel mode, the 
original IP packet needs to be wrapped in another IP packet first, then the ESP header 
needs to be added. 

2. Encrypt packet using cipher from SA 
3. Authenticate packet using appropriate algorithm from SA and insert digest to 

authentication field in trailer 
4. Recompute and populate checksum field 

User Datagram Protocol (UDP) 

User Datagram Protocol (UDP) is a layer 4 protocol that provides connectionless 
communication between applications.  A UDP header is composed of four 16-bit fields: 
· Source Port 
· Destination Port 
· UDP Length field 
· UDP Checksum (optional, this field is zero if not set) 

 
The steps involved in processing an ingress UDP packet at an end-station are as follows: 

1. If Checksum field is non-zero (i.e. calculated by the sender), verify checksum 
2. Search the set of datagram queues for the one that matches the UDP port 
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3. Check the status of the proper queue (e.g. overflow, etc.) and enqueue the datagram 
4. Send a signal to the process/application (or operating system) indicating a packet has 

arrived 
 
An NP does not execute most of these functions, but we include them here for 
completeness.  An NP may use the source and destination port to make switching/routing 
decisions. 

Transport Control Protocol (TCP) 

Transport Control Protocol (TCP) provides a reliable layer 4 communication for higher layer 
applications over an otherwise unreliable medium (like IP, which may drop packets).  As a 
result, it is one of the most complex protocols.  While most of the TCP-related processing is 
rather involved (and executed on an end-station), only a small part of the protocol standard 
is relevant for fabric processing.  For example, a web switch may examine TCP packets to 
determine the beginning and end of sessions.   
 

Source Port

Sequence Number

32 bits

Acknowledgement Number

Data

Destination Port

U
R

G Window SizeHeader
Length

ACK
PSH
RST
SYN
FINReserved

Urgent OffsetTCP Checksum

Options

 
Figure 13. TCP header and optional data. 

A TCP header consists of the following fields (see Figure 13) [10]: 
· Source Port – port number of the session source 
· Destination Port – port number of the session destination 
· Sequence Number – unique number for all packets sent in a TCP connection 
· Acknowledgement Number – the next sequence number that the sender of an 
Acknowledgement message expects to receive 
· Header Length – length of header 
· URG flag – the urgent offset valid 
· ACK flag – the Acknowledgement number is valid 
· PSH flag – receiver should pass data to application without delay 
· RST flag – reset the connection 
· SYN flag – establish connection 
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· FIN flag – sender is finished sending data 
· Window Size – window size of acceptable data 
· TCP Checksum 
· Urgent Offset – offset to urgent data 

Gateway Applications 
Gateway applications occur near the edge of a network.  The applications may alter packet 
headers, redirect packet flows, or cache packets, but they maintain the semantics of existing 
protocols.   

Wireless TCP/IP 
Accessing the Internet over a wireless medium violates some of the key assumptions of the 
TCP/IP protocol.  For example, when TCP does not receive an acknowledgement for a 
packet that it sends, it assumes the packet did not reach the destination because of network 
congestion.  This causes TCP to initiate an exponential back-off algorithm that waits to 
resend packets.  While this may work well for wireline implementations, in the wireless 
domain, it is more likely the transmission failed due to an error on the physical layer.  As a 
result, TCP waits exponentially longer to send packets even in the absence of traffic.   
 

InternetInternet

Wireless TCP/IP 
Base-station

End-stations
 

Figure 14. Wireless TCP/IP Gateway. 

There are two broad approaches to solving this problem: have the sender alter its actions 
because the destination is a wireless node or have the destination gateway (base-station) 
resolve this problem.  The former approach seems rather difficult to implement, because it 
requires all nodes that send to wireless end-stations are affected.  The latter approach is 
transparent to the network, as the sender is not aware that the destination node is wireless.  
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There are a few main approaches to designing a base-station that connects wireless end-
stations to the Internet [16].   
 
In the first approach, the base-station may serve to break the connection from sender to 
wireless node.  This requires the base-station to perform all the higher layer protocol 
processing and store the packets of the session.  The base-station will then send these 
packets to the wireless handset (either using TCP or some other protocol).  Since the base-
station sends acknowledgements back to the sender, the sender is unaware the destination is 
wireless.  This approach can place a large load on the base-station and incurs a severe 
overhead.   
 
Another approach is for the base-station to cache packets that have not yet been 
acknowledged by the wireless handset.  In the event a packet is dropped, the base-station can 
resend the packet, instead of having the sender resend the packet.   
 
Both approaches require the base-station to intercept TCP packets to/from the wireless end-
station.  The first approach demands the base-station maintain a TCP protocol stack for 
each connection passing though it and another protocol stack for each connection to an 
end-station.  The second approach requires ingress packets to be copied into a cache and 
egress packets to be examined for acknowledgements to evict those entries from the cache.  
The latter approach needs much less processing, but does require timers for each connection 
to determine whether or not to resend a packet to an end-station. 

Network Address Translation (NAT) 
Network Address Translation (NAT) [17] allows multiple end-stations to be represented by 
one IP address (the gateway’s).  This is used to alleviate the shortage of IPv4 address and 
also provides security for the end-stations behind the gateway.  The end-stations use IP 
addresses reserved for local subnets.  The gateway maps the TCP/IP address and port of all 
requests to outside hosts to addresses and ports of the gateway.  To perform NAT, an edge 
router/gateway needs to carry out the following functions:  
· Store a local (non-routable) IP address and port number in an address translation table 
· Modify packet’s source port with a port number that matches the information stored in 
the address translation table.  The translation table now has a mapping of the computer's 
non-routable IP address and port number along with the router's IP address. 
· When a packet comes back from the destination node, the router checks the 
destination port on the packet. It then searches the address translation table for the local 
TCP port and IP address the packet belongs to. It updates the destination address and 
destination port of the packet and sends it to that computer.  
· Since the NAT router now has the computer's source address and source port saved to 
the address translation table, it will continue to use that same gateway port number for the 
duration of the connection. A timer is reset each time the router accesses an entry in the 
table. If the entry is not accessed again before the timer expires, the entry is removed from 
the table. 
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Web “Switch” 
A web switch is a device that uses information from higher layer protocols to make lower 
layer routing/switching decisions.  A web switch provides a point of contact on the Internet 
that clients can access.  Clients’ requests are then selectively directed to the most appropriate 
server.  This makes web switches useful for a variety of applications including distributed 
web caching and load balancing.   
 
A TCP/IP server load balancer can be implemented using a web switch as follows [18]: 

1. The web switch recognizes a new TCP connection by identifying a TCP SYN 
(session initiation) packet. 

2. The switch determines the most appropriate server to handle this request and binds 
the new TCP session to the IP address of that server in a table. 

3. For all ingress packets belong to a new session, the web switch substitutes the 
switch’s TCP port, IP address, and MAC address for the server’s.  This makes the 
packets appear as if they were directed to the server by the client. 

4. Likewise, all egress packets that pass through the web switch are altered such that it 
appears as if the web switch responded the client’s request. 

5. When the web switch recognizes a TCP FIN (session teardown) packet, the web 
switch removes the session-server binding from its table. 

 
A variety of network equipment can be realized by changing how a web switch directs 
traffic.  For example, a URL load balancer can be implemented by examining all packets for 
HTTP requests and forwarding them to an appropriate server based on their content.  The 
request-server mapping may be either static (e.g. have all images served by a separate 
machine, for example) or dynamic (e.g. based on real-time server load data).  A logical 
extension of this can be used for web caches as well. 

Quality of Service Related Applications 
Many QoS-related applications have come to light recently.  While most of these 
applications have a large control-plane component, they impact the data-plane operations as 
well.  In this section, we examine the data-plane processing of three applications: usage-
based accounting, Differentiated Services, and Integrated Services. 

Usage-based Accounting 
Collecting network usage information pertaining to flows and sessions is essential for billing 
and network analysis applications. Highly granular policy rules are required for associating 
bandwidth usage to specific users, selected applications, and distinct content. For example, it 
is necessary to track the download and bandwidth usage of a client when accessing a server, 
using RTSP (Real Time Transport Protocol) to play the latest rock video clip.  The main 
functions and corresponding packet processing tasks include [44]: 
· Recognize session initiation for specific server: layer 3 IP addresses and layer 4 port 
numbers 
· Monitor login session to identify user name: layer 5-7 extraction of login information 
· Recognize RTSP session and associate with user: layer 4 port numbers, layer 5 key 
words detection 
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· Identify desired file name (e.g. video clip) to download: layer 5-7 extraction of file name 
and matching to users and programs policy tables 
· Recognize download session and associate with user: layer 4 port numbers and layer 5-
7 key words detection 

Differentiated Services (DiffServ) 
Differentiated Services (DiffServ) enables a wide variety of services and provisioning 
policies, either end-to-end or within a particular set of networks [19].  When traffic enters a 
DiffServ network, it is classified and possibly conditioned at the boundary of the network 
and assigned a DiffServ codepoint (DSCP).  The DSCP reflects a per-hop behavior (PHB) at 
each node.  RFC 2474 [20] defines how DSCP overrides the previous definition of the Type 
of Service (ToS) field in IPv4.  A logical view of the DiffServ node is shown in Figure 15 
and the elements are described below [20]: 
· Classifier 

Classification can be performed based on the DSCP field only (a Behavior Aggregate (BA) 
classifier), or based on multiple header fields, like source/destination IP/TCP address/port 
(Mulitfield (MF) classifier).   

· Meter 
Traffic meters measure the temporal properties of the stream of packets selected by a classifier against 
a traffic profile specified in a Traffic Conditioning Agreement (TCA).  A meter passes state 
information to other conditioning functions that may trigger a particular action for each packet that 
is either in- or out-of-profile (to some extent). 

· Marker 
Packet markers set/reset the DSCP of a packet to a particular codepoint, adding the marked 
packet to a particular differentiated service behavior aggregate.  The marker may be configured to 
mark all packets that are steered to it with a single codepoint or mark a packet with one of a set of 
codepoints used to select a PHB, according to the state of a meter. 

· Shaper/Dropper 
Shapers delay some or all of the packets in a traffic stream to bring the stream into compliance with 
a traffic profile.  A shaper usually has a finite-size buffer, and packets may be discarded if there is 
insufficient buffer space to hold them. 
 
Droppers discard some or all of the packets in a traffic stream to bring the stream into compliance 
with a traffic profile.  This process is known as "policing" the stream.  Note that a dropper can be 
implemented as a special case of a shaper by setting the shaper buffer size to zero (or a few) packets. 

 

Classifier Shaper/
Dropper

Meter

Marker

 
Figure 15. Logical view of a DiffServ node. 
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Integrated Services (IntServ) 
Integrated Services (IntServ) uses traditional datagrams, but allows sources and receivers to 
exchange messages that establish additional packet classification and forwarding state on 
each node along the path [21].  There are three main components to providing IntServ (the 
first two must be performed at wirespeed): 
· Classifier: map incoming packet to some class; all packets in the same class receive the 
same treatment.  Classification can be based on the header fields (like the classification 
field or flow ID field) or looking deeper into the packet to identify application-layer fields 
(like video). 
· Packet scheduler: control forwarding of different packet streams using a set of queues.  
The main function of a packet scheduler is to reorder the output queue using an algorithm 
like weighted fair queuing (WFQ) or round robin. 
· Admission control: decision whether a new flow can be granted the requested QoS.  
This is implemented with a control-plane reservation setup protocol like RSVP. 

Others applications 
We have outlined many applications in this section.  We believe this provides a good sample 
of applications to be implemented on network processors.  However, the following 
applications are of importance to network processors also: 
· VoIP gateway 
· Internetworking – POS, already have AAL5 
· Peer-to-peer 
· SSL 
· Different queuing algorithms 
· Ethernet 
· SONET 

2.2 Kernels 
To examine how the applications outlined in the previous section map to network 
processors, we decompose the applications into their computational kernels.  These kernels 
broadly fall into six different categories: pattern matching, lookup, computation, data 
manipulation, queue management, and control processing. 
 
While these application kernels are the basic operations for a particular packet, single packet 
processing makes poor utilization of network processor hardware (e.g. stalling on memory 
access).  To reach the required data rates, a network processing system must simultaneously 
process multiple packets.  We visit the many approaches network processors employ to solve 
this problem in Section 4.   

Pattern matching 
Pattern matching is the process of matching bits in packet fields (either header or payload).  
This kernel has two inputs: a regular expression pattern and the packet field.  It outputs a 
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Boolean value reflecting whether or not the packet field matches the input pattern.  
Common algorithms used for this kernel are calculation and lookup tables.   

Lookup 
The lookup kernel is the actual action of looking up data based on a key.  It is mostly used in 
conjunction with pattern matching to find a specific entry in a table.  The data structures and 
algorithms used are dependent on the type of lookup (one-to-one or many-to-one) required 
and the size of the key.  For ATM and MPLS, this field is quite small and the mapping is 
one-to-one, so often only one lookup is required.  However, for IPv4 and IPv6 routing, the 
large address field and longest prefix matching (LPM) requirement make it impossible to 
find the destination address in one memory access.  Therefore, trees are used to efficiently 
store the address table and multiple lookups are required. 

Computation 
The types of computation required for packet processing vary widely.  To support IPSec, 
encryption, decryption, and authentication algorithms need to be applied over an entire 
packet.  Most protocols require a checksum or CRC value be computed.  Often, this value 
just needs to be updated (not recalculated) based on changes to header fields.  Network 
equipment that implement protocols which support fragmentation (and reassembly) of 
PDUs require computation to determine if all fragments of a particular PDU have arrived.   

Data manipulation 
We consider any function that modifies a packet header to be data manipulation.  For 
example, in IPv4 routing, the Time To Live (TTL) field must be decremented by one each 
hop.  Additional instances of data manipulation include adding tags, header fields, and 
replacing fields.  Other examples in this space include segmentation, reassembly, and 
fragmentation. 

Queue management 
Queue management is the scheduling and storage of ingress and egress PDUs.  This includes 
coordination with fabric interfaces and elements of the network processor that need to 
access packets.  The queue management kernel is responsible for enforcing dropping and 
traffic shaping policies and storing of packets for packet assembly, segmentation, and many 
Quality of Service (QoS) applications.   

Control processing 
Control processing encompasses a number of different tasks that don’t need to be 
performed at wire speed, like exceptions, table updates, details of TCP protocols, and 
statistics gathering.  While statistics are gathered on a per packet basis, this function is often 
executed in the background using polling or interrupt-driven approaches.  Gathering this 
data requires examining incoming data and incrementing counters. 

2.3 Summary 
The following tables summarize how the applications described above can be decomposed 
into the five main types of processing. 
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able 1. Applications and their kernels (part 1). 

