

Understanding Network
Processors

By Niraj Shah

niraj@eecs.berkeley.edu

VERSION 1.0

4 SEPTEMBER 2001

mailto:niraj@eecs.berkeley.edu

Understanding Network Processors

Table of Contents
0 Intended Audience ...1
1 Introduction ..2

1.1 What is a Network Processor? ...5
1.2 A Brief History..5

2 A Profile of Network Applications..7
2.1 Network applications ...7
2.2 Kernels ...22
2.3 Summary ..23

3 Network Processors ...27
3.1 Agere (PayloadPlus) ...27
3.2 Alchemy (Au1000)..30
3.3 Applied Micro Circuits, formerly MMC Networks (nP7xxx) ..31
3.4 Bay Microsystems ...32
3.5 BRECIS Communications (MSP5000) ...33
3.6 Broadcom, formerly SiByte (Mercurian SB-1250)...34
3.7 Cisco (PXF/Toaster 2) ..35
3.8 ClearSpeed, formerly PixelFusion..36
3.9 Clearwater Networks, formerly XStream Logic Devices (CNP810SP)........................37
3.10 Cognigine...39
3.11 Conexant, formerly Maker (MXT4400 Traffic Stream Processor)40
3.12 EZchip (NP-1)..41
3.13 IBM (PowerNP) ...42
3.14 Intel, formerly Level-One (IXP1200)..44
3.15 Lexra (NetVortex & NVP) ...46
3.16 Motorola, formerly C-Port (C-5 DCP)..48
3.17 PMC-Sierra, formerly Quantum Effect Devices ...50
3.18 Vitesse, formerly SiTera (PRISM IQ2000) ...50
3.19 Xelerated Packet Devices (X40 & T40) ..51
3.20 Summary ..53

4 Analysis ..55
4.1 Market Segmentation ...55
4.2 Architecture...56
4.3 Programmability ...63
4.4 Summary ..65

5 Looking Forward..67
5.1 Applications...67
5.2 Architecture...67
5.3 Mapping Applications onto Architectures..69

6 Conclusions ...71
7 Web Sites ...72
8 Acronym Dictionary ..74
9 References..75
Appendix ...79

A. Detailed Network Processor Summary...79
B. Applications/Architecture Mapping Table...87

 i

Understanding Network Processors

List of Figures
Figure 1. Space of System Implementations. ...3
Figure 2. Comparison of System Implementations. ...4
Figure 3. The Solution Space of Network Processing..5
Figure 4. OSI Protocol Stack. ..7
Figure 5. ATM cell header. ...8
Figure 6. The protocol stack for IP over ATM. ..9
Figure 7. Internet Protocol (IP) Header Format. ..10
Figure 8. IPv6 Packet Header Format. ...13
Figure 9. Type 0 Routing Extension. ..14
Figure 10. Difference between Transport and Tunnel mode..14
Figure 11. AH Header Format. ..15
Figure 12. ESP Header Format..16
Figure 13. TCP header and optional data. ..17
Figure 14. Wireless TCP/IP Gateway...18
Figure 15. Logical view of a DiffServ node. ..21
Figure 16. Agere PayloadPlus System. ..28
Figure 17. FPP Block Diagram [24]. ...29
Figure 18. Architecture of the Agere Routing Switch Processor [26].30
Figure 19. Alchemy's System Architecture [29]. ..31
Figure 20. Applied Micro Circuits' EPIF-200 Network Processor [30].....................................32
Figure 21. BRECIS Communications' MSP5000 [34]. ...34
Figure 22. Broadcom’s Mercurian Architecture [37]. ...35
Figure 23. Example use of Cisco's PXF NP [39]. ...36
Figure 24. Macro-Architecture of Clearwater Networks’ CNP810SP Network Processor. ...38
Figure 25. Cognigine's RCU Architecture. ...40
Figure 26. EZChip's NP-1 Architecture [45]. ..41
Figure 27. IBM's Network Processor [50]..43
Figure 28. Embedded Processor Complex Architecture [50]..43
Figure 29. Ingress and Egress Frame Flow [50]. ...44
Figure 30. Intel’s IXP1200 Architecture...45
Figure 31. An Example Use of Lexra's NetVortex System Architecture [56].47
Figure 32. Motorola C-5 DCP Macro-architecture [60]. ..49
Figure 33. Vitesse's PRISM IQ2000 Architecture [64]...51
Figure 34. Macro-architecture of the X40. ...52
Figure 35. Example use of Xelerated's X40 Packet Processor..53
Figure 36. Varying Solutions of Network Processors. ...54
Figure 37. Timeline of Network Processor Releases. ...56
Figure 38. Issue Width per Processing Element Versus Number of Processing Elements....58
Figure 39. Number of Processing Elements Versus MIPS (log scale).59
Figure 40. Comparison of Multiple Thread Support among Network Processors.63
Figure 41. Map of Network Processor Market..65

 ii

Understanding Network Processors

List of Tables
Table 1. Applications and their kernels (part 1). ...24
Table 2. Applications and their kernels (part 2). ...25
Table 3. Applications and their kernels (part 3). ...26
Table 4. Characteristics of the 3 major NP markets. ..55
Table 5. Comparison of Network Processing Planes. ..56
Table 6. Specialized Hardware Employed by Network Processors..62
Table 7. Micro-architectural Comparison of NPs...80
Table 8. Architectural Comparison of NPs..82
Table 9. Comparison of Software Support for NPs. ..84
Table 10. Comparison of Memory for NPs. ..86
Table 11. Comparison of Physical Implementation for NPs. ...87
Table 12. Mapping of Applications onto Architectures (part 1). ..88
Table 13. Mapping of Applications onto Architectures (part 2). ..89

 iii

Understanding Network Processors

0 Intended Audience
This document presents a survey and analysis of network processors. It is intended
primarily for four major audiences:
· Network processor architects who want to know the technical details about current
network processor offerings
· Network processor product managers who want to know the features, performance,
and range of target applications of their competitors' products
· Users of network processors who want to incorporate them into their products but are
having trouble choosing which device best suits them
· Developers and designers in network processor related fields, like network processing
software, network co-processors, and network testing equipment

 Page 1 of 89

Understanding Network Processors

1 Introduction
The bandwidth explosion of the past couple years has impacted every part of our lives and
this exponential growth will continue for many more years. The dropping cost of bandwidth
allows the masses to take full advantage of the connectivity the Internet provides. This will
result in more bandwidth-hungry and computationally intensive applications, like Voice over
IP (VoIP), streaming audio and video, Peer-to-Peer (P2P) applications, Virtual Private
Networks (VPNs), and many others that we have not even thought of yet.

For networks to effectively handle these new applications, they will need to support new
protocols that include differentiated services, security, and various network management
functions. While networks are demanding equipment with very high throughput, they also
need the flexibility to support new protocols and applications. In addition, the ever-
changing requirements of network equipment require solutions that can be brought to
market quickly.

Today’s legacy network implementations are based on Field Programmable Gate Arrays
(FPGAs) for lower level processing and General Purpose Processors (GPPs) for higher layer
processing. Neither of these solutions meets all the requirements that network processing
demands. Consider the broad categories of alternatives for system implementation:
· ASIC (Application Specific Integrated Circuit) – any hardwired solution
· ASIP (Application Specific Instruction Processor) – an instruction set processor
specialized for a particular application domain
· Co-processor – a hardwired, possibly configurable solution with a limited programming
interface
· FPGA (Field Programmable Gate Array) – a device that can be reprogrammed at the
gate level
· GPP (General Purpose Processor) – a programmable processor for general purpose
computing

Figure 1 maps these categories on two axes: flexibility and performance. As shown, ASICs
are the most hardwired (least flexible), but provide the highest performance. At the opposite
end of the spectrum, GPPs are the most general (flexible) at the cost of the lowest
performance. FPGAs provide an interesting value proposition: in the absence of ASIPs or
co-processors, they are higher performance than GPPs with more flexibility than ASICs.

 Page 2 of 89

Understanding Network Processors

Performance

Flexibility

GPP

Co-processor

ASIC

FPGA

ASIP

Figure 1. Space of System Implementations.

We further compare these system implementations in Figure 2. From this comparison, it is
pretty clear that an ASIP is the best approach for most networking system implementations.
An ASIP for networking, or Network Processor (NP), provides the right balance of
hardware and software to meet all the requirements stated above:
· Performance – by executing key computational kernels in hardware, NPs are able to
perform many applications at wire speed
· Flexibility – having software as a major part of the system allows network equipment to
easily adapt to changing standards and applications
· Fast TTM – designing software is much faster (and cheaper) than designing hardware
of equivalent functionality
· Power – while NPs may not be embedded in energy-sensitive devices (like handhelds),
their power consumption is important for cost reasons (e.g. implications on packaging).

 Page 3 of 89

Understanding Network Processors

ASIC

FPGA

ASIP

GPP

Co-
Proc

lowest

highest

Power

shortest

longest

TTM

lowest

highest

Performance

least

most

Flexibility

lowest

highest

Cost per part
(in volume)

lowest

highest

Cost to
Develop

lowest

highest

Cost to
Integrate

N/A

Figure 2. Comparison of System Implementations.

Network processors are part of a broader movement from ASICs to programmable system
implementations. Numerous trends have come to light recently that are making the design
of ASICs more difficult [1]:
· Deep submicron (DSM) effects are exacerbating circuit design difficulties
· Exponentially increasing number of devices on-chip
· On-chip integration of increasingly diverse elements
· Shrinking time-to-market

The combination of these pressures has resulted in a shift in system implementations to
more programmable solutions. The recent explosion in network processor architectures
supports this observation.

Twenty-four months ago, there were only a few network processors in development and
only one shipping product (MMC Networks, now Applied Micro Circuits). Now, it seems
every month a new network processor is announced. In an attempt to alleviate the
bandwidth bottleneck, numerous solutions have emerged. They vary greatly in micro-
architectural and architectural complexity, memory architecture, software support, and
physical implementation. The purpose of this report is to survey and make sense of the fast
growing network processing space.