Switching AAL5 VLAN MPLS

Pattern 
Matching

VCI (8 bits) 
and VPI (16 
bits)

MAC address (48 
bits), IP subnet (8-
24 bits)

MPLS label (20 
bits)

Lookup

VCI (8 bits) 
and VPI (16 
bits)

CPI field (for 
reassembly)

MAC address (48 
bits) or IP subnet (8-
24 bits)

MPLS label (20 
bits)

Computation

check if all fragments 
have arrived 
(reassembly) checksum

Data 
Manipulation

TTL 
adjustment, 
update 
VCI/VPI

creating new packets and 
populating fields 
(segmentation), 
extracting payloads and 
combining them 
(reassembly)

insert unique 
identifier in VLAN 
field, checksum

popping or 
pushing labels to 
packet, TTL 
decrement

Queue 
Management

incoming cell 
management

organizing fragments 
(reassembly)

Control 
Processing

VCI/VPI table 
update, 
path/circuit 
setup

VLAN group 
updates

path table 
updates

ATM

T
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Routing Frag/Reas ARP IPv6 IPSec

Pattern 
Matching

version & address 
check check flags

IP address (128 
bits)

verify address (32/128 
bits), port (16 bits), mode

Lookup IP address (32 bits)

find other packets of a 
fragment (12-bit 
fragment offset)

IP address 
(32 bits)

IP address (128 
bits), flow label (20 
bits)

find SA (based on 
destination address 
(32/128 bits) and SPI (32 
bits))

Computation checksum

testing if all fragements 
have arrived 
(reassembly)

authenticator algorithm, 
decryption/encryption, 
checksum

Data 
Manipulation

insert next hop, 
TTL adjustment, 
checksum

creating new packets 
and populating fields 
(fragmentation), 
extracting payloads and 
combining them 
(reassembly)

insert MAC 
address TTL adjustment

clear "mutable" fields, 
pad packet, insert 
headers and trailers, 
checksum

Queue 
Management

incoming packet 
management, to 
implement 
QoS/CoS

organizing fragments 
(reassembly)

queue 
packets 
waiting for 
MAC 
address

incoming packet 
management, 
based on flow label 
for QoS

organize fragments 
(reassembly)

Control 
Processing

routing table 
updates, group 
control

manage 
lookup table

routing table 
updates, RSVP

update SA based on 
connections

IPv4

Table 2. Applications and their kernels (part 2). 
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Wireless 
TCP/IP NAT Web Switch

Usage-based 
Accounting DiffServ IntServ

Pattern 
Matching

IP address 
(32/128 bits) and 
TCP port (16 
bits)

IP address 
(32/128 bits) and 
TCP port (16 
bits)

many different 
fields, depending 
on application (e.g. 
Ethernet, TCP/IP, 
HTTP requests, 
FTP)

many different 
fields, depending 
on application 
(e.g. Ethernet, 
TCP/IP, HTTP 
requests, FTP)

DSCP field (6 
bits), Ethernet 
MAC, IP 
address, TCP 
port

Flow ID (20 
bits), 
Ethernet 
MAC, IP 
address, TCP 
port, L5-7 
field

Lookup

IP address 
(32/128 bits) and 
TCP port (16 
bits)

IP address 
(32/128 bits) and 
TCP port (16 
bits)

many different 
fields, depending 
on application (e.g. 
Ethernet, TCP/IP, 
HTTP requests, 
FTP)

many different 
fields, depending 
on application 
(e.g. Ethernet, 
TCP/IP, HTTP 
requests, FTP)

Ethernet 
MAC, IP 
address, TCP 
port (if multi-
field 
classification)

Flow ID (20 
bits), 
Ethernet 
MAC, IP 
address, TCP 
port

Computation checksum update checksum update
moving 
averages

Data 
Manipulation

packet creation 
for packets to 
wireless 
endstations

TCP/IP 
address/port 
replacement

field rewriting, 
based on 
application

remarking 
DSCP fields

Queue 
Management

RED, WFQ, 
traffic shapers 
for different 
classes

RED, WFQ, 
traffic shapers 
for different 
classes

Control 
Processing

timers for each 
connection to 
determine 
retransmission

timers to evict 
old entries in 
mapping table update mappings

counters 
(packets & 
bandwidth), 
meters meters

schedulers, 
resource 
reservation 
protocols

Table 3. Applications and their kernels (part 3). 
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3 Network Processors 
This chapter surveys some of the current network processors in the market.  We use the 
following outline to characterize the network processors identified in this section: 

1. Intended data rate and applications 
Before analyzing any technical details of a network processor, we must first understand its target 
uses.  We present these target uses as data rates, types of layer processing (using OSI stack 
model), and plane of processing (management, control, or data). 

2. Architecture 
In this subsection, we describe the major elements of the device –processing elements (type, number, 
and layout of), description of specialized hardware (co-processors and functional units), on-chip 
communication scheme (bandwidth, layout, special features), and memory (amount and type of).   

3. Interfaces 
A network processor is not a stand-alone system, but a portion of a larger system.  It is important 
to understand how it interfaces with other system components.  This subsection describes the 
interfaces supported. 

4. Programmability/Integrated Development Environment (IDE)/OS support  
Software support is key part of network processors as it defines the interface for users of the device.  
In this subsection, we discuss the network processor’s programming interface (“programming 
model”), included libraries, integrated development environment, and operating systems support. 

5. Implementation (when available) 
When available, we include implementation details of the device, like process technology, clock 
speed, die area, and availability. 

6. Cost (when available) 
We give the cost of the device whether available as a soft or hard-core. 

7. Design wins (if applicable) 
If this network processor has been used in any network equipment that has been made public, we 
list it in this subsection.   

 
While many network processors are profiled here, there are numerous others for which we were unable to 
gather enough information about: Bay Microsystems, Entridia Corporation, IP Semiconductors A/S, ishoni 
Networks, Navarro Networks, and Onex Communications. 

3.1 Agere (PayloadPlus) 
The Agere network processing solution consists of three separate chips: Fast Pattern 
Processor (FPP), Routing Switch Processor (RSP), and Agere System Interface (ASI).  The 
main data pipeline is from the physical interface to the FPP to the RSP.  The ASI is only 
used for exceptional cases and overall management.  This solution is aimed at layer 2-4 
processing and supports packet rates up to 2.5 Gbps [22].   

Architecture 
The system architecture consists of three chips: Fast Pattern Processor (FPP), Routing 
Switch Processor (RSP), and Agere System Interface (ASI).  Figure 16 shows the 
PayloadPlus system and how it interfaces with the networking fabric, also note the main data 
path from the physical interface to the Fast Pattern Processor to the Routing Switch 
Processor and back to the fabric. 
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Figure 16. Agere PayloadPlus System. 

Fast Pattern Processor (FPP) 
The FPP performs pattern matching while receiving a frame or cell.  The results of the 
pattern matching are passed to the RSP for packet manipulation or queuing [24] via a 32-bit 
POS-PHY Level 3 interface. 
 
The FPP is a pipelined, multi-threaded processor with support for up to 64 threads.  Each 
Packet Data Unit (PDU) that arrives from the UTOPIA bus is assigned to a new thread 
(context).  Hardware support for fast context switching enables the FPP to process multiple 
PDUs in parallel.  PDUs are processed in two passes:  The first pass stores the PDU into an 
internal data format that consists of block data offsets and links blocks.  The second pass 
processes the entire PDU, performing pattern matching and handing off to the downstream 
processor. 
 
Figure 17 shows a block diagram of the FPP.  The FPP includes an Input Framer that frames 
the input stream into 64-byte blocks and stores them in the Data Buffer.  The Context Memory 
stores the blocks currently being processed in one of the 64 contexts.  The Pattern Processing 
Engine performs pattern matching on PDUs.  The Checksum/CRC Engine calculates their 
respective values for packets.   
 
The FPP sends management frames to the ASI via the Management Path Interface (MPI).  
The Configuration Bus Interface (CBI) is used to configure the FPP and RSP.  The 
PayloadPlus system supports a 32-bit UTOPIA Level 3/UTOPIA Level 2/POS-PHY Level 
3 interface.   
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Figure 17. FPP Block Diagram [24]. 

The FPP uses a functional scripting language to specify protocol processing.  The motivation 
behind this approach is similar to the motivation of SQL for databases – the programmer 
should only need to describe what to do, not how to do it.  How this actually gets compiled 
remains a mystery.  [23], [24], and [25] describe the motivation and advantages of this 
approach.   
 
An Application Code Library is provided to support the IP protocol over ATM, Ethernet, and 
Frame Relay. 

Routing Switch Processor (RSP)  
The RSP takes classification data and protocol data units (PDUs) from the FPP and outputs 
PDUs to the fabric.  It has four major functions: queuing, traffic management, traffic 
shaping, and packet modification [26].   
 
The RSP receives packet handling “instructions” from the FPP and stores the PDU in 
SDRAM.  Based on traffic management calculations, it either queues the PDU in one of 64k 
programmable queues or discards it.  For each queue, QoS and CoS policies are used for 
traffic shaping.  Once the PDU is chosen to transmitted, it is fetched from SDRAM, 
modified, and transmitted. 
 
There are 3 VLIW compute engines, each dedicated to a specific task: 
· Traffic management compute engine: enforces discard policies and keeps queue 
statistics 
· Traffic shaper compute engine: ensures QoS and CoS for each queue 
· Stream editor compute engine: performs any necessary PDU modifications 
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Figure 18. Architecture of the Agere Routing Switch Processor [26]. 

The RSP is programmed by configuring the ports and schedulers and defining the queues.  
There is a scripting language that is used to program the RSP as well as an API that 
“provides low-level access to the PayloadPlus chipset” [27]. 

Agere System Interface (ASI) 
The main function of the ASI is to handle “slow path processing” – initialization, routing 
table updates, queue processing updates, exception handling, and statistics gathering [28].   
 
There is a PCI interface for external management and a PC133 SDRAM for access to off-
chip memory.  The same scripting language used to program the RSP is used for the ASI. 

Implementation 
The FPP, RSP, and ASI are currently available in a 0.18µ process with a typical power 
dissipation of 12W [22]. 

Cost 
The cost for the PayloadPlus system is about $750 [22]. 

3.2 Alchemy (Au1000) 
The Alchemy Au1000 is best suited for access equipment..  However, the company claims its 
device is also targeted to edge routers and line cards.  It is a low power MIPS core with a few 
new instructions and a wide variety of integrated peripheral support. 

Architecture 
The Au1000 [29] is based on a scalar 32-bit MIPS processor.  The processor has a 5 stage 
pipeline optimized to reduce branch penalties.  There is a 32x16 MAC (Multiply-
Accumulate) that runs in parallel with the CPU pipeline.  In addition, there are special 
instructions for conditional moves, counting leading ones/zeros, and prefetching memory. 
 
With the core, there are two Ethernet controllers, an IrDA port, USB support, and four 
UARTs.  There is a 16KB instruction and data cache.  The system architecture of the 
AU1000 is shown in Figure 19. 
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Figure 19. Alchemy's System Architecture [29]. 

Programmability 
Since this device is based on a MIPS core, it can be programmed in C.  The programmer can 
take advantage Alchemy’s software development tools as well as various third-party tools.  In 
addition, there is support for MS Windows CE, Linux, and VxWorks operating systems. 

Implementation 
The Au1000 is available as a soft core and can run at 266MHz, 400MHz, and 500MHz.  At 
these speeds, the core consumes <300mW, 500mW, and 900mW, respectively.   

3.3 Applied Micro Circuits, formerly MMC Networks 
(nP7xxx) 

Applied Micro Circuits’ nP7 network processor family [30] is built upon the EPIF-200 
packet processor [31].  With six EPIF-200s on a single chip, the nP7XXX can support 
10Gbps packet rates.  The nP family is aimed at processing layers 2-7. 

Architecture 
The EPIF-200 is a 64-bit processor with a network-optimized instruction set and zero-
overhead task switching among 8 threads.  There is programmable Policy Engine for packet 
classification and a Search Engine for layer 2 VLAN bridging and layer 3 longest prefix 
match lookup.  The Packet Transform Engines perform all the necessary packet 
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manipulation.  In addition, there are Statistics Engines that collect RMON-compliant data.  
The EPIF-200 is designed to seamlessly work with other EPIF-200, MMC switch chips, and 
nP family co-processors.  It also features an on-chip Fast Ethernet MAC.  The macro-
architecture of the EPIF-200 is shown in Figure 20. 
 

 
Figure 20. Applied Micro Circuits' EPIF-200 Network Processor [30]. 

Programmability 
APPLIED MICRO CIRCUITS has simplified the multi-processor programming model by 
letting the programmer think of the device as a single logical CPU.  In addition, they provide 
a C/C++ compiler, assembler, and debugger. 

Implementation 
The nPxxx family is implemented in a 0.18µ process and typically consumes 4W [22]. 

Cost 
Applied Micro Circuits’ np7xxx will cost around $115 [22]. 

3.4 Bay Microsystems 
Details of Bay Microsystems’ device are a bit weak; the company has not released much 
information.  All information here is from [32].  They claim deep packet analysis (layers 3-7) 
at 10Gbps. 

Architecture 
Bay’s network processor uses a VLIW architecture with commodity DRAM.  There is an 
“ultrawide-bus” standard that used standard DRAM.  In addition, their engine is pipelined 
and superscalar.   
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Programmability 
Not available 

Implementation 
Bay Microsystems’ chip will run at 166MHz. 

3.5 BRECIS Communications (MSP5000) 
BRECIS Communications is developing a Multi-Service ProcessorTM aimed at connecting 
the enterprise to the edge of the network.  Their MSP family of processors handles voice 
traffic from PBXs and data traffic from the network core to a LAN (layers 2-3) [33][34].  
The heart of their solution lies in the Multi-Service Bus Architecture, which connects the 
main processing elements and inherently supports QoS at the bus transaction level.  Their 
top-of-the-line product, the MSP5000, can simultaneously support 8-24 G711 voice 
channels, 4-10 G729 voice channels, and a 52Mbps data rate. 

Architecture 
BRECIS’ MSP network processor consists of three processors, two DSPs (LSI ZSP400s) for 
packet and voice processing and a MIPS R4KM processor for control-plane operations, 
connected by a high bandwidth bus.  The ZSP400 is a 4-issue superscalar processor with 
80Kbytes of on-chip instruction and data memory.  In addition, the DSP aimed at voice 
processing has a co-processor for ADPCM (adaptive pulse code modulation) acceleration, 
while the packet processor has a co-processor for efficient CRC generation.  The ZSP400s 
each run at 160MHz.  The control processor runs at 180MHz and has instruction and data 
caches of 16Kbytes.  The MSP also has a shared co-processor for security-related operations 
(e.g. MD-5 authentication, 3DES encryption) that is connected directly to the Multi-Service 
Bus.  Figure 21 shows a diagram of the system architecture.   
 
The Multi-Service Bus Architecture has a 3.2Gbps peak bandwidth and connects the major 
devices of the network processor, including the DSPs, control processor, security co-
processor, Ethernet MACs, and peripheral sub-system.  The bus supports simultaneous 
transactions and dynamic priority switching among three priority levels.  The bus interface 
for each sub-system (one for each processor) consists of a packet classifier and three packet 
queues, which map directly to the three types of traffic handled by this device (voice, data, 
and control).  This enables efficient implementation of Quality of Service applications, a key 
to supporting voice and data on the same processor.  Each sub-system also contains a 
context-aware DMA engine that offloads packet transferring duties from the data 
processors.   
 