 Page 4 of 89

Understanding Network Processors

We start with a definition of network processors and give a brief history of network
processors. Then we profile common networking standards and applications and define
their key characteristics. Next, we survey current network processors and detail their
features. This allows us to analyze the network processor field and define market segments.
Lastly, we identify some trends and provide some conclusions.

1.1 What is a Network Processor?
A network processor is an ASIP for the networking application domain – a software
programmable device with architectural features and/or special circuitry for packet
processing. While network processors do not cover all solutions to networking applications,
we believe it covers the most exciting and high growth parts of the space. Our definition is
broad to reflect the wide range of programmable architectures proposed for network
processing. As a result, network processors share characteristics with many different
implementation choices:
· network co-processors
· communication processors used for networking applications
· “programmable” state machines for routing
· reconfigurable fabrics (e.g. FPGAs)
· GPPs used for routing

Figure 3 shows the space of solutions for network processing. While network processors are
not the only solution to network processing, they are the focus of this report.

Network Processors

General Purpose
Processors

Communication
Processors

ASIC Solutions

Network Co-Processors

Digital Signal
Processors

Figure 3. The Solution Space of Network Processing

1.2 A Brief History
Until recently, most networking functions above the physical layer have been implemented
by software running on a general-purpose processor. The past few years have been witness
to the exponential growth of the Internet. This super-Moore’s law growth has wreaked
havoc on networking implementations. To cope with this traffic explosion, new solutions
have emerged. First, many hardwired solutions appeared for layer 2 and 3 processing [2].
With the rapid change in lower layer protocols (e.g. MPLS, DiffServ) and higher layer

 Page 5 of 89

Understanding Network Processors

applications (e.g. Peer-to-Peer, streaming video), this solution will not scale. The need for
customizability, in-the-field programmability, and shrinking time to market windows in
network processing implementations has focused most of the activity on network
processors.

 Page 6 of 89

Understanding Network Processors

2 A Profile of Network Applications
Before surveying network processors, we examine common networking applications. Since
NPs are “application-specific” to networking, it is only natural to examine these applications
first. We decompose each application into their computational kernels. By enumerating 1)
the specific operations required for networking applications; and 2) the architectural features
of network processors, we can identify the mapping of common applications on to target
architectures. This mapping is the key to evaluating network processors.

2.1 Network applications
In this section, we describe the characteristics of various networking applications that would
execute on a network processor. Our goal here is not to give a full tutorial of networking
applications, rather give a flavor of them. The reader is referred to [3], [10], and [4] for an
in-depth tutorial on networking applications.

For context, we first describe the OSI stack model [5]. We’ve classified different networking
applications that could be found in a variety of network equipment (for example, core and
edge routers, backbone switches, URL load balancers, traffic shapers, firewall appliances)
into three categories: protocol standards, gateway applications, and Quality of Service (QoS)
related applications.

Application7

Presentation6

Session5

Transport4

Network3

Data Link2

Physical1

Figure 4. OSI Protocol Stack.

The following is a brief description of layers in the OSI stack as they relate to this report:
· Layer 1: The Physical layer defines the medium over which point-to-point links are
established.
· Layer 2: The Data Link layer provides for a point-to-point link between two
computers. It provides reliability on top of an otherwise unreliable physical link. While
most Layer 2 operations have historically been performed in hardware, NPs are also
attacking this task.
· Layer 3: The Network layer enables communication between any two computers on
the network using the point-to-point communication facility provided by the Data Link
layer.

 Page 7 of 89

Understanding Network Processors

· Layer 4: The Transport layer defines a socket, a point of access for a higher layer
application to communicate with another end-station. Both TCP and UDP provide a port
number to higher layers for applications to identify the endpoints of the communication.
The combination of IP address and port number uniquely identify a socket. Since much
of the Layer 4 functionality is only executed on an end-station, we describe only the parts
of the protocol that are relevant to NPs.
· Layers 5-7: While network equipment in the fabric may access Layer 5-7 information,
most of the Layer 5-7 tasks are executed on an end-station.

Protocol Standards
The following is a breakdown of applications related to protocol standards across different
layers. We do not describe the details of each protocol in depth; rather, we highlight the
operations that need to be performed within the fabric at wire speed (data-plane operations).
Management- and control-plane applications are mostly control-dominated and best suited
for a general-purpose processor.

Asynchronous Transfer Mode (ATM) Switching

Asynchronous Transfer Mode (ATM) [6] is a connection-oriented standard in which the
end-stations determine a virtual circuit (VC), or path, through an ATM network. The VCs
are made up of different virtual paths (VPs), or paths between switches. Once control-plane
functions setup a VC, an ATM switch simply switches ATM cells from input ports to output
ports. This switching is based on consulting a lookup table indexed by two fields in ATM
cells:
· virtual circuit identifier (VCI): 8-bit VC identifier
· virtual path identifier (VPI): 16-bit VP identifier

A switch may then alter the VPI and VCI fields of the cell to update the new link the cell is
traveling on.

Generic Flow
Control (GFC)

Virtual Path
Identifier (VPI)

Virtual Circuit Identifier (VCI)

Virtual Circuit
Identifier (VCI)

Payload
Type (PTI)

8 bits

Virtual Path
Identifier (VPI)

Virtual Circuit
Identifier (VCI)

Header Error Control (HEC)

CPI

Figure 5. ATM cell header.

ATM Adaptation Layer 5 (AAL5)
The ATM Adaptation Layers (AALs) provide different ways for ATM to communicate with
higher layer protocols (see
Figure 6). The most popular method is AAL5, which is often used for IP over ATM. Since
IP packets are larger than ATM cells (48 byte payload), AAL5 provides a guideline by which
to segment IP packets so they can travel over an ATM network and a facility to reassemble

 Page 8 of 89

Understanding Network Processors

ATM cells back into IP packets. To accomplish this, AAL5 defines its own Packet Data
Unit (PDU) with the following contents [6]:
· Payload: Higher layer PDU, maximum 65,535 bytes
· Padding: for AAL5 PDUs to evenly fit into some number of ATM cells
· 8-byte trailer:

o User-to-User (UU) field: 1 byte
o Common Part Indicator (CPI) field: 1 byte
o Length field: 2 bytes
o CRC field: 4 bytes

After calculating the amount of padding needed, the length field, and the CRC field, the
AAL5 PDU is simply sliced into 48 bytes chunks that are used as the payload for ATM cells.

IP3

AAL2.5

ATM2

Physical1

Figure 6. The protocol stack for IP over ATM.

Virtual Local Area Network (VLAN)

A VLAN is a group of end-stations, perhaps on multiple physical LAN segments, that
communicate as if they were on one LAN. There are four major approaches to defining
VLAN membership. While each of these approaches has their advantages and
disadvantages, our goal is not evaluate them, but rather describe the operations needed to
support VLANs [7] [8].

1. Port grouping: A set of ports on a switch defines a VLAN
2. MAC layer grouping: VLANs based on MAC layer addresses

This approach requires a switch or router to inspect the MAC address of each frame.
3. Network layer grouping: VLAN membership based on network layer address

This approach requires a switch to examine the network layer address (e.g. subnet address for
TCP/IP) to determine VLAN membership.

4. IP multicast grouping: VLAN defined as an IP multicast group
This approach requires a router to simply support IP multicast.

Regardless of the approach used, once the VLAN group is determined for a frame, the
switch is required to add a unique identifier to the header that designates VLAN
membership.

Multi-Protocol Label Switching (MPLS)

MPLS [9] is a protocol for efficient routing, forwarding, and switching that is independent of
layer 2 and layer 3 protocols. A router that supports MPLS is known as a Label Switch
Router (LSR). The main task for an LSR is to switch packets based only upon an MPLS
label. The knowledge of where to direct packets is either setup beforehand (via a control
protocol, like ATM) or is determined based on packet flow. A Label Edge Router (LER) is a
node that sits on the boundary of an MPLS network (and another network, like ATM or

 Page 9 of 89

Understanding Network Processors

Ethernet). Its primary function is to categorize and add labels to ingress packets, ensure
enforce Service-Level Agreements (SLAs), and remove MPLS labels for egress packets.

Since an MPLS label is only 20 bits long, an LSR should be able to switch packets with high
throughput. For each incoming packet, an LSR will lookup its label, determine the output
port, decrement the Time-To-Live field and update the label (labels are of only local
significance). An LER has considerably more work to do, as it must assign labels to
incoming packets and ensure incoming flows conform to predetermined traffic patterns.

Internet Protocol Version 4 (IPv4)

Internet Protocol version 4 (IPv4) is the most widely used protocol for layer 3
communication. Figure 7 shows the header format of an IPv4 packet. The major
processing steps for IPv4 packets are routing, fragmentation and reassembly, and address
resolution protocol (ARP). Descriptions of the different algorithms and implementations
are given below [10].

Ver IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

PaddingOptions

32 bits

Figure 7. Internet Protocol (IP) Header Format.

Routing
The major steps in routing a packet are:
· Remove the packet from an input queue
· Check the version of the packet: verify the 4-bit Version field equals 4
· Check the Destination Address: make sure it is not in IP Address Class E (240.0.0.0 to
254.255.255.254), which is reserved for experimental use
· Verify checksum:

o Store the Checksum field and clear it
o Treat the header as a series of 16-bit integers
o Compute the 16-bit one’s complement of the one’s complement sum these

integers
o Compare this sum to the Checksum field

· Lookup route:
o Lookup the destination IP address in the routing table

 Page 10 of 89

Understanding Network Processors

There are many different algorithms for performing routing table lookups. However, they
all use longest prefix matching, which allows entries to contain wildcards and find the entry
that most specifically matches the input address. For example, all packets going to subnet
128.32.xxx.xxx may have the same next hop. While this significantly reduces the size of
the routing table, multiple lookups may be required, depending on the data structures and
algorithms used.

o Get the IP address of the next hop
· Update Time-To-Live (TTL): decrement the TTL field by one and correspondingly
adjust the Checksum field
· Insert the packet in one of the output queues

Fragmentation & Reassembly
Fragmentation and Reassembly is the result of IP insulating higher layer protocols from the
implementation of the Data Link layer. An IP packet may need to be fragmented if it is
larger than the Maximum Transmission Unit (MTU) of the Data Link layer. For example,
the maximum size of an Ethernet frame is 1518 bytes (12 bytes for the header, up to 1500
bytes for the payload, and 6 bytes for the trailer). For IP over Ethernet, all IP packets larger
than 1500 bytes must be fragmented. The reverse of fragmentation is reassembly. This is
required for any device on the network that wants to perform higher layer processing.