The MSP5000 has two 10/100 Ethernet MAC interfaces and a UTOPIA interface to 
support the networking side.  For telephony support, the MSP5000 has dual TDM interfaces 
(each supporting 128 channels). 
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Figure 21. BRECIS Communications' MSP5000 [34]. 

Programming 
BRECIS provides APIs for the application-specific engines, like the security co-processor 
and packet queues in the bus interface.  Third party tool chains can be used to program the 
LSI ZSP400 and MIPS R4KM.  In addition, they provide firmware for common networking 
applications (ATM AAL0/2/5, ATM SAR, Frame Relay encapsulation, and VoIP).  The 
MSP family supports VxWorks, Linux, and BSD operating systems.   

Implementation 
The MSP5000 has been implemented in a 0.18µ process technology.  With 3.3Mbits of 
SRAM, it is approximately 27mm on a side and consumes 2W of power.  It will be sampling 
in Summer 2001 [33].   

Cost 
The MSP5000 will cost less than $50 if purchased in large volume [33]. 

3.6 Broadcom, formerly SiByte (Mercurian SB-1250) 
The Broadcom Mercurian SB-1250 primarily consists of two 64-bit MIPS cores (Broadcom’s 
own SB-1 cores), three Gigabit Ethernet MACs, and a 256-bit wide bus [35].  The processors 
don’t have any special instructions or hardware for packet processing as most NPUs do.  
Instead of targeting data-plane operations, Broadcom is focusing on control-plane 
operations.  They claim performance numbers of up to 2.5 Gbps and are aimed at 
processing layers 3-7. 
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Architecture 
The SB-1250 has 2 64-bit MIPS CPUs (SB-1) running at up to 1 GHz.  The SB-1s can 
execute 4 instructions per cycle (2 load/store, 2 ALU operations).  They have a 9-stage 
integer ALU pipeline and a 12-stage floating-point pipeline [36][37].  Each processor has a 
32kb L1 cache and the two cores share a 4-way associative 512kb L-2 cache.  The 
architecture of the SB-1250 is shown in Figure 22. 
 
The SB-1250 also includes 3 on-chip Ethernet MACs and 2 packet FIFOs.  Their 
proprietary ZBbus (a 256-bit bus that runs at half of the processor speed) connects the 
major components of the chip. 
 

 
Figure 22. Broadcom’s Mercurian Architecture [37]. 

Programmability 
Since the SB-1 cores are MIPS-based and do not have any special instructions, the Mercurian 
uses the standard Gnu C/C++ tool chain with support for application specific extensions.  
It also has operating system support for FreeBSD, Linux, and VxWorks. 

Implementation 
The SB-1 CPU core is ~25mm2 in a 0.15µ process.  It runs at 1GHz and consumes only 
~2.5W [38].  Samples of the SB-1 are currently available. 

3.7 Cisco (PXF/Toaster 2) 
The Cisco PXF is an internal product for Cisco edge routers [39] [66].  Details are a bit 
sketchy, but it’s a network processor that’s used in routers, like the Cisco 10000 Edge 
Service Router (ESR).  The PXF is intended to perform only layer 3 data path calculations.  
There is a separate route processor that handles network management tasks.   
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Architecture 
The PXF consists of a pair of ICs, each comprised of 16 processors arranged in 4 pipelines.  
When used together, the pair of PXFs results in a 4x8 systolic array.  Each of the 32 
processors is a 2-issue VLIW with special instructions for packet processing.  Each 
processor has an independent memory and each column of processors has access to its own 
separate memory (off-chip).  Each of the 8 stages in the pipeline is responsible for a 
different packet forwarding function.  Figure 23 shows an example of how the PXF could be 
used.  They claim that the allocation of features to microprocessors is flexible, but it is 
unclear how that’s possible since specialized hardware is likely used to accelerate these 
calculations. 
 

 
Figure 23. Example use of Cisco's PXF NP [39]. 

Programmability 
The Connected Components Corp. has recently written a C-compiler for the PXF.  In 
addition, the PXF supports Cisco’s internal operating system, IOS. 

Implementation 
A version of the PXF is currently used in Cisco routers. 

3.8 ClearSpeed, formerly PixelFusion 
ClearSpeed’s network processor is aimed at 40Gbps data rates for core routers, metro line 
cards, and edge routers.  Their architecture consists of a multiple Multi-Threaded Array 
Processors (MTAPs) and shared co-processors connected by a high bandwidth bus.  An 
MTAP consists of multiple 8-bit Processing Elements that all execute the same code.  Since 
ClearSpeed is shipping their device as a soft core, many of the parameters are configurable 
(e.g. number of MTAPs, number of Processing Elements per MTAP). 

Architecture 
An MTAP processor mostly consists of multiple (100’s to 1000’s) of 8-bit Processing 
Elements.  An MTAP’s main function is to control the execution of its Processing Elements 
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and data delivery to/from other MTAPs.  Since all Processing Elements execute a common 
instruction stream, an MTAP’s central instruction fetch unit is shared among all the 
Processing Elements.  An MTAP is capable of supporting up to 32 simultaneous threads.   
 
A Processing Element is an 8-bit ALU with a small register file (configurable from 16-64 
bytes) and a small amount of packet memory (1-16Kbytes).  It also has memory controllers 
that are responsible for loading a packet (or partial packet) into its own memory.  Since each 
Processing Element of an MTAP executes the same code, the execution of Processing 
Elements is based on the packet data currently loaded in the packet memory.   
 
The ClearSpeed platform gives users the ability to add co-processors to accelerate common 
tasks.  These user-defined co-processors are simply attached to the ClearConnect bus and 
accessed like any other MTAP.  One such co-processor that ClearSpeed provides is a Table 
Lookup Engine (TLE).  The TLE is able to perform multiple parallel searches on multiple 
tables with key sizes ranging from 32 bits to 128 bits.  The TLE is composed of many 
parallel state machines, called Lookup Engines (LEs), and commodity memory.  Since 
ClearSpeed sells their network processor as a soft core, the user is able to configure the size 
of the on-chip memory.   
 
A scalable high-bandwidth bus called ClearConnect connects the MTAP processors, co-
processors, and memory.  The ClearConnect bus is composed of Nodes and T-Switches 
connected by Lanes.  Nodes connect elements to the bus and function as repeaters, while T-
Switches route bus requests to different Nodes.  Nodes and T-Switches are connected by 
one or more Lanes, 50Gbps duplex links.   

Programmability 
ClearSpeed has an IDE in alpha release that includes a C compiler, assembler, debugger, and 
profiler.  In addition, they have an application development kit that includes a visual tool for 
designing wire speed applications and a reference library of common networking functions.   

Implementation 
ClearSpeed’s network processor will be available 1H03 as a soft core running at 400MHz.  In 
a 0.13µ process technology, it is 180mm2 to 295 mm2, depending on the number of PEs per 
MTAP and amount of on-chip memory.   

3.9 Clearwater Networks, formerly XStream Logic 
Devices (CNP810SP) 

Clearwater Networks applies simultaneous multi-treading to network routing [41].  Their 
CNP810SP processor issues 10 instructions per cycle and can simultaneously execute 8 
threads.  It is targeted at layers 4-7 processing for edge devices (edge routers, web switches, 
SSL accelerators) at packet rates of 10Gbps [40]. 

Architecture 
Clearwater Networks uses simultaneous multi-threading, which is a hardware 
implementation of software multi-threading.  Each thread has its own resources (register file, 
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PC, instruction prefetch buffer) and can conceptually be thought of as a separate superscalar 
processor [41].   
 
Currently, Clearwater supports 8 simultaneous threads; there are 8 instruction queues, 
register files, and arithmetic units.  The arithmetic functional units include some special 
instructions for network processing.  In addition, there are two address generation units, 
which makes the CNP810SP a 10-issue machine.  Clearwater uses superscalar techniques to 
dynamically determine how threads use these issue slots.  There is an on-chip 64kB 
instruction and data cache and the ALU is a 9-stage pipeline.   
 
The Packet Management Unit (PMU) handles packet I/O, leaving the CPU for deep packet 
classification.  The PMU reads packets from the network interface, classifies them, and 
stores them in hardware-managed arrival queues.  It also writes packets out to the network 
interface.  The PMU has some control over the processor, as it can load contexts and 
context registers without processor intervention via the Register Transfer Unit (RTU).  In 
addition, the PMU supports 24 global masks and 8 masks per thread for key extraction.  
Figure 24 shows the macro-architecture of Clearwater’s network processor. 
 
The CNP810SP has a dual ported on-chip packet memory of 256 Kbytes called the 
PacketCache.  The structure of this memory allows for efficient implementation of packet 
manipulation, header/packet growth (e.g. MPLS over IP/Ethernet shim header), and packet 
memory allocation. 
 
A high bandwidth interconnect, called XPress Switch connects the processor core, PMU, 
PacketCache, and peripherals.  It has a peak throughput of 225Gbps.  The CNP810SP 
supports numerous interfaces, including dial SPI-3, SPI-4 (Phase I), 64-bit PCI-X, and 2 
serial ports. 
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Figure 24. Macro-Architecture of Clearwater Networks’ CNP810SP Network 
Processor. 
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Programmability 
Green Hills is currently developing a C compiler for Clearwater Networks.  Since 
simultaneous multi-threading makes each thread appear like a superscalar machine, the 
programmer can think of the device as 8 different superscalar processors.  In addition, the 
programmer has some control over the resource sharing among those processors.   

Implementation 
The CNP810SP has been implemented in a 0.15µ process. Running at 300MHz, it consumes 
12W.  Clearwater’s network processor will be available as a soft core in 4Q2001. 

3.10 Cognigine 
Cognigine is one of the only network processors to use reconfigurable logic.  Their Variable 
Instruction Set Computer (VISCTM) allows the execution units to be dynamically 
reconfigured.  It is aimed at layer 2-7 processing at 10Gbps data rates [42].   

Architecture 
Cognigine’s network processor is a distributed multi-processor machine – it has 16 
processing elements, or Reconfigurable Communications Units (RCUs) connected by a 
crosspoint switch, called Routing Switch Fabric (RSF).  Each RCU has four parallel 
execution units that operate on a 64-bit wide data path.  The execution units are dynamically 
configurable by VISC instructions.  A VISC instruction determines the major characteristics 
of an instruction, including operand sizes, operand routing, base operation, and predicates.  
The VISC instructions are stored in a Dictionary and decoded during the first stage of the 
pipeline.  The RCU has a five-stage pipeline and has hardware support for four threads.  
Figure 25 shows the architecture of an RCU. 
 
Each RCU has an associated RSF connector that serves as the RCU’s interface to the RSF.  
This connector helps distribute arbitration of the fabric and schedule transactions.  The RSF 
connects the RCUs in a hierarchical manner – a crossbar is used to connect groups of four 
RCUs and another RSF crossbar is then used to connect four groups of RCUs.  The 
hierarchical nature of the communication fabric makes this solution scalable to a large 
number of RCUs.  The RSF supports split transactions for hiding communication latency 
and is accessed by the RCUs via a memory map.   
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Figure 25. Cognigine's RCU Architecture. 

Programmability 
Cognigine provides a C/C++ compiler, assembler, and debugger for their network 
processor.  They claim their tools can automatically determine VISC instructions from 
C/C++ application code.  We doubt this can be done well, given the current state of 
compiler technology.  Perhaps their tools are able to find some candidate VISC instructions, 
but to make efficient use of their architecture, programmers will likely have to determine and 
use their own VISC instructions, much like users of Tensilica’s environment.  Cognigine also 
provides an application level configuration tool that allows programmers to stitch together 
common networking elements.  They also provide an applications library of common layer 
2-7 functions. 

Implementation 
Cognigine’s network processor has been manufactured in a 0.18µ process running at 
200MHz.  It will be available in December 2001. 

3.11 Conexant, formerly Maker (MXT4400 Traffic 
Stream Processor) 

Conexant’s Traffic Stream Processor (TSP) is aimed at Layer 2 processing – internetworking 
(AAL SAR, MPLS), buffer management, congestion control, bandwidth management, CRC 
& FCR error checking, traffic shaping.  It can support packet rates up to 2.5Gbps [43].   

Architecture 
The core of the TSP is a 32-bit RISC processor (Octave) optimized for traffic stream 
processing.  It has specialized instructions for internetworking and traffic management.  In 
addition, the Octave processor efficiently dispatches parallel hardware operations and 
minimizes context-switching overhead by switching in the background.  The Channel 
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Descriptor Look-up Engine examines packet headers, while the Packet/Command Engine 
maps traffic streams to processes on the Octave core.  The Traffic Scheduling System 
handles controls protocols for bandwidth reservation and scheduling.  The TSP supports 
UTOPIA 2 and has a 32-bit PCI bus interface. 

Programmability 
The development kit includes a C compiler, debugging tools, as well as simulation and 
analysis tools.  Their PortMaker software provides a modular software architecture on top of 
the TSP. 

Implementation 
The TSP runs at 125 MHz and has a maximum power dissipation of 4.2W. 

3.12 EZchip (NP-1) 
EZchip uses specialized processors for different tasks required for network processing [44] 
[45].  These specialized processors, or Task Optimized Processors (TOPs), are superscalar 
processors arranged in a pipelined fashion.  The NP-1 is designed for Layer 2-7 packet 
processing at 10Gbps.  There is an interface for a separate control processor to handle 
control-plane operations.   

Architecture 
The EZchip NP-1 has many Task Optimized Processors (TOPs), each with their own 
customized instruction set and data path.  These TOPs are arranged in a pipelined fashion  
(see Figure 26).  There are four types of TOPs: 
· TOPparse: identifies and extracts various packet headers and protocols 
· TOPsearch: performs lookups at different levels (layer 2-7) 
· TOPresolve: assign packet to appropriate queue and/or port 
· TOPmodify: modifies packet contents 

 
In addition, they claim to have patent-pending algorithms for leveraging embedded memory 
to search external memory to support line rates of 10Gbps.  These algorithms and associated 
data structures enable long and variable-length string searching.  Further details of their 
approach are not available. 
 

 
Figure 26. EZChip's NP-1 Architecture [45]. 

The NP-1 supports either eight 1 Gigabit Ethernet interfaces, one 10 Gigabit Ethernet 
interface, or one OC-192 interface.   
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Programmability 
EZchip has a software development environment for the NP-1 that includes an assembler, 
debugger, and simulator [46].  A high-level language compiler is planned for future designs.  
In addition, they ship a library of common switching and routing applications.  The cost for 
the software development environment is $20,000 plus a 15% annual maintenance fee. 

Implementation 
The NP-1 should be available in August 2001 [47].  They recently announced a partnership 
with IBM, who will manufacture prototypes of the NP-1 in 0.18µ and production parts in 
0.13µ [48]. 

Design Wins 
Avaya plans to use the NP-1 in their next generation routing switches [49]. 

3.13 IBM (PowerNP) 
The IBM PowerNP is multi-processor solution with 16 protocol processors, 7 specialized 
co-processors, and a PowerPC core.   It supports Packet over SONET (POS) and Gigabit 
Ethernet at 2.5Gbps and is targeted for layer 2-5 processing. 

Architecture 
IBM’s network processor consists of the Embedded Processor Complex (EPC), special 
frame processing hardware, and peripheral interfaces.  The EPC has a PowerPC core and 16 
programmable protocol processors (that make up the Embedded Processor Complex) [50].  
Each pair of protocol processors shares a hardware co-processor to accelerate tree searching 
and frame manipulation.  Each protocol processor has a 3-stage pipeline.  Two of the 
protocol processors are specialized – one for “guided frames” (special Ethernet frames that 
allow one processor to communicate with other network processing devices) and one for 
building lookup tables.  The seven co-processors execute the following functions: 
· Data store: interfaces frame buffer to provide DMA capability 
· Checksum: calculates header checksums 
· Enqueue: interfaces with the Completion Unit to enqueue frames to the switch and 
target port queues 
· Interface: provides all protocol processors access to internal registers, counters, and 
memory 
· String Copy: enables efficient data movement within the EPC 
· Counter: manages counter updates for the protocol processors 
· Policy: examines flow control information and checks for conformance with 
preallocated bandwidth 

 
Each Protocol Processor has an instruction memory of 8kb.  There are various internal 
control memories sprinkled about the chip ranging from 8kb to 32kb.  Figure 27 shows the 
macro-architecture of the PowerNP and Figure 28 illustrates the architecture of the 
Embedded Processor Core.   
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Figure 27. IBM's Network Processor [50]. 

 

 
Figure 28. Embedded Processor Complex Architecture [50]. 

A large part of the packet processing actually occurs outside the EPC.  An ingress frame first 
comes into the Ingress Physical MAC Multiplexer (PMM), which validates the frame (CRC 
check) and stores it in a buffer.  It then passes part of the frame to the Protocol Processor 
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for frame lookups.  The Classifier Hardware Assist helps identify the frame format, which is 
used by the Protocol Processor to perform lookups.  The Tree Search Engine (TSE) aids in 
the search process by performing lookups in tables that reside in the Control Memory.  The 
Control Memory Arbiter is used to manage multiple memory lookups from the different 
protocol processors.  Once the lookup is completed, Ingress Switch Interface performs the 
necessary frame alterations (like adding a tag).  The Completion Unit ensures the correct 
frame ordering before the frames are put back onto the switch fabric.  Incoming egress 
frames are the handled in the reverse manner (see Figure 29). 
 
The PowerNP has on-chip support for 4 Gigabit Ethernet ports, 40 Fast Ethernet MACs, 
and Packet over SONET (POS) on-chip. 
 

 
Figure 29. Ingress and Egress Frame Flow [50]. 

Programmability 
The Code Development Suite includes a picocode assembler, debugger, and system 
simulator.   

Implementation 
The PowerNP is implemented in a 0.18µ process, consumes about 20W, and runs at 
133MHz [22].   

Design Wins 
Alcatel and Asante Technologies will use IBM’s PowerNP devices in their IP core router and 
switch products [51]. 

3.14 Intel, formerly Level-One (IXP1200) 
The Intel IXP1200 was one of the first network processors on the scene.  Oddly enough, the 
design was actually done by DEC, which Intel acquired.  The IXP1200 is mostly meant for 
layer 2-4 processing and can support a packet rate for 2.5Mpackets/s.  As with other devices, 
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higher layers can be supported by connecting external processors to the PCI interface.  The 
IXP consists of 6 “micro-engines” and a StrongARM controller.  The micro-engines have 
hardware support for up to 4 threads each.  In addition, there is special hardware to perform 
hash functions, queuing, and single cycle shifting and rotating. 

Architecture 
The IXP1200 consists of six programmable micro-engines and a 200 MHz StrongARM that 
coordinates system activities.  The IX bus, a 64-bit bus, provides high bandwidth 
connectivity to the micro-engines, StrongArm, memory, and off-chip devices like a MAC 
device or another IXP1200.  A PCI-bus interface allows integration with an external control 
processor.   
 
The micro-engines perform all the packet processing tasks.  They have hardware support (i.e. 
zero-overhead swapping) for four threads each, for a grand total of 24 threads on the chip.  
While the four threads on a micro-engine share a common register file, there is a software 
policy that splits the register file into four parts (one for each thread).  This makes it possible 
for the device to swap contexts in a single cycle.  The micro-engines also have special 
instructions for packet processing, like find first bit set, barrel shift, and extract byte/word.   
 
In addition to the micro-engines, the IXP has some special hardware units that aid in packet 
processing.  There is a programmable hash engine and specialized queues that are shared by 
all the micro-engines and the StrongARM.  Receive (Transmit) FIFOs provide an interface 
to MAC-layer devices by reading (writing) packets into (out of) on-chip queues that can be 
accessed via the IX bus.   
There is an on-chip data cache of 8KB, 16KB of instruction cache for the StrongARM, and 
4kbyte of on-chip Scratchpad SRAM.   
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Figure 30. Intel’s IXP1200 Architecture. 
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Programmability 
Programming the IXP1200 is all done in macro-assembly, though they will release a C 
compiler in 2H01 [52].  Given that the 6 micro-engines running in parallel, programming the 
IXP proves to be a difficult task.  This process is exacerbated by the assembly language 
including context switching and other unique features.  However, their IDE (Integrated 
Development Environment) tremendously aids in programming the device.  Their 
configurable simulation environment and visualizations clearly show all activities of the chip, 
making debugging much easier.   

Implementation 
The IXP is implemented in a 0.28µ process, runs at 200 MHz, consumes about 5W and is 
available now [22]. 

Cost 
The IXP1200 costs less than $300 [22]. 

Design Wins 
The IXP1200 is currently being used by Broadband Access Systems, Mayan Systems and 
NorthChurch [53].  Cloudshield Technologies is also using IXP1200s for their dedicated 
routing network device [54].   

3.15 Lexra (NetVortex & NVP) 
Lexra has two network processing products, the NetVortex and the NVP.  The NetVortex 
uses multiple (up to 16) MIPS R3000 cores that are specialized for network processing.  It is 
targeted for layer 2-4 processing at speeds of greater than 10 Gbps.  Their second product, 
the NVP, is currently in development.  It has an improved communication infrastructure 
and more co-processors to accelerate common networking tasks.   

Architecture 

NetVortex 
The Lexra NetVortex strings together multiple LX8000 32-bit RISC network processor units 
(NPUs).  Each NPU is a MIPS R-3000 core augmented with hardware support for single 
cycle context switch among 8 contexts – aside from PCs (program counters), there are 
separate register files for each context.  The cores also have special instructions to speed up 
packet processing (e.g. ones complement add, insert and extract bit fields).  They also have 
two level branch instructions for case statements often found in control-plane code [55] [56].  
Lexra also has a unit to assist fetching packets from memory, called a Block Transfer Unit, 
that is accessible via the system bus.  Since the NetVortex is available as a soft-core, the user 
is able to add co-processors and other engines.  Figure 31 shows an example of this.   
 
The NPUs are connected by a multi-channel DMA controller that transfers packets to/from 
local memories. 
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Figure 31. An Example Use of Lexra's NetVortex System Architecture [56]. 

NVP 
The architecture of the NVP is similar to that of the NetVortex, however it has some key 
improvements.  With the NVP, Lexra has removed the co-processors that were tied to 
individual packet processors and added a few shared co-processors for lookup, metering, 
and statistics [57].  Each of these has access to its own off-chip memory.  The packet 
processors have a few more specialized instructions for network processing (checksum 
calculation, table lookup, hashing, and bit field extraction/manipulation).  Each packet 
processor has 16Kbytes of instruction and data memory and supports eight contexts.  A 
block transfer engine offloads the packet processors from packet I/O tasks by supporting 
block moves to/from shared memory.  It also includes hardware management of 144 
buffers. 
 
In addition, a wide crossbar connects the co-processors and the 16 packet processors.  This 
crossbar had a peak bandwidth of 270Gbps, supports internal queuing to prevent blocking, 
and is pipelined for greater throughput.   

Programmability 
Despite some minor architectural differences, the programmability for the NetVortex and 
NVP are very similar.  While C is used for the standard portion of the MIPS processors, 
assembly code is required for Lexra-specific instructions.  A graphical debugger with multi-
processor and multi-thread support is also provided. 

Implementation 

NetVortex 
The NetVortex is available as a synthesizable RTL macro.  This will allow 1-16 packet 
processors running at 250 MHz in a 0.15µ process [56]. 
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A hard macro with 16 packet processors should be currently sampling; it runs at 450 MHz in 
a 0.15µ process.  It is estimated to be 64 mm2 and consume 6.8W [56]. 

NVP 
When implemented in a 0.13u process, the NVP is 134mm2.  Running at 420MHz, it 
consumes 12W.  When released, the NVP will be available as a synthesizable RTL macro.   

Cost 
The standard up-front license fee for the NetVortex is $645,000, plus per-chip royalties of 
$1.00 to $2.50 per core. 

3.16 Motorola, formerly C-Port (C-5 DCP) 
The Motorola C-5 DCP is a single chip multi-processor network processor [58] [59].  There 
are 16 channel processors (with 5 co-processors) and 1 general-purpose processor for system 
coordination.  Each channel processor consists of a RISC core with two Serial Data 
Processors.  The C-5 is targeted at layers 2-7 processing at 2.5Gbps rates.   

Architecture 
The C-5 DCP consists of 16 channel processors with 5 co-processors (executive processor, 
fabric processor, table lookup unit, queue management, buffer management).  Each channel 
processor can be used individually, organized in banks to handle data streams in parallel, or 
organized serially with each processor handling a different task. 
 
A channel processor consists of a RISC core plus two (one for send, one for receive) parallel 
Serial Data Processors (SDPs) that act as communication building blocks to talk to other 
channel processors.  The RISC cores handle characterization and classification, policy 
enforcement, and traffic scheduling, while the SDPs handle programmable field parsing, 
header validation, extraction, insertion, deletion, CRC validation/calculation, framing and 
encoding/decoding. 
 
There are 5 shared co-processors, each with a different function: 
· executive processor: coordination with external processors 
· fabric processor: for using multiple C-5’s in a fabric 
· table lookup unit: table lookup and update 
· queue management: manage packet queues 
· buffer management: fast, flexible memory management 

 
In addition, there are three internal buses with an aggregate bandwidth of 60Gbps.  The C-5 
DCP supports Level 2/3 UTOPIA and PCI bus interfaces.  The macro-architecture of the 
C-5 DCP is shown is Figure 19.   
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Figure 32. Motorola C-5 DCP Macro-architecture [60]. 

Programming 
The C-5 DCP is C/C++ programmable and uses the C-Ware Communications 
Programming Interfaces (CPI) – an open set of standard interfaces that abstract “common 
network task building blocks” such as physical interface management, data forwarding, table 
lookups, buffer management, queuing operations, etc [60].  The CPI is mainly used to access 
the co-processors.  There is also a C-Ware reference library for use in common applications 
[61]. 

Implementation 
The C-5 is implemented in a 0.18µ process and consumes 15W during typical operation.  It 
is currently available. 

Cost 
The projected cost is $400 [22]. 

Design Wins 
Extreme Networks is using the Motorola C-5 in their BlackDiamond® 6800 series chassis 
for Packet over SONET (POS) applications.  In April 2001, Atoga Systems announced they 
were using the C-5 in their Optical Application Router 5 (OAR 5), a router that uses 
software tunable lasers for on-demand bandwidth provisioning and dynamic optical scaling.  
Empirix is using the C-5 for their new network emulator that allows users to test IP 
networks in the face of jitter, delay, loss, duplication, and reordering at wire speeds. 
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3.17 PMC-Sierra, formerly Quantum Effect Devices 
The PMC-Sierra RM7000 is more of a high-end digital signal processor than a network 
processor.  It’s a 64-bit MIPS-compatible superscalar microprocessor that has several 
specialized DSP instructions, a 256KB secondary cache, and a high-performance floating-
point unit [62].  Since its architecture is not geared for network processing, we do not profile 
it.  Like other MIPS-based processors, the RM7000 can take advantage of numerous 3rd 
party software development environments.   

3.18 Vitesse, formerly SiTera (PRISM IQ2000) 
The PRISM IQ2000 is a network processor that works with existing standard processors 
(from IDT, QED, and NEC) [63][64][65].  The standard processor does control-plane 
processing and system management, while the network co-processor does packet processing 
for classification, lookups, and QoS/CoS priority checking.  The IQ2000 is aimed at aimed 
at layer 2-3 processing for edge routers and supports packet rates up to 2.5Gbps [66].   

Architecture 
The architecture of the IQ2000 consists of four 200MHz scalar RISC processor cores with 
co-processors for lookup, classification, packet order management, multi-cast support, DMA 
management, and context management.  The RISC processors have an optimized instruction 
set for network operations.  The co-processors and CPUs are arranged in a streaming 
fashion: As packet stream on to the chip, the Classification Engine classifies packets.  The 
Order Management block assigns each packet to a thread on a particular CPU.  After the 
packet has been processed, it is forwarded to the Queue Management co-processor, which 
queues the packet.  The QoS engine handles packet priorities and transferring the packet to 
the output interface.  The standard processor is used for route processing and system 
management.  A block diagram of Vitesse’s network processor is shown in Figure 33. 
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Figure 33. Vitesse's PRISM IQ2000 Architecture [64]. 

Programmability 
Their software development environment uses standard high-level programming languages 
and development tools (GNU-based).  The Vitesse development suite provides a graphical 
environment for system simulation and hardware-assisted debug, as well as an integrated 
environment for system regression and performance testing.  In addition, there is network 
software library for common functions. 

Implementation 
The PRISM runs at 200 MHz and is implemented in a 0.25µ process.  It typically consumes 
12W [22]. 

Cost 
The PRISM IQ2000 sells for $250 [22]. 

3.19 Xelerated Packet Devices (X40 & T40) 
Xelerated Packet Devices provides a two chip solution to network processing – the X40 
Packet Processor and the T40 Traffic Manager.  Both chips are based on a packet-driven 
computation paradigm that Xelerated calls Packet Instruction Set Computing [67].   
Xelerated’s solution is geared for layer 2-7 processing at 10Gbps data rates. 
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Architecture 
Packet Instruction Set Computing can be characterized as a programmable pipeline of 
processors where each pipeline stage executes a fixed function on a different packet.  Each 
processor is composed of a classifier and an action block - the classifier identifies particular 
packets, while the action block alters or examines them.  The action block (called a Packet 
Instruction Set Computer) is a processor with a specialized ISA for packet processing.  
Every clock cycle, a new packet enters and exits the pipeline, giving a deterministic per 
packet latency and throughput for a series of packet streams.   
 
The X40 Packet Processor [68] is composed of 10 macro-pipeline stages.  In addition to the 
classifier/PISC pairs, the X40 also includes 384k counters and 128k meters for making 
traffic metering and conditioning decisions.  In addition there is a small internal CAM and an 
arbiter that controls access to an external CAM (for larger tables).  The counters, meters, and 
CAMs are accessible to all pipeline stages.  Figure 34 shows the micro-architecture of the 
X40.   
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Figure 34. Macro-architecture of the X40. 