Fragmentation occurs just before a datagram is placed in the queue to a network interface.
The major steps in fragmentation are:
· Verify that it’s legal to fragment the datagram: check the Don’t Fragment flag
· Determine how many datagrams are needed, based on the size of the original datagram
and MTU
· Create each new fragment datagram:

o Copy the header from the original datagram
o Copy the appropriate section of the payload from the original datagram
o Set the More Fragments flag to 1 (except for the last fragment datagram)
o Set the Total Length field
o Set the Fragment Offset field
o Calculate the Checksum field

Reassembly requires some more data structures because IP does not guarantee ordered
packet delivery. Since there are many different implementations of this, we only provide
some requirements for reassembly:
· Quick location of the group fragments that comprise the original datagram
· Fast insertion of new fragment into a group
· Efficient test of whether a complete datagram has arrived

An example implementation of reassembly uses a table of queues. If an incoming packet is a
fragment, attempt to match its source and destination addresses to an existing entry in the
table. If there is a match, enqueue the fragment into the appropriate queue and check if the
complete datagram has arrived. Otherwise, the fragment is a part of a new datagram;
therefore, create a new entry in the table.

 Page 11 of 89

Understanding Network Processors

Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) [11] provides the data link layer with a mapping of
network (IP) addresses to physical network addresses (e.g. MAC addresses). This insulates
higher layer protocols from the physical implementation details. For a network interface to
send a datagram, it needs the physical address of the destination. ARP support can be
described as a cache: given an IP address, return the corresponding physical address. If the
IP address does not exist in the cache, generate a request for it (using a control protocol) and
queue the packet. This approach is similar to managing a routing table – some control-plane
processing is required to manage the cache (populate entries, evict expired entries, etc.).

Internet Protocol Version 6 (IPv6)

Internet Protocol Version 6 (IPv6) is a next generation Internet protocol designed to
overcome some of the limitations of the current protocol, IPv4. The major differences
between the two protocols are:
· IPv6 uses 128-bit addresses (instead of 32-bit IPv4 addresses).
· IPv6 has a Flow Label field for Quality of Service support.
· IPv6 does not calculate a checksum, rather, it relies on other layers ensure data
integrity.
· IPv6 routers do not perform fragmentation or reassembly; they rely on higher layer
protocols to fragment large packets.
· IPv6 includes a security protocol, IPSec.

Figure 8 shows the format of IPv6 packets [12]. In addition to the standard header, IPv6
defines header extensions for specifying additional information about the packet (either to
routers in the fabric or to end-stations). The headers defined to date include:
· Hop-by-Hop Options: examined by every router
· Routing: specifies one or more intermediate nodes the packet must visit
· Fragment: additional information for packets which have been fragmented by the
source
· Destination Options: optional information for the destination node
· Authentication: for IPSec
· Encapsulating Security Payload (ESP): for IPSec

 Page 12 of 89

Understanding Network Processors

Version Traffic Class Flow Label

Payload Length Next Header

Source Address

32 bits

Hop Limit

Destination Address

Figure 8. IPv6 Packet Header Format.

Routing
Basic IPv6 routing is similar to IPv4 (i.e. Longest Prefix Match), except source and
destination address are 128 bits. One of the most common implementations of LPM
routing tables is the Patricia Tree algorithm [13] – a path compressed binary trie algorithm.
Another common implementation is a hash table-based approach that maps different bit
lengths into separate hash tables. Binary search is then used on these hash tables to find the
next hop address.

The Flow Label is a 20-bit field used by packets to request special handling from routers the
packet encounters. A flow is uniquely identified by a source address and flow label. It can
be used a number of ways: interaction with various control protocols (e.g. RSVP), traffic
classes for differentiated services, treatment of TCP connections. For example, if a unique
flow label is used for each TCP connection, a receiver could use it to de-multiplex
connections [14]. However, this could impact routing caches because they would no longer
be based on just the destination, but the flow label as well.

Hop-by-Hop Options
Hop-by-hop header extensions need to be examined by every router the packet encounters.
The extensions, which are inserted after the main IPv6 header, have a separate header that
specifies the presence of another extension field and the length of the extensions. An
extension option is defined as a set of three values: type (8 bits), length (8 bits), and data
(variable length).

Routing Header Extensions
The Routing Header Extensions define one or more intermediate nodes to be visited by a
packet. The only type of routing header extension defined so far is Type 0 Routing, which
has the following format:

 Page 13 of 89

Understanding Network Processors

Next Header

reserved

Address 1

32 bits

Address 2

Header Ext Len Routing Type Segments Left

Address n

Figure 9. Type 0 Routing Extension.