Figure 35 shows an example configuration of the macro-pipeline for IP routing.  For a single 
packet processing function that takes longer than one clock cycle to execute, multiple 
pipeline stages may be used (e.g. packet forwarding stage).   
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Figure 35. Example use of Xelerated's X40 Packet Processor. 

The T40 Traffic Manager [69] is also based on the PISC paradigm, but includes more 
specialized hardware for traffic management.  In particular, there is a classifier/PISC pair on 
ingress and egress of the pipeline with a Queue Engine in the middle.  The Queue Engine is 
responsible for most of the traffic management tasks, like congestion control, traffic 
shaping, and fragmentation and reassembly.  The T40 includes shared access to 64k queues, 
has hardware support for Weighted Random Early Detection (WRED) and fragmentation 
and reassembly, and has three levels of scheduling.   

Programmability 
To program the X40 and T40, users must program each of the pipeline stages separately, as 
each stage is executing a different program.  Xelerated provides development tools for 
programming in an augmented version of C and simulating compiler code.  In addition, they 
provide building blocks for implementing control-plane processing.   

Implementation 
The X40 and T40 have been implemented in a 0.13µ process technology and will be 
available in April 2002. 

3.20 Summary 
Figure 36 shows the network processors profiled in this report mapped onto Figure 3.  It is 
interesting to note that many of the original network processors (Applied Micro Circuits, 
Conexant, IBM, Intel, and Motorola) are architecturally similar: they are composed of one or 
more processing elements and a couple of co-processors for common networking 
applications.  From this initial group, network processors architectures have spread out into 
a number of different solutions: 
· General-purpose processor-like architectures (Alchemy, Broadcom) 
· Dataflow processing architectures (Cisco, EZchip, and Xelerated Packet Devices) 
· Simultaneous Multi-threading (Clearwater Networks) 
· Digital Signal Processing (BRECIS Communications, PMC-Sierra) 
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Figure 36. Varying Solutions of Network Processors. 

Appendix A contains detailed summary tables of these network processors on many 
different axes: micro-architecture, architecture, software support, memory features, and 
physical implementation. 
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4 Analysis 
In the last section, we introduced a number of network processors; in this section, we 
analyze their different approaches.  In this section, we move from the technical 
specifications of network applications and capabilities of network processors to market 
segments.  First, we describe the market segmentation occurring in this market to lay the 
foundation upon which to compare network processors.  Then, we compare different 
architectural and programmability aspects of network processors.  Lastly, we summarize the 
results of our analysis. 

4.1 Market Segmentation 
As the number of applications for network processors has grown, the market has begun to 
segment into three main network equipment areas: core, edge, and access.  Each of these 
areas has different target applications and performance requirements.  Core devices sit in the 
middle of the network.  As a result, they are the most performance critical and least 
responsive to flexibility.  Examples of these devices are gigabit and terabit routers.  Edge 
devices sit in between the core network and access devices.  Examples of edge devices 
include URL load balancers and firewalls.  They are focused on medium-high data rates and 
higher layer processing, so a certain amount of flexibility is required.  Access equipment 
provides various devices access to the network.  Most of their computation relates to 
aggregating numerous traffic streams and forwarding them through the network.  Examples 
of access devices include cable modem termination systems and base stations for wireless 
networks.  Table 4 summarizes the characteristics of the three target markets of network 
processors.   
 

Performance Flexibility Examples
Core High Low Gigabit/terabit router
Edge Medium Medium URL load balancer

Access Low High
CMTS, wireless 
network basestation  

Table 4. Characteristics of the 3 major NP markets. 

Another consideration for network processors is the network processing functionality they 
perform: data-plane, control-plane, or management-plane.  Each has different processing 
needs and requirements.  Data-plane processing consists of forwarding packets or frames 
from the input ports to the output ports.  This is the most performance hungry, as it must 
be executed at wire speed to avoid dropping packets.  As a result, data-plane processing 
systems often take advantage of the packet independence by processing multiple packets in 
parallel.  Control-plane processing refers to processing the control packets that aid network 
equipment in performing data-plane tasks.  Examples of control-plane processing include 
routing table updates, ATM virtual circuit setup and teardown, and IPSec’s Internet Key 
Exchange.  These operations have little or no performance requirements and exhibit little 
data parallelism.  As a result, they are often executed on a general-purpose processor.  
Management-plane operations refer to the processing of network management packets.  Like 
control-plane processing, these operations have little or no performance requirements.  
Table 5 summarizes the salient characteristics of the different planes of computation. 

  Page 55 of 89 



Understanding Network Processors 

 
Performance 
Requirements

Data 
Parallelism Examples

Data plane High High Routing packets

Control plane Low Low
ATM VC 

setup/teardown
Management 
plane Low Low SNMP processing  
Table 5. Comparison of Network Processing Planes. 

4.2 Architecture 
In this section we compare and contrast the architectures of the various NPs described in 
the last section.  We first present a timeline of network processor release dates.  This is 
important for providing a reference to the different target markets and implementation 
details of NPs.  Then, we examine their approaches to parallel processing, namely multiple 
processors and multiple issue.  Third, we look at the specialized hardware employed to 
accelerate network processing, both at the co-processor level and at the functional unit level.  
Lastly, we examine techniques for hiding latency of various elements. 

Timeline 
Since many of the NPs profiled in this report have varying release dates, we first present a 
timeline of network processors.  Because application requirements and process technology 
change rapidly, it is important to consider the release date when comparing architectural 
features of different devices.  Figure 37 shows the timeline of network processor releases.  
The dates of releases indicate when devices began (or will begin) the sampling phase.  On 
average, full-scale production occurs two to four quarters after sampling.  Despite the many 
network processors profiled in this report, only seven are shipping – Agere, Applied Micro 
Circuits, Conexant, IBM, Intel, Motorola, and Vitesse.  A large number of the NPs have yet 
to pass the testing phase (i.e. done sampling).  This is important to note when comparing 
many metrics of network processors.  For example, in Figure 39, the four highest MIPS 
devices are not in production yet; two of them will not begin sampling until the fourth 
quarter of this year. 
 

1Q99 2Q 3Q 4Q 1Q00 2Q 3Q 4Q 1Q01 2Q 3Q 4Q 1Q02 2Q 3Q 4Q 1Q03 2Q

Applied Micro Intel Motorola Agere PMC-Sierra Xelerated ClearSpeed
Conexant Vitesse IBM Alchemy Clearwater

Lexra EZchip
Broadcom Cognigine

BRECIS

 
Figure 37. Timeline of Network Processor Releases. 

Parallel Processing 
Many architectures use parallel processing to increase the throughput of their device.  This is 
enabled by the independent nature of traffic streams and increased per packet computation 
requirements of new applications. Two architectures for parallel processing are multiple 
processor and multiple issue.   
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Of the large number of NPs that use independently executing multiple processing elements 
(PEs), there are two prevalent configurations: 
· Pipelined: each processor is designed for a particular packet processing task and 
communicates in a pipelined fashion 

In this approach, inter-PE communication is very similar to data-flow processing – once a PE is 
finished processing a packet, it sends it to the next downstream element.  Examples of this 
architectural style include Cisco’s PXF, Motorola’s C-5 DCP, and Xelerated Packet Devices.   

· Parallel: each PE is performing similar functionality 
This approach is commonly coupled with numerous co-processors to accelerate specific types of 
computation.  Since these co-processors are shared across many PEs, an arbitration unit is often 
required.  The Agere PayloadPlus, Intel IXP1200, IBM PowerNP, and Lexra NetVortex are 
examples of this type of macro-architecture.   

 
At the processing element level, relatively few NP architects have embraced multiple issue 
architectures – those that issue multiple instructions per program counter (thread).  The 
Agere Routing Switch Processor, Brecis’ MSP5000, and Cisco’s PXF use VLIW 
architectures; this allows them to take advantage of intra-thread instruction-level parallelism 
(ILP) at compile time by leveraging sophisticated compiler technology.  Clearwater 
Networks takes another approach - they use a multiple issue superscalar architecture in 
which a hardware engine finds the available ILP at runtime.  Cognigine also has multiple 
issue PEs (4-way), but they have a run-time configurable instruction set that defines data 
types, operations, and predicates.   
 
To compare the different approaches to parallel processing, we attempt to characterize NPs 
by their computation power.  To do this, we divide computational elements of NPs into two 
categories: 
· Processing Elements (PEs): instruction set processors that decode their own 
instruction stream; and 
· Functional Units (FUs): computational blocks that fit within the pipeline of a PE 

 
Ideally, we would also include co-processors and special functional units (SFUs) as 
computational elements.  This would allow the comparison to serve as a benchmark for 
network processors.  However, the performance of co-processors and SFUs is impossible to 
evaluate without reference to a specific application.  As a result, we separate the analysis of 
special hardware (see the next section) from the parallel processing comparison.  For a 
detailed performance benchmarking effort of network processors, the reader is referred to 
Tsai’s work [70].   
 
The diversity of the approaches to parallelism by different NPs is shown in Figure 38.  By 
plotting issue width per PE versus number of PEs, we can graphically depict the trade-off 
various network processor architects have made between number of processing elements 
and number of functional units.  Clearwater Networks, at one extreme, has a single PE with 
10 issue slots, while EZchip has 64 scalar PEs.  On this chart, we have also plotted iso-
curves of issuing 8, 16, and 64 instructions per cycle.  While the clock speed and specialized 
hardware employed by network processors are not represented in Figure 38, it does illustrate 
the trade-offs NPs have made between processing element and functional unit parallelism.   
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Figure 38 also illustrates the future scalability of various network processors.  To handle 
increasing data rates, network processors will need to grow increasingly parallel.  Current 
approaches by those in the lower right corner of Figure 38 (Alchemy, Conexant, PMC-
Sierra) will not scale to higher data rate applications (like those required for the core market).  
Most likely, these devices will appear in access devices and low-end edge equipment.   
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Figure 38. Issue Width per Processing Element Versus Number of Processing 
Elements. 

To account for clock speed in this analysis, Figure 39 plots the number of processing 
elements versus MIPS (log scale).  The MIPS of an NP is calculated by multiplying the 
number of PEs, issue rate per PE (number of FUs that can execute in parallel), and clock 
rate.  Figure 39 shows a staggering two orders of magnitude range in MIPS among NPs.  
Note that some of the network processors are not represented due to the unavailability of 
their clock rate.   
 
Figure 39 also shows how increased clock speed can make up for a lack of parallelism.  For 
instance, Broadcom’s network processor issues eight instructions per cycle, but runs at 
1GHz, giving it 8000 MIPS.  While Figure 39 does not account for specialized hardware, but 
it does hint at relative data rates different NPs can support.  Therefore, caution must be 
taken in drawing too many conclusions from this analysis.  For example, Vitesse’s IQ2000 
appears to be computationally underpowered, however, it has a variety of special hardware 
for packet processing, like classification, lookup, and queue management.   

  Page 58 of 89 



Understanding Network Processors 

 
From Figure 39, we can draw some interesting conclusions.  The parallelism and 
computational power provided by the NPs in the upper left corner (Cognigine, Lexra, 
Motorola, IBM) makes them good candidates for data processing for high-speed 
applications, like core networking equipment.  The high processing element parallelism is 
necessary to simultaneously support multiple traffic streams.  The high MIPS/low PE 
network processors like Broadcom and Clearwater Networks, are better suited for high data 
rate control-plane applications and higher layer data processing, both of which have limited 
amounts of task-level parallelism, but require a large amount of processing.  The network 
processors in the lower left corner (Alchemy, Conexant, PMC-Sierra) have limited MIPS and 
processing element parallelism.  These devices are best suited for access equipment, which 
has low data rate requirements.  BRECIS’ network processor is also geared toward access 
equipment, however, it is somewhat misrepresented in Figure 39 – about half of its 
computing resources (MIPS) are dedicated to telephony processing. 
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Figure 39. Number of Processing Elements Versus MIPS (log scale). 

Special Hardware 
Network processors have extensively used specialized hardware to accelerate common 
networking computational kernels.  In this section, we examine the two major approaches 
used: 
· Co-processor: a computational block that is triggered by a processing element (i.e. it 
does not have an instruction decode unit) and computes results asynchronously 
· Special functional unit: a specialized computational block that computes a result within 
the pipeline stage of a processing element 
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In general, a co-processor is used for more complicated tasks, may store state, and may have 
direct access to memories and buses.  On the other hand, a special functional unit is used for 
simpler operations, is usually stateless, and only writes back to registers.  As a result of its 
increased complexity, a co-processor is more likely to be shared among multiple processing 
elements, while a special functional unit is not.  Usually, interfaces to special functional units 
are instructions, while co-processors may be accessed via a memory map, special 
instructions, or bus.  Given the orthogonality of these two approaches, a majority of NPs 
employ co-processors for some tasks and special functional units for others. 

Integrated Co-processors 
Of the 19 NPs profiled in this report, 14 of them have integrated co-processors for common 
networking tasks; nine NPs have more than one co-processor.  Operations ideally suited for 
co-processor implementation are well defined, expensive and/or cumbersome to execute 
with an instruction set, and prohibitively expensive to implement as a special functional unit.   
 
The most common integrated co-processors execute lookup and queue management 
functions.  The functionality of lookup is clear – given a key, lookup a value in a mapping 
table.  The main design parameter is the size of the key.  For additional flexibility, some co-
processors also support variable sized keys.  Since lookup often references large memory 
blocks, it needs to operate asynchronously from a processing element.  Common uses of 
lookup are for next hop addresses and for accessing connection state.  The global aspect of 
lookup operations (with respect to the device) requires the co-processor be shared by all 
processing elements.  Queue management is another good candidate for an integrated co-
processor as the memory requirement for packet queues is large and queues are relatively 
cheap to implement in hardware.  The small silicon overhead eliminates many memory read 
and write operations that would otherwise be required.  Other common co-processors are 
for pattern matching, computing checksum/CRC fields, and encryption/authentication.   
 
The functions of co-processors vary from algorithmic-dependent operations to entire 
kernels of network processing.  For example, the Hash Engine in the Intel IXP1200 is only 
useful for lookup, if the algorithm employed requires hashing.  For IP routing, the most 
common algorithms (trie table-based) do not use hash tables.  Algorithm-specific co-
processors limit the freedom of software implementation on network processors – the 
software programmer is forced to implement a task using a specific algorithm that can make 
use of the co-processor.  While this may be desirable in some cases, the majority of 
customers will want to design their own algorithms for product differentiation reasons.   

Special Functional Units 
Most network processors have special functional units for common networking operations 
like pattern matching and bit manipulation.  The computation required for these operations 
is cumbersome and error-prone to implement in software (with a standard instruction set), 
yet very easy to implement in hardware.  For example, Intel’s IXP1200 has an instruction to 
find the first bit set in a register in a singe cycle.  With a standard instruction set, this would 
quite tedious and take numerous cycles.  As with co-processor candidates, the transistor 
overhead is well worth the convenience and speedup.   
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Summary 
Table 6 shows the types and applications of specialized hardware employed by various 
network processors.  We measure different network processors by the six kernels identified 
in Section 2.2: pattern matching, lookup, computation, data manipulation, queue 
management, and control processing.  We use shades of gray to give a rough indication of 
the amount of specialized hardware on the level of specialized hardware used by each 
network processor.  In addition to functional units and co-processors, we also include 
application-specific bus and memory features and entire processors dedicated to networking 
kernels.   
 
This analysis shows the diversity among different network processors.  For example, IBM 
and Motorola have co-processors for most or all packet-processing kernels, while Cognigine 
relies solely on their reconfigurable functional units.  EZchip has entire processors devoted 
to pattern matching, lookup, data manipulation, and queue management.  On the other 
hand, PMC-Sierra’s network processor has no specialized hardware; Broadcom and Alchemy 
have very little.  A number of processors have interesting mixes of functional units, memory 
features, co-processors, and processors for various tasks.  Agere’s PayloadPlus system uses a 
special processor for pattern matching and data manipulation, a co-processor for 
checksum/CRC computation, and has memory features for queue management.  Vitesse and 
Xelerated Packet Devices shy away from special bus or memory features and simply use a 
mix of co-processors and functional units.  Intel and Lexra also include special memory and 
bus features and have a dedicated processor for the control-plane. 
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Legend

 
Table 6. Specialized Hardware Employed by Network Processors. 

Appendix B provides an in-depth analysis of how networking applications map to network 
processor architectures.   

Hiding Latency 
Hiding latencies of various operations is a key aspect to efficiently using the hardware of a 
network processor.  There are three ways NPs hide latency: multi-threading, memory 
prefetching, and split transaction buses.  Multi-threading, by far the most common 
approach, is used to efficiently multiplex a processing element’s hardware.  The stalls 
associated with memory access are well known to waste many valuable cycles.  Multi-
threading allows the hardware to be used for processing other streams while another thread 
waits for a memory access (or a co-processor or another thread).  Without dedicated 
hardware support, the cost of operating system multi-threading would dominate 
computation time, since the entire state of the machine would need to be stored and a new 
one loaded.  As a result, many NPs have separate register banks for different threads and 
hardware units to schedule threads and swap them in one cycle.  Clearwater Networks takes 
a slightly different approach – they have eight threads executing in parallel on the same 
processing element (which can issue 10 instructions per cycle).  In addition, their processing 
element employs superscalar techniques to dynamically determine the available instruction-
level parallelism and functional unit usage.   
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Figure 40 shows a chart of the number of threads per processing element different network 
processors support.  At one extreme, Agere’s PayloadPlus Fast Pattern Processor supports 
64 simultaneous threads; at the other, we have six single-threaded network processors.  Not 
surprisingly, a majority of the single-threaded NPs are either targeting the access market or 
control-plane processing.  All of the multi-threaded architectures, except for Agere and 
Clearwater, have multiple processing elements and support multiple threads per processing 
element.  This implies there are numerous (up to 128) threads running simultaneously on 
these network processors, which has serious implications on the difficulty of programming 
these devices. 
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Figure 40. Comparison of Multiple Thread Support among Network Processors. 

In some cases, the latency of a long memory access can be hidden by prefetching – accessing 
the memory location well before it is needed.  For many streaming operations, like packet 
processing, this is not possible, but for control-plane operations, like routing table updates, 
this is an efficient way to hide memory access latency without the additional register or 
thread scheduling cost of a multi-threaded approach.   
 
Another source of latency on multi-processor systems is communication across the bus.  
Increased integration in network processing systems will increase the communication time 
between processing elements, co-processors, memory, and physical and data link devices.  
Buses that support split transactions help hide this latency in the same way prefetching helps 
hide memory access latency, by splitting the issuance and completion of a bus request.   
 
As memory and processor speeds continue to diverge and as communication architectures 
increase in complexity due to improved integration, the importance of hiding memory access 
time and communication latency will become more important.  Pipelined multi-PE 
architectures are an example of this trend.  By limiting the inter-PE communication, they are 
able to decrease communication latency.  New architectural techniques to reduce this latency 
will also emerge.   

4.3 Programmability 
While parallel processing, specialized hardware, and hiding latency are important to 
executing applications efficiently, programming use these features is paramount to a 
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successful system implementation.  We discuss three major topics related to the 
programmability of NPs: programming model, integrated development environment (IDE), 
and operating systems (OS) interaction. 

Programming Model 
The programming model for network processors is a difficult problem.  Many NPs are 
composed of multiple processors, which has traditionally been a difficult programming 
problem.  The specialized hardware present on these devices exacerbates the issue.  NP 
companies have attacked the problem is various ways.  
 
Clearwater Networks claims their “dynamic multistreaming” (i.e. simultaneous multi-
threading) paradigm is natural to think about, as it is similar to programming on top of 
Windows or UNIX.  Viewed from another angle, their processor can be thought of eight 
independent processors.  The hardware schedules threads and their resource usage, but for 
fine-grain control, the programmer is able to guide the scheduler. 
 
Agere has an interesting solution to programming their device.  They use a declarative 
language for pattern matching, with patterns and associated actions, much like SQL [23].  
While a scripting language raises the level programmer’s level of abstraction, it is unclear if 
the mapping of the program to the hardware is visible to the programmer.  If it’s not, it will 
be difficult to improve the performance of an existing program (a common step in the 
embedded software development cycle).   
 
Applied Micro Circuits has simplified the multi-processor programming model by letting the 
programmer think of their six processing element device as a single logical CPU.  Further 
details on their approach were not available, but many similar past efforts were met with 
limited success. 

Integrated Development Environment (IDE) 
Increasingly, there has been more focus on the programmability of these devices.  This has 
manifested itself in many ways.  First, NP vendors are basing their products on standard 
processor cores to get the benefit of existing tool chains.  For example, Broadcom’s 
Mercurian uses two MIPS processors augmented for network processing.  This allows them 
to use the GNU C/C++ too chain for (almost) free.   
 
An increasing number of NPs have C compilers: Alchemy, Applied Micro Circuits, 
Broadcom, Cisco, Clearwater Networks, Conexant, EZchip, Intel (coming soon), Lexra, and 
Motorola [71].  Programming in C is only a first step; to take advantage of the specialized 
architectural features, pragmas and inlined assembly coding are still required. 

Operating System (OS) 
For NP operating systems support, there’s an increasing trend to implement more OS 
functionality in hardware and expose an interface to the application.  As a result, there is 
only a small software component to the operating system.  For example, the Intel IXP1200 
provides instruction set extensions to perform fast context swapping (there is a hardware 
thread scheduler).  Applications use these instructions to perform context swapping without 
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the need of an operating system.  On the IXP1200, memory management is handled in a 
similar fashion: the SRAM queues can be used as freelists, thus obviating the need for a 
separate OS service routine.  Some NPs have special hardware that handles the common 
I/O path (i.e. packet flow).  Clearwater’s Packet Management Unit copies data from a MAC 
device into a memory shared by the core.  IBM, Motorola, Intel, EZchip have similar units.  
In fact, many network processors do not even run an OS on the data-plane processing 
elements.  Operating systems will still be needed for control processors, some memory 
management, and limited I/O handling.  Currently, most of the NPs that have OS support 
are based on a standard architecture (e.g. MIPS). 

4.4 Summary 
Based on a synthesis of the characteristics analyzed in this section, we can estimate the target 
markets of the network processors profiled in this report.  Figure 41 presents a comparison 
of network processors along two axes, data rate and computational requirements.  The x-axis 
represents increasing computational requirements: from control and management-plane 
support to low layer (layers 2-3) data-plane processing to higher layer (layers 4-7) data-plane 
processing.  On the y-axis, we identify the three target markets for network processors in 
order of increasing data rate requirements: access, edge, and core.  The labels on each axis 
represent points on a continuum, rather than separate categories, as a network processor 
targeted for high-end edge equipment can also be used for low-end core equipment, for 
example.   
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Figure 41. Map of Network Processor Market. 

The analysis reflected in Figure 41 reveals a few groups of network processors.  PMC-Sierra, 
Alchemy, and Conexant are focused on low computation (i.e. management, control, and 
possibly lower layer data-plane processing) for access and low-end edge equipment.  
Broadcom and Clearwater Networks have much more computational power, but lack the 
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support for data parallelism to perform core data-plane processing.  As a result, they are 
targeted for control and management-plane processing for high data rate networking 
equipment.  The bulk of the market is focused on data-plane operations for edge and core 
equipment, representing a response to the massive recent growth in this area.  Agere, 
Applied Micro Circuits, and Intel have enough computational power and specialized 
hardware to perform layer 2-3 data-plane tasks for edge equipment, but not enough of either 
for the higher layers or the core market.  The increased parallelism of the NPs from Lexra 
and IBM enable them to hit core equipment data rates performing lower-layer data-plane 
processing.  The powerful co-processors of Motorola’s C-5 DCP and the numerous 8-bit 
computational blocks of ClearSpeed’s NP allow both of them to perform higher layer 
processing for edge equipment.  Cognigine, EZchip, and Xelerated Packet Devices are best 
suited for higher layer processing at the highest data rates.  Not coincidentally, none of these 
devices are currently even sampling, let alone shipping product.   
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5 Looking Forward 
In this section, we explore some trends in networking applications and network processing 
architectures.  We also speculate on the future of mapping networking applications onto 
network processing architectures.   

5.1 Applications 
The most salient trend with respect to applications is the increase in data rates.  This impacts 
all segments of the network processor market as the hunger for bandwidth comes from the 
very edge of the network, individual nodes.  As individual nodes demand more bandwidth, 
they push on all classes of network devices, access, edge, and core.  With data rates 
increasing at a super-Moore’s Law rate, every 12-18 months each segment must a data rate 
more than double what it previously supported.  Today, the core devices support 2.5Gbps, 
the next generation will have to support 10Gbps, or even 40Gbps.  While core devices must 
support the fastest data rates, edge devices usually lag them by one generation.  Likewise, 
access devices lag edge devices by a generation.   
 
Networking applications appear to be moving in a couple directions.  First, they tend to 
break the traditional OSI stack model.  Often, higher layer information is used to make 
lower layer decisions.  For example, a “web switch” or a URL load balancer uses TCP ports 
and/or HTTP protocol information to determine which server to route requests to.  Since 
higher layer protocols/applications change rapidly and are difficult to predict (e.g. the rise of 
peer-to-peer), it is important for network processors to not focus on supporting a single 
protocol, but rather be able to implement many different ones. 
 
The move to IPv6 will have profound differences on lookup implementations, as IPv6 
addresses are 128 bits long (compared to 32-bit IPv4 addresses).  Since many applications 
require lookup on multiple fields, lookups of >300-bit keys will become common.  
Currently, the largest third-party co-processors can only handle 288 bits (that too, for only a 
small number of entries).  IPv6 also requires supporting the IPSec protocol.  This will 
require implementations for various encryption and authentication algorithms, which are 
extremely computationally intensive.  These changes will require NPs to not only support 
higher data rates, but also an increasing amount of computation. 
 
The accelerating adoption of MPLS as an interoperability standard between various core 
protocols like Ethernet, SONET, Frame Relay, and ATM will require network processing 
systems to support all the control protocol processing required for Label Switch Routers.  It 
is unclear if a standard control processor (i.e. general-purpose processor) will be able to 
support this.   

5.2 Architecture 
To date, network processors have exhibited great architectural diversity.  Based on changing 
application requirements, Moore’s Law increases, and the analysis in Section 4.2, we predict 
architectural changes in network processing systems.  Specifically, we examine the increasing 
importance of parallel processing, co-processors, and communication architectures.   
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Parallel Processing 
While Figure 38 and Figure 39 may give the impression that many network processors are 
already highly parallel, we note that many of them have not yet been released.  Consider the 
highly parallel network processors of Figure 38: EZchip’s 64 processing element NP-1 and 
Cognigine’s 16 PE 4-issue processor are scheduled to sample later this year.  Xelerated 
Packet Device’s 12 PE device is not due until the second quarter of 2002.  Likewise, many of 
the highest MIPS network processors of Figure 39 are not in full production either.   
 
A major aspect of the future of the parallel processing of network processors is their ability 
to scale to higher data rates of the future.  Many of the older network processors will benefit 
more from technology scaling as they are currently achieving their performance with an old 
process technology.  For example, Intel is using a 0.28µ process technology for their 
IXP1200.  Moving to a 0.13µ process technology should enable them to double their clock 
rate (at least).  On the other hand, Broadcom’s Mercurian is already implemented in 0.15µ 
process and runs at 1GHz.  It is unlikely they will get much improvement moving to 0.13µ.  
Since data rates continue to rise faster than Moore’s Law, advances in process technology 
will not be enough.  The scalability of architectures will also play a role.  Scalar architectures 
like those of Alchemy and Conexant will require major redesign.  To achieve more 
parallelism, wide issue architectures (like the 10-issue CNP810SP from Clearwater 
Networks) will struggle as adding extra functional units reaches the point of diminishing 
returns.   

Rise of Co-processors 
The rise of co-processors represents a shift from ASIPs towards ASICs (see Figure 1).  In 
this section, we examine the impact of the two types of network co-processors, integrated 
and external.  Integrated co-processors are tightly coupled to the processing elements of a 
network processor.  Their functionality may be either algorithm-specific or task/kernel 
specific.  External co-processors are third party developed blocks that are specific to 
particular networking tasks.  Since these devices must work with a variety of NPs, they are 
interfaced through a bus or memory mapped.  This is an exploding field that has yielded 
almost as network co-processor companies as NP companies.   
 
The increasing use of co-processors raises a couple of issues.  First, co-processors are less 
programmable than network processors.  Since most of the functionality of a co-processor is 
hard-wired, the future use of the device is limited (for in the field software upgrades to 
support new protocols or applications, for example).  In addition, the widespread use of 
external co-processors makes it difficult to develop software for networking processing 
systems.  Since there is no standard application-level interface for co-processors, each of 
them has a different mode of interaction.   
 
Second, the use of external network co-processors increases overall system cost.  Since most 
network processors and co-processors are not available as IP, a network processing systems 
with external co-processors will likely be composed multiple chips.  This not only increases 
system power consumption, but also requires a larger printed circuit board area (which is 
directly related to cost).  The rise in adoption of external co-processors is not allowing 
network processing systems to take advantage of silicon integration that technology scaling 
provides.   
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By extrapolating from the current use of co-processors, we can imagine a network 
processing system consisting of co-processors for pattern matching, lookup, queue 
management, security, and packet manipulation controlled by a general-purpose processor.  
Writing a networking application for this device will mostly be a series of calls to these co-
processors.  The “network processor” will be little more than a controller.  This solution also 
provides little flexibility to adapt to future changes in protocols or applications.  We would 
expect these solutions to be used only for performance critical applications, like core devices. 

Communication Architectures 
While processing packets faster with increased parallelism will be important in the future, the 
increased integration of future network processors will place a larger burden on the 
communication fabric that connects various on-chip components.  As more processing 
elements, co-processors, and memories are integrated on a chip, simple buses and local 
connection schemes that are used to connect a handful of elements will not be sufficient.  
Interconnect schemes that scale to 128 or 256 components will have a distinct advantage.   
 