Every router must examine the addresses not yet visited by the packet and base routing
decisions on the remaining addresses.

IP Security (IPSec)

IP Security (IPSec) provides an extensible security platform at layer 3 for higher layer
protocols. This relieves higher layer protocols from defining their own ad-hoc security
measures. IPSec consists of two protocols [15]:
· Authentication Header (AH): proof-of-data origin, data integrity, and anti-replay
protection
· Encapsulated Security Payload (ESP): AH plus data confidentiality, limited traffic flow
confidentiality

Either of these protocols can be implemented in transport mode (protects higher layer
protocols only) or tunnel mode (protects IP layer and higher layer protocols by
encapsulating the original IP packet in another packet).

IP header TCP header data

IP header IPSec header TCP header data

IP header IPSec header IP header TCP header data

Original
IP packet

Transport mode
protected packet

Tunnel mode
protected packet

Figure 10. Difference between Transport and Tunnel mode.

To ensure all participating network equipment is consistent, some connection-related state
(how to protect traffic, what traffic to protect, and with whom protection is performed)
must be stored at each of the endpoints of a secure connection. This state is called a
Security Association (SA). The SA is updated using various control protocols and is
consulted for data-plane operations.

 Page 14 of 89

Understanding Network Processors

IPSec is implemented in IPv6 as an extension header. For IPv4, an IPSec header is inserted
after the IP header.

Authentication Header (AH)
Authentication Header (AH) does not provide data confidentiality, but it does verify the
sender and data integrity. The Security Parameters Index (SPI), along with the destination
address, helps identify the Security Association (SA) used to authenticate the packet. The
Sequence Number field is a monotonically increasing counter that is used for anti-replay
protection, which protects against replay attacks. Anti-replay service is implemented by a
sliding window of acceptable Sequence Numbers.

Next
Header

Payload
Length Reserved

Security Parameters Index (SPI)

Sequence Number

Authentication data

32 bits

Figure 11. AH Header Format.

For ingress packets, a device that supports AH must execute the following operations:
1. If the packet is fragmented, wait for all fragments and reassemble
2. Find SA used to protect the packet (based on destination address and SPI)
3. Check validity of sequence number
4. Check Integrity Check Value (ICV)

a. Save authenticated data and clear authentication field
b. Clear all mutable fields
c. Pad packet, if necessary
d. Execute authenticator algorithm to compute digest
e. Compare this digest to the authenticated data field

5. Possibly increment window of acceptable sequence numbers

The following list enumerates the steps involved in supporting AH for egress packets:

1. Increment sequence number in SA
2. Populate fields in AH header
3. Clear mutable fields in IP header
4. Compute Integrity Check Value (ICV) using authentication algorithm and key

defined in SA
5. Copy ICV to authentication data field

Encapsulating Security Payload (ESP)
Encapsulating Security Payload (ESP) provides data confidentiality and authentication. ESP
defines a header and trailer that surround the protected payload. The presence of the trailer
means that the payload may have to be padded (with zeros) to ensure 32-bit alignment.
Some data encryption algorithms require a random initialization vector; if necessary, this is
stored just before the protected data.

 Page 15 of 89

Understanding Network Processors

Security Parameters Index (SPI)

Sequence Number

Authentication data

32 bits

Initialization Vector

Protected Data

Pad Pad Length Next HeaderPad

Figure 12. ESP Header Format.

The list below illustrates the major steps that are required to support ESP in ingress packets:
1. Wait for additional fragments, if applicable
2. Check for SA, drop packet if one does not exist
3. Check sequence number, drop if outside of window or duplicate
4. Authenticate packet (same as 4 in AH ingress support)
5. Decrypt payload using key and cipher from SA
6. Check validity of packet with mode (transport vs. tunnel)
7. Check address, port, and/or protocol, depending on SA

On the egress side, the following functions must be executed for each packet:

1. Insert ESP header and fill in fields
For transport mode, an ESP header just needs to be inserted. For tunnel mode, the
original IP packet needs to be wrapped in another IP packet first, then the ESP header
needs to be added.

2. Encrypt packet using cipher from SA
3. Authenticate packet using appropriate algorithm from SA and insert digest to

authentication field in trailer
4. Recompute and populate checksum field

User Datagram Protocol (UDP)

User Datagram Protocol (UDP) is a layer 4 protocol that provides connectionless
communication between applications. A UDP header is composed of four 16-bit fields:
· Source Port
· Destination Port
· UDP Length field
· UDP Checksum (optional, this field is zero if not set)

The steps involved in processing an ingress UDP packet at an end-station are as follows:

1. If Checksum field is non-zero (i.e. calculated by the sender), verify checksum
2. Search the set of datagram queues for the one that matches the UDP port

 Page 16 of 89

Understanding Network Processors

3. Check the status of the proper queue (e.g. overflow, etc.) and enqueue the datagram
4. Send a signal to the process/application (or operating system) indicating a packet has

arrived

An NP does not execute most of these functions, but we include them here for
completeness. An NP may use the source and destination port to make switching/routing
decisions.