The complexity of these schemes will likely increase communication latency; effective means 
to hide this latency will also be important.  BRECIS’s communication architecture has taken 
an interesting approach of mapping application characteristics directly to their bus 
architecture.  Their bus supports three priority levels, which correspond to the three types of 
packets their device processes: voice, data, and control.  This allows programmers to handle 
the different latency and throughput requirements of these packet types. 

5.3 Mapping Applications onto Architectures 
As more programmable solutions for networking emerge, the importance of software will 
only increase.  The current method of ASIP design is for some architects to build a device 
for a particular application space using their own knowledge of that space.  Then, they hand 
it off to the software team who writes (or attempts to write) a compiler for it.  This hides 
many of the design decisions and relies on the judgment capabilities of the architect.  
Instead, an approach that couples hardware and software together and evaluates trade-offs 
of particular implementations will emerge.  The result is an architecture for a particular 
application domain along with a method to map software to this architecture.  Vissers et al 
[72] [73] have demonstrated this approach for multimedia processors at Trimedia.  The 
MESCAL [74] research group is developing methodologies and tools to support this 
approach for future designs.   
 
Recently, a few networking software companies have started targeting network processors, 
reflecting the importance of software in the end system.  However, many of the network 
software companies deliver a solution in C and presume the presence of operating systems 
like Linux, FreeBSD, or VxWorks (e.g. Trillium, IPinfusion).  Nortel’s Open IP 
Environment provides a framework and building blocks (modules) for developing 
networking applications.  These modules are implemented in C/C++ and communicate via 
a well-defined APIs.  Modules for most IP protocols has already been built and many 
network processor companies have partnered with Nortel on this effort including IBM, 
Intel, Motorola, and Vitesse [75].  In addition, the Network Processing Forum, an industry 
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consortium, is also developing standard software interfaces to network processors.  Their 
API will not be released until the fourth quarter of 2001 [76].  It is unclear whether either of 
these will succeed, as the efficiency of the mapping these APIs onto various NPs must first 
be demonstrated.   
 
Teja Technologies has taken an interesting angle by developing a “network processor 
operating system.”  Their flagship product provides a higher level of abstraction for 
designing networking applications.  This allows application designers to design and modify 
applications independent of the target architecture.  The basic elements of this abstraction 
are servers (compute elements) and queues that interact using communicating finite state 
machines.  In addition, they allow designers to specify memory layout of packets.  From this 
abstract application representation, they generate scheduling and computational code for 
network processors.  Currently, Teja only supports code generation for Intel’s IXP1200.  
Since a code generator of a network processor is a substantial effort, the manifold of 
network processors on the market severely hampers the scalability of this approach.   
 
Companies that are known for developing DSP (Digital Signal Processor) compilers have 
also developed compilers for network processors.  For example, Connected Components 
Corporation wrote a compiler for Applied Micro Circuits’ nP7000 and Cisco’s PXF.  Green 
Hills is currently developing a compiler for Clearwater Network’s network processor.   

  Page 70 of 89 



Understanding Network Processors 

6 Conclusions 
In this report, we’ve surveyed and evaluated the diverse field of network processors.  Since 
network processors are “application-specific,” we first explored networking applications.  
After analyzing these applications, we extracted some common networking tasks.  These 
kernels provided a sort of “benchmark” by which to compare the functionality of different 
network processors.   
 
We then surveyed in detail many network processors on the market in addition to those 
scheduled to be released.  For each network processor, we examined their architecture, 
programmability, implementation details, and announced design wins.  To better understand 
the numerous NP offerings, we synthesized this “raw data” along many axes.  We identified 
and described different market segments of networking equipment (access, edge, and core).  
We then plotted the timeline, parallel processing features, specialized hardware, and latency 
hiding capabilities of network processor architectures.  Combining this with their various 
programmability aspects results in our conclusions regarding what target markets network 
processors are best suited for.   
 
The analysis used in reaching these conclusions also helps us identify future trends of the 
network processor market.  The increasing data rate requirements across all market segments 
will force higher throughput.  The ever-changing networking applications will reinforce the 
programmability of network processors.  The move to 128-bit IPv6 address will have 
profound effect on access to memory and table lookup functions.  On the architecture front, 
our analysis raises more questions than it does answers: 
· What is the right mix of processing element and functional unit parallelism? 
· How will the increasing use of co-processors affect network processor architectures?  
Will future network processors be merely a collection of co-processors coordinated by a 
controller?  What about the lack of flexibility of such an approach? 
· How will on-chip communication architectures adapt to the increasing number of 
processing elements, co-processors, memories, and peripherals they must connect? 

 
While much of the industry has focused on the hardware side of the system, what about the 
software side?  The complexities of these architectures make them very difficult for 
programmers to think about, let alone to provide effective high-level language support for.  
While C/C++ compilers exist for many network processors, performance critical code will 
continue to be written in assembly.  Is there a common programming model that can be 
used to target multiple network processors (much like C is to general-purpose processors)?  
Will this software difficulty force future architectures to be much more programmable? 
 
As stated in the introduction, the emergence of network processors is part of a broader 
paradigm shift from ASICs to ASIPs.  Networking is a great example of where 
programmable solutions have an advantage over hardwired solutions; the changing standards 
and applications require flexibility, and the increasing data rate requirements push for faster 
performance and for fast time-to-market.  Being a leading example of the move to 
programmable systems, we can learn a great deal from their maturation process and apply 
this to other application areas beginning this shift.  
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7 Web Sites 
The following is a list of relevant web sites as of July 23, 2001. 
· Network Processors 

o AGERE: http://www.agere.com/ 
o Alchemy Semiconductor, Inc.: http://www.alchemysemi.com/ 
o Allayer: http://www.allayer.com/ 
o Bay Microsystems: http://www.baymicrosystems.com/ 
o Brecis Communications: http://www.brecis.com/ 
o C-Port Corporation, A Motorola Company: http://www.cportcorp.com/ 
o Cisco: http://www.cisco.com/ 
o ClearSpeed (formerly PixelFusion): http://www.clearspeed.com/ 
o Clearwater Networks (formerly XStream Logic Devices): 

http://www.clearwaternetworks.com/ 
o Cognigine: http://www.cognigine.com/home.html 
o Entridia Corporation: http://www.entridia.com/ 
o EZchip: http://www.ezchip.com/ 
o IBM Networking Technology: 

http://www.chips.ibm.com/products/wired/communications/network_pro
cessors.html 

o IP Semiconductors A/S: http://www.ipsemiconductors.com 
o Intel(R) Networking and Communications Building Blocks: 

http://developer.intel.com/design/network/INDEX.HTM 
o ishoni Networks: http://64.35.17.187/index.asp 
o Lexra: http://www.lexra.com/ 
o Maker Communications, Inc. (now Conexant): http://www.maker.com/ 
o MMC Networks, Inc. (now Applied Micro Circuits): 

http://www.mmcnet.com/ 
o Navarro Networks: http://www.navarronetworks.com/ 
o Onex Communications: http://www.onexaco.com/ 
o PMC-Sierra TT1 Chip Set: 

http://www.pmcsierra.com/products/details/pm9311/ 
o SiByte Inc. (now Broadcom): http://www.sibyte.com/ 
o Silicon Access Networks: http://www.siliconaccess.com/ 
o SiTera (now Vitesse): http://www.sitera.com/ 
o Xelerated Packet Devices: http://www.xelerated.com/ 

· Network Co-processors 
o Acorn Networks: http://www.acornnetworks.com/ 
o Chrysalis-ITS: http://www.chrysalis-its.com/ 
o Fast-Chip: http://www.fast-chip.com/ 
o Hifn: http://www.hifn.com/ 
o Lara Networks (now Cypress Semiconductor): 

http://www.laranetworks.com/home.html 
o NetLogic Microsystems: http://www.netlogicmicro.com/ 
o Orologic (now Vitesse): http://www.oro-logic.com/ 
o Solidum Systems: http://www.solidum.com/home.cfm 
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o SwitchCore: http://www.switchcore.com/ 
o ZettaCom: http://www.zettacom.com/ 

· Embedded Network Software 
o Connected Components Corp.: http://www.concmp.com/ 
o GreenHills Software: http://www.ghs.com/ 
o Teja Technologies: http://www.teja.com/ 
o Trillium: http://www.trillium.com/ 

· Other Resources 
o EE Times: http://www.eetimes.com/ 
o The Linley Group: http://www.linleygroup.com/ 
o Network Processing Forum: http://www.npforum.org/ 
o NPC 2001 Network Processors Conference: 

http://www.networkprocessors.com/ 
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8 Acronym Dictionary 
AAL – ATM Adaptation Layer OS – Operating System 
AH – Authentication Header OSI – Open System Interconnect 
ARP – Address Resolution Protocol P2P – Peer-to-Peer 
ASIC – Application Specific Integrated Circuit PDU – Packet Data Unit 
ASIP – Application Specific Instruction Processor PE – Processing Element 
ATM – Asynchronous Transfer Mode PHB – Per-Hop Behavior 
BA – Behavior Aggregate POS – Packet over SONET 
CMTS – Cable Modem Termination System QoS – Quality of Service 
CoS – Class of Service RFC – Request For Comments 
CPI – Common Part Indicator RSVP – Resource Reservation Setup Protocol 
CRC – Cyclic Redundancy Check RTSP – Real Time Transport Protocol 
DSCP – Differentiated Services codepoint SA – Security Association 
DSM – Deep Sub-Micron SAR – Segmentation & Reassembly 
DSP – Digital Signal Processor SFU – Special Functional Unit 
ESP – Encapsulating Security Payload SLA – Service-Level Agreement 
FPGA – Field Programmable Gate Array SMT – Simultaneous Multi-Threading 
FU – Functional Unit SPI – Security Parameters Index 
GPP – General-Purpose Processor SSL – Security Socket Layer 
HTTP – HyperText Transfer Protocol TCA – Traffic Conditioning Agreement 
IDE – Integrated Development Environment TCP – Transmission Control Protocol 
ILP – Instruction-Level Parallelism TOS – Type Of Service 
IP – Internet Protocol TTL – Time-To-Live 
IPSec – Internet Protocol Security TTM – Time-To-Market 
IPv4 – Internet Protocol Version 4 UDP – User Datagram Protocol 
IPv6 – Internet Protocol version 6 URL – Uniform Resource Locator 
LAN – Local Area Network UU – User-to-User 
LER – Label Edge Router VC – Virtual Circuit 
LPM – Longest Prefix Match VCI – Virtual Circuit Identifier 
LSR – Label Switch Router VLAN – Virtual Local Area Network 
MAC – Media Access Control VLIW – Very Long Instruction Word 
MF – Multi-Field VoIP – Voice over IP 
MIPS – Millions of Instructions Per Second VP – Virtual Path 
MPLS – Multi-protocol Label Switching VPI – Virtual Path Identifier 
MTU – Maximum Transmission Unit VPN – Virtual Private Network 
NAT – Network Address Translation WFQ – Weighted Fair Queuing 
NP – Network Processor  
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Appendix 

A. Detailed Network Processor Summary 
The following spreadsheets summarize the architectures of the network processors 
presented across multiple categories: micro-architecture, architecture, memory, software 
support, and physical implementation.   
 
Note: many of these network processors are still in the development phase.  As a result, some of the details of 
these products are not available, especially regarding software support and physical implementations. 

Micro-Architecture 
We summarize the micro-architectures of the NPs described in this section in Table 7.  
Definitions and implications of the categories used to compare micro-architectures are given 
below: 
· Task-based – Does this NP have any hardware for specific tasks?  These are often co-
processors or special functional units (FUs). 

Since many of the tasks involved in network processing are quite specific, specialized hardware can 
be used to speed up common operations (relative to a software implementation).  The functions of 
task-based hardware employed is a good indicator for what types of processing an NP is targeted 
towards. 

· Special instructions – What kind of special instructions does this NP have, if any?  
These instructions may be interfaces to special FUs, co-processors, or other pieces of 
hardware (e.g. CAMs). 

Special instructions are an interface to specialized hardware.  This gives an indication of how the 
software programmer can take advantage of this hardware. 

· Number of active contexts – How many different contexts (either threads or 
processes) can be physically executing at a time? 

This counts the number of program counters on the NP.  The number of active contexts gives an 
idea for how many independent executing entities there are. 

· Number of contexts per active contexts – For each active context, there is hardware 
support for how many contexts to exist? 

Since many NPs have hardware support for multiplexing resources across contexts and fast 
switching between them, we only include the number of contexts that hardware can efficiently support.  
With the appropriate operating system software, many of these devices can support an infinite 
number of contexts.  However, switching between them would be prohibitively slow, as the entire state 
of the machine would have to be stored to memory and another one loaded from memory. 
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Task-based Special Instructions
# of Active 
Contexts

# of Contexts 
per Active 
Context

Agere (PayloadPlus)

- FPP: pattern matching on a frame
- RSP: packet manipulation, traffic 
management
- ASI: "slow path" processing

Yes, for traffic 
management, QoS/CoS, 
and packet modifications 3 64 for the FPP

Alchemy 
None

Yes, but very generic - 
conditional moves, count 
leading 0s/1s. 1 1

BRECIS 
Communications 
(MSP5000) ADPCM, CRC, security co-processors Yes, for DSP 3 1
Broadcom (Mercurian 
SB-1250) 2 packet FIFOs None 2 1

Cisco (PXF/Toaster 2)
None Yes at least 32

ClearSpeed 

Table Lookup Engine None

1 per MTAP; 
variable number 
of MTAPs

up to 32 per 
MTAP

Clearwater Networks 
(CNP810SP) Packet Management Unit Yes 8 1

Cognigine 
None

Yes, variable (based on 
application) 16 4

Conexant (CX27470 
Traffic Stream 
Processor)

Channel Descriptor Lookup Engine and 
Packet/Command Engine map packets to 
SW processes Yes 1 multiple

EZchip (NP-1)

· Parse: identifies and extracts packet 
headers and protocols
· Search: performs lookups
· Resolve: assign packet to appropriate 
queue and/or port
· Modify: modifies packet contents

Yes, the ISA of each 
TOP is customized to a 
set of tasks

IBM (PowerNP) Hardware coprocessor accelerates tree 
searching and frame manipulation Yes 16 2

Intel (IXP1200)
Specialized functional units for hashing and 
queue management Yes 6 4

Lexra (NetVortex & 
NVP) None Yes 2

configurable 
from 1-8

Applied Micro Circuits 
(nP) Policy Engine and Search Engine Yes up to 8 8

Motorola (C-5 DCP)

· Fabric processor: for using multiple C-5’s
· Table lookup unit
· Queue management
· Buffer management: fast, flexible memory 
management Yes, accessed via CPI 16 1

PMC-Sierra 
None

Yes, for DSP and 
networking 2 1

Vitesse (PRISM IQ2000) Network co-processors for packet 
processing for classification, lookups, and 
QoS/CoS priority checking Yes 4 5

Xelerated Packet 
Devices (X40 & T40)

Meters, counters, WRED, 
Fragmentation/Reassembly

Yes, packet-based 
instruction set

10 for X40, 2 for 
T40 1

Table 7. Micro-architectural Comparison of NPs. 
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Architecture 
To summarize the architectures of different NPs, we use the following axes: 
· Central control – Does this NP have a central control processor?  If so, what is it? 

Control-plane operations are very diverse and often quite complicated.  As a result, they are often 
executed on a general-purpose processor to take advantage of HLL tool support (i.e. compiler and 
debugger).  Given the coupling between control and data-plane operations, it would be advantageous 
have a control processor integrated with the packet processors. 

· Multi-PE – Does this NP employ multiple PEs?  If so, what kinds? 
Multiple processors can be used to take advantage of the inherit parallelism involved in datagram 
processing.  How different NPs use multiple PEs has an impact on their overall performance. 

· Inter-PE communication structure – What does the NP use to communicate with 
various PEs, co-processors, and memory. 

Although there is a lot of inherent parallelism in network processing, communication between 
different hardware elements (especially memory) is paramount to an efficient implementation. 

· Interfaces – What kind of interfaces does this NP support? 
The interfaces an NP supports indicates the ease of integrating this device into an overall system.   
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Table 8. Architectural Comparison of NPs. 

Central control Multi-PE

Inter-PE 
communication 
structure Interfaces

Agere (PayloadPlus)
ASI

3 (FPP, RSP - which has 3 
VLIW compute engines, 
ASI)

Functional Bus 
Interface to connect 
FPP/ASI

UTOPIA Level 2/3, 
POS-PHY Level 3, MPI, 
FBI, CBI, PCI

Alchemy Yes. Single 32-bit 
MIPS processor No N/A

2 Ethernet controllers, 
IrDA, USB

BRECIS Communications 
(MSP5000)

MIPS R4KM
2 LSI ZSP400s - 4 issue 
superscalars

Multi-Service Bus 
Architecture - 
3.2Gbps b/w, 3 
priorities

2 10/100 Ethernet 
MACs, UTOPIA 2, 128 
channel TDM

Broadcom (Mercurian SB-1250)
None 2 64-bit MIPS CPUs; 4 issue

256 bit bus; runs at 
1/2 CPU speed

3 On-chip Gigabit 
Ethernet MACs

Cisco (PXF/Toaster 2)
None

32 2-issue VLIWs arranged 
in a 4x8 systolic array

ClearSpeed 

Depends variable number of MTAPs

ClearConnect bus 
connects MTAPs - 50-
200Gbps peak b/w

Clearwater Networks 
(CNP810SP)

Simultaneous 
MultiThreading, 8 
issue superscalar No N/A

Cognigine 
None 16 RCUs

RSF - hierarchical 
crossbar SPI-4, PCI

Conexant (CX27470 Traffic 
Stream Processor) Yes, RISC No N/A UTOPIA, PCI
EZchip (NP-1) None 64 (TOPs)

IBM (PowerNP)
On-chip Power PC 
core

16 programmable protocol 
processors

40 Fast Ethernet/4Gb 
MACs with SMII and 
GMII, POS

Intel (IXP1200)

on-chip 200MHz 
StrongARM 
coordinates system 
activities

6 programmable 
microengines

Microengines 
communicate via Fast 
Bus Interface (FBI)

4.2Gb/s 66MHz IX bus, 
PCI

Lexra (NetVortex & NVP)
1 control processor

modified RISCs with multi-
threading support

64-bit Vortex bus 
running at chip speed

Applied Micro Circuits (nP)

None Yes

Designed to work 
with other nP’s, 
MMC switch chips, 
nP co-processors Fast Ethernet

Motorola (C-5 DCP)

1 executive 
processor 16 channel processors

3 internal buses 
connect CPs and co-
processors (60Gb/s 
aggregate bandwidth)

33/66MHz PCI, 
UTOPIA (Level 2 and 3)

PMC-Sierra 
None

2 64-bit MIPS compatible 
CPUs; Dual issue, 
superscalar SysAD interface

Vitesse (PRISM IQ2000)
None

4 CPUs for route processing 
and system management

Input and Output 
Streaming Busses

Xelerated Packet Devices (X40 
& T40)

None

- X40: 10 classifier/PISC 
pairs
- T40: 2 classifier/PISC pairs
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Software Support 
With software becoming an increasingly important part of the overall system, it is important 
to compare the software support of NPs.  We include the following comparisons in Table 9: 
· Compilers – Is a compiler, interpreter, and/or assembler available for this device?  
What about other development tools, like a debugger, simulator, etc? 
· Operating systems – What operating systems have been ported to this device?  As an 
increasing amount of OS functionality is moved into hardware, the role of an operating 
system diminishes.  
· Libraries – Many NPs include libraries for common networking applications as well as 
APIs for accessing specialized hardware.   
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Compilers
Operating 
systems Libraries

Agere (PayloadPlus)
Yes, for FPP, 
RSP, and ASI

Application Code Library 
with basic wire-speed 
classification and forwarding

Alchemy C/C++ compiler
Windows CE, 
Linux, VxWorks None

BRECIS Communications 
(MSP5000) C/C++ compiler

VxWorks, Linux, 
BSD

firmware for common 
networking apps

Broadcom (Mercurian SB-1250)

Standard Gnu 
C/C++ tool 
chain

FreeBSD, Linux, 
and VxWorks OS 
support

Cisco (PXF/Toaster 2) C compiler IOS

ClearSpeed C compiler

Application development 
kit, reference library of 
common networking apps

Clearwater Networks 
(CNP810SP) C/C++ compiler

Cognigine C/C++ compiler
application library for 
common L2-7 functions

Conexant (CX27470 Traffic 
Stream Processor)

C Compiler and 
Assembler

Modular SW architecture; 
Libs for AAL5, AAL2 SAR, 
POS

EZchip (NP-1)
C compiler and 
Assembler

IBM (PowerNP) Assembler only None

Intel (IXP1200)
C compiler and 
Assembler None

Lexra (NetVortex & NVP) C compiler

Applied Micro Circuits (nP) C/C++ compiler Wind River
network software reference 
library

Motorola (C-5 DCP) C/C++ compiler
CPI that abstracts common 
networking tasks

PMC-Sierra C/C++ compiler Many

Vitesse (PRISM IQ2000) yes
Network software library for 
common functions

Xelerated Packet Devices (X40 
& T40) C compiler

building blocks for control-
plane processing

Table 9. Comparison of Software Support for NPs. 

Memory 
We profile the NPs with respect to their memory support in Table 10 based on the following 
categories: 
· Shared/Distributed – Is the memory shared or distributed (or some combination) 
across multiple PEs? 
· Size/Type – What is the size and type of any on-chip memory? 
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· Cache size/Associativity – What are the characteristics of any caches that are included 
on chip? 
· Special features – Any other relevant details or features relating to memory 
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Shared/ Distributed Size/Type
Cache Size/ 
Associativity Special Features

Agere (PayloadPlus)
Shared between the FPP 
and RSP External None

All memory is off chip; supports 64-
bit interface to PC-133 SDRAM 
and 133MHz pipelined ZBT-style 
SSRAM

Alchemy 
16KB instruction 
and data cache Prefetch instructions

BRECIS Communications 
(MSP5000) Shared External

- 80KB I and D 
cache for each ZSP
- 16KB I and D 
cache for MIPS

Packet queues in each bus interface; 
intelligent DMA engines

Broadcom (Mercurian SB-
1250)

Shared main memory and 
L2 Cache; distributed L1 
Cache External

32KB L1 for each 
CPU; share 512KB 
L2 cache 2 Packet FIFOs

Cisco (PXF/Toaster 2)

Vertical slces of pipeline 
have access to shared 
memory External None

ClearSpeed Distributed among PEs

Per PE: 16-64 byte 
register files, 1-
16KB packet 
memory

None
Memory controllers to load packets 
into packet memory

Clearwater Networks 
(CNP810SP) N/A External

64KB I and D 
Cache; Dual Ported

Packet Management Unit; 2 address 
generation units

Cognigine External
I and D cache per 
RCU

Conexant (CX27470 Traffic 
Stream Processor) N/A 8KB scratchpad 4KB Instruction Buffer management unit

EZchip (NP-1)
Algorithms that leverage embedded 
memory to search external memory

IBM (PowerNP) Distributed

32KB 
SRAM/Protocol 
Processor (8KB for 
instruction 
memory) None

Data store co-processor, control 
memory arbiter, ingress/egress data 
storage

Intel (IXP1200) Shared
4KB SRAM 
(ScratchPad) None SRAM Queues; Xmit/Recv FIFOs

Lexra (NetVortex & NVP) Shared External
Block transfer controller, table 
lookup unit, packet buffers

Applied Micro Circuits (nP)

Motorola (C-5 DCP)

Accessed by queue mgmt, 
table lookup, and buffer 
mgmt units External None

Table lookup unit, queue and buffer 
management co-processor 

PMC-Sierra N/A External

16KB 4-way 
associative Instr & 
Data Cache; 256 
KB L2 cache None

Vitesse (PRISM IQ2000) Shared
Separate bus for lookups; 256-bit 
wide bus

Xelerated Packet Devices 
(X40 & T40)

Distributed by function - 
counter, meter, CAM, 
pipeline buffer None

Table 10. Comparison of Memory for NPs. 
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Physical Implementation 
Lastly, we summarize the NPs in this report regarding physical implementation.  Some these 
categories are not relevant or indicative given that some of these NPs are available as soft 
cores. 
· Process technology – What process technology is being used for this NP? 
· Die size 
· Core – Is this NP available as a core? 
· Speed – Speed of the global clock 
· Power – Average power consumption 
· Availability – When is this NP available? 

Process 
technology Die size Core Speed Power Availability

Agere (PayloadPlus) 0.18u 12W Now

Alchemy Yes

266MHz / 
400MHz / 

500MHz

<300mW / 
500mW / 

900mW Sampling

BRECIS Communications 
(MSP5000) 0.18u 160MHz 2W 3Q01
Broadcom (Mercurian SB-
1250) 0.15u 25mm2 Yes 1GHz 2.5W Sampling
Cisco (PXF/Toaster 2) Cisco internal
ClearSpeed 0.13u 180-295mm2 Yes 400MHz 1H03
Clearwater Networks 
(CNP810SP) 0.15u Yes 300MHz 12W 4Q01
Cognigine 0.18u 200MHz 12/01

Conexant (CX27470 Traffic 
Stream Processor) 125MHz 4.2W
EZchip (NP-1) 3Q01
IBM (PowerNP) 0.18u Yes 133MHz 20W Now
Intel (IXP1200) 0.28u 200MHz 5W Now

Lexra (NetVortex & NVP) 0.28u 200MHz 5W Sampling

Applied Micro Circuits (nP) 0.18u 165MHz 4W Now
Motorola (C-5 DCP) 0.18u 15W Now
PMC-Sierra 0.18u 400MHz Now
Vitesse (PRISM IQ2000) 0.25u No 200MHz 12W Now
Xelerated Packet Devices 
(X40 & T40) 0.13u 4/02

Table 11. Comparison of Physical Implementation for NPs.  

 

B. Applications/Architecture Mapping Table 
Table 12 and Table 13 summarize the mapping of application kernels to the architectures 
examined in Section 3.  The application kernels defined earlier (pattern matching, lookup, 
computation, data manipulation, queue management, and control processing) are the basic 
operations for a particular packet.  However, single packet processing makes poor utilization 
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of network processor hardware (e.g. stalling on memory access).  As a result, a network 
processing system must simultaneously process multiple packets.  To account for this in our 
analysis of mapping applications onto architectures, we include network processor features 
for multiple packet processing.   
 

able 12. Mapping of Applications onto Architectures (part 1). 

pattern matching lookup computation
data 
manipulation

queue 
management

control 
processing

Agere 
(PayloadPlus)

64 contexts; 2 issue 
VLIW

FPP; Pattern 
Processing Engine

CRC/checks
um engine

Stream editor 
compute engine

programmable 
queues; queue 
management 
engine

Alchemy 
prefetching

few basic special 
instructions

few basic special 
instructions

BRECIS 
Communications 
(MSP5000)

Multi-Service Bus, 2 
4-issue DSPs

security co-
processor

bus interface has 
packet queues MIPS

Broadcom 
(Mercurian SB-
1250) 2 64-bit MIPS 

CPUs; 4 issue 2 packet FIFOs

device meant 
for control 
plane

Cisco 
(PXF/Toaster 2) 32 2-issue VLIWs 

in systolic array special instructions
special 
instructions

special 
instructions

ClearSpeed multiple MTAPs; 
up to 32 threads 
per MTAP many 8-bit PEs

Table Lookup 
Engine

many 8-bit 
PEs many 8-bit PEs

Clearwater 
Networks 
(CNP810SP) SMT; 10 issue

packet management 
unit

special 
instructions

packet 
management 
unit

Cognigine 16 4-issue RCUs, 4 
threads each

special instructions 
(variable)

special 
instructions 
(variable)

special 
instructions 
(variable)

special 
instructions 
(variable)

Conexant (CX27470 
Traffic Stream 
Processor)

multiple contexts; 
background context 
swap

Channel Descriptor 
Look-up Engine

special 
instructions

Traffic 
Scheduling 
System; buffer 
management

Single Packet Processing FeaturesFeatures for 
Multiple Packet 
Processing

T
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pattern matching lookup computation
data 
manipulation

queue 
management

control 
processing

EZchip (NP-1)

4 TOPs, pipelined TOPparse

TOPsearch; 
technique to 
leverage 
embedded 
memory to 
search TOPmodify TOPresolve

IBM (PowerNP)

16 protocol 
processors

Classifier Hardware 
Assist

Data store co-
processor; Tree 
Search Engine

Checksum co-
processor

Ingress/Egress 
Switch Interface

Enqueue and 
Policy co-
processors

Counter co-
processor

Intel (IXP1200)
6 micro-engines; 4 
threads each with 0-
overhead context 
swapping special instructions Hash Engine

special 
instructions

Receive/Transm
it FIFOs; queue 
interface to 
SRAM StrongArm

Lexra (NetVortex 
& NVP)

multiple RISCs; 8 
threads each with 0-
overhead context 
swapping special instructions

Table Lookup 
Unit

special 
instructions Packet buffer

Control 
processor

Applied Micro 
Circuits (nP)

up to 6 processors; 
0-overhead context 
swapping among 8 
threads

programmable policy 
engine search engine

packet transform 
engine

statistics 
engine

Motorola (C-5 
DCP) 16 channel 

processors SDP
Table Lookup 
Unit SDP SDP

Queue 
Management 
Unit

PMC-Sierra 

Vitesse (PRISM 
IQ2000) 4 scalar RISCs; 

share threads classification engine
lookup co-
processor

special 
instructions

queue 
management co-
processor

Xelerated Packet 
Devices (X40 & 
T40)

10 stage macro-
pipeline of 
classifier/PISC 
pairs special instructions

internal CAM, 
interface to 
external CAM

special 
instructions, 
HW support for 
frag/reass

Queue Engine, 
HW support for 
WRED

meters, 
counters

Single Packet Processing FeaturesFeatures for 
Multiple Packet 
Processing

Table 13. Mapping of Applications onto Architectures (part 2). 
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