Transport Control Protocol (TCP)

Transport Control Protocol (TCP) provides a reliable layer 4 communication for higher layer
applications over an otherwise unreliable medium (like IP, which may drop packets). As a
result, it is one of the most complex protocols. While most of the TCP-related processing is
rather involved (and executed on an end-station), only a small part of the protocol standard
is relevant for fabric processing. For example, a web switch may examine TCP packets to
determine the beginning and end of sessions.

Source Port

Sequence Number

32 bits

Acknowledgement Number

Data

Destination Port

U
R

G Window SizeHeader
Length

ACK
PSH
RST
SYN
FINReserved

Urgent OffsetTCP Checksum

Options

Figure 13. TCP header and optional data.

A TCP header consists of the following fields (see Figure 13) [10]:
· Source Port – port number of the session source
· Destination Port – port number of the session destination
· Sequence Number – unique number for all packets sent in a TCP connection
· Acknowledgement Number – the next sequence number that the sender of an
Acknowledgement message expects to receive
· Header Length – length of header
· URG flag – the urgent offset valid
· ACK flag – the Acknowledgement number is valid
· PSH flag – receiver should pass data to application without delay
· RST flag – reset the connection
· SYN flag – establish connection

 Page 17 of 89

Understanding Network Processors

· FIN flag – sender is finished sending data
· Window Size – window size of acceptable data
· TCP Checksum
· Urgent Offset – offset to urgent data

Gateway Applications
Gateway applications occur near the edge of a network. The applications may alter packet
headers, redirect packet flows, or cache packets, but they maintain the semantics of existing
protocols.

Wireless TCP/IP
Accessing the Internet over a wireless medium violates some of the key assumptions of the
TCP/IP protocol. For example, when TCP does not receive an acknowledgement for a
packet that it sends, it assumes the packet did not reach the destination because of network
congestion. This causes TCP to initiate an exponential back-off algorithm that waits to
resend packets. While this may work well for wireline implementations, in the wireless
domain, it is more likely the transmission failed due to an error on the physical layer. As a
result, TCP waits exponentially longer to send packets even in the absence of traffic.

InternetInternet

Wireless TCP/IP
Base-station

End-stations

Figure 14. Wireless TCP/IP Gateway.

There are two broad approaches to solving this problem: have the sender alter its actions
because the destination is a wireless node or have the destination gateway (base-station)
resolve this problem. The former approach seems rather difficult to implement, because it
requires all nodes that send to wireless end-stations are affected. The latter approach is
transparent to the network, as the sender is not aware that the destination node is wireless.

 Page 18 of 89

Understanding Network Processors

There are a few main approaches to designing a base-station that connects wireless end-
stations to the Internet [16].

In the first approach, the base-station may serve to break the connection from sender to
wireless node. This requires the base-station to perform all the higher layer protocol
processing and store the packets of the session. The base-station will then send these
packets to the wireless handset (either using TCP or some other protocol). Since the base-
station sends acknowledgements back to the sender, the sender is unaware the destination is
wireless. This approach can place a large load on the base-station and incurs a severe
overhead.

Another approach is for the base-station to cache packets that have not yet been
acknowledged by the wireless handset. In the event a packet is dropped, the base-station can
resend the packet, instead of having the sender resend the packet.

Both approaches require the base-station to intercept TCP packets to/from the wireless end-
station. The first approach demands the base-station maintain a TCP protocol stack for
each connection passing though it and another protocol stack for each connection to an
end-station. The second approach requires ingress packets to be copied into a cache and
egress packets to be examined for acknowledgements to evict those entries from the cache.
The latter approach needs much less processing, but does require timers for each connection
to determine whether or not to resend a packet to an end-station.

Network Address Translation (NAT)
Network Address Translation (NAT) [17] allows multiple end-stations to be represented by
one IP address (the gateway’s). This is used to alleviate the shortage of IPv4 address and
also provides security for the end-stations behind the gateway. The end-stations use IP
addresses reserved for local subnets. The gateway maps the TCP/IP address and port of all
requests to outside hosts to addresses and ports of the gateway. To perform NAT, an edge
router/gateway needs to carry out the following functions:
· Store a local (non-routable) IP address and port number in an address translation table
· Modify packet’s source port with a port number that matches the information stored in
the address translation table. The translation table now has a mapping of the computer's
non-routable IP address and port number along with the router's IP address.
· When a packet comes back from the destination node, the router checks the
destination port on the packet. It then searches the address translation table for the local
TCP port and IP address the packet belongs to. It updates the destination address and
destination port of the packet and sends it to that computer.
· Since the NAT router now has the computer's source address and source port saved to
the address translation table, it will continue to use that same gateway port number for the
duration of the connection. A timer is reset each time the router accesses an entry in the
table. If the entry is not accessed again before the timer expires, the entry is removed from
the table.

 Page 19 of 89

Understanding Network Processors

Web “Switch”
A web switch is a device that uses information from higher layer protocols to make lower
layer routing/switching decisions. A web switch provides a point of contact on the Internet
that clients can access. Clients’ requests are then selectively directed to the most appropriate
server. This makes web switches useful for a variety of applications including distributed
web caching and load balancing.

A TCP/IP server load balancer can be implemented using a web switch as follows [18]:

1. The web switch recognizes a new TCP connection by identifying a TCP SYN
(session initiation) packet.

2. The switch determines the most appropriate server to handle this request and binds
the new TCP session to the IP address of that server in a table.

3. For all ingress packets belong to a new session, the web switch substitutes the
switch’s TCP port, IP address, and MAC address for the server’s. This makes the
packets appear as if they were directed to the server by the client.

4. Likewise, all egress packets that pass through the web switch are altered such that it
appears as if the web switch responded the client’s request.

5. When the web switch recognizes a TCP FIN (session teardown) packet, the web
switch removes the session-server binding from its table.

A variety of network equipment can be realized by changing how a web switch directs
traffic. For example, a URL load balancer can be implemented by examining all packets for
HTTP requests and forwarding them to an appropriate server based on their content. The
request-server mapping may be either static (e.g. have all images served by a separate
machine, for example) or dynamic (e.g. based on real-time server load data). A logical
extension of this can be used for web caches as well.

Quality of Service Related Applications
Many QoS-related applications have come to light recently. While most of these
applications have a large control-plane component, they impact the data-plane operations as
well. In this section, we examine the data-plane processing of three applications: usage-
based accounting, Differentiated Services, and Integrated Services.

Usage-based Accounting
Collecting network usage information pertaining to flows and sessions is essential for billing
and network analysis applications. Highly granular policy rules are required for associating
bandwidth usage to specific users, selected applications, and distinct content. For example, it
is necessary to track the download and bandwidth usage of a client when accessing a server,
using RTSP (Real Time Transport Protocol) to play the latest rock video clip. The main
functions and corresponding packet processing tasks include [44]:
· Recognize session initiation for specific server: layer 3 IP addresses and layer 4 port
numbers
· Monitor login session to identify user name: layer 5-7 extraction of login information
· Recognize RTSP session and associate with user: layer 4 port numbers, layer 5 key
words detection

 Page 20 of 89

Understanding Network Processors

· Identify desired file name (e.g. video clip) to download: layer 5-7 extraction of file name
and matching to users and programs policy tables
· Recognize download session and associate with user: layer 4 port numbers and layer 5-
7 key words detection

Differentiated Services (DiffServ)
Differentiated Services (DiffServ) enables a wide variety of services and provisioning
policies, either end-to-end or within a particular set of networks [19]. When traffic enters a
DiffServ network, it is classified and possibly conditioned at the boundary of the network
and assigned a DiffServ codepoint (DSCP). The DSCP reflects a per-hop behavior (PHB) at
each node. RFC 2474 [20] defines how DSCP overrides the previous definition of the Type
of Service (ToS) field in IPv4. A logical view of the DiffServ node is shown in Figure 15
and the elements are described below [20]:
· Classifier

Classification can be performed based on the DSCP field only (a Behavior Aggregate (BA)
classifier), or based on multiple header fields, like source/destination IP/TCP address/port
(Mulitfield (MF) classifier).

· Meter
Traffic meters measure the temporal properties of the stream of packets selected by a classifier against
a traffic profile specified in a Traffic Conditioning Agreement (TCA). A meter passes state
information to other conditioning functions that may trigger a particular action for each packet that
is either in- or out-of-profile (to some extent).

· Marker
Packet markers set/reset the DSCP of a packet to a particular codepoint, adding the marked
packet to a particular differentiated service behavior aggregate. The marker may be configured to
mark all packets that are steered to it with a single codepoint or mark a packet with one of a set of
codepoints used to select a PHB, according to the state of a meter.

· Shaper/Dropper
Shapers delay some or all of the packets in a traffic stream to bring the stream into compliance with
a traffic profile. A shaper usually has a finite-size buffer, and packets may be discarded if there is
insufficient buffer space to hold them.

Droppers discard some or all of the packets in a traffic stream to bring the stream into compliance
with a traffic profile. This process is known as "policing" the stream. Note that a dropper can be
implemented as a special case of a shaper by setting the shaper buffer size to zero (or a few) packets.

Classifier Shaper/
Dropper

Meter

Marker

Figure 15. Logical view of a DiffServ node.

 Page 21 of 89

Understanding Network Processors

Integrated Services (IntServ)
Integrated Services (IntServ) uses traditional datagrams, but allows sources and receivers to
exchange messages that establish additional packet classification and forwarding state on
each node along the path [21]. There are three main components to providing IntServ (the
first two must be performed at wirespeed):
· Classifier: map incoming packet to some class; all packets in the same class receive the
same treatment. Classification can be based on the header fields (like the classification
field or flow ID field) or looking deeper into the packet to identify application-layer fields
(like video).
· Packet scheduler: control forwarding of different packet streams using a set of queues.
The main function of a packet scheduler is to reorder the output queue using an algorithm
like weighted fair queuing (WFQ) or round robin.
· Admission control: decision whether a new flow can be granted the requested QoS.
This is implemented with a control-plane reservation setup protocol like RSVP.

Others applications
We have outlined many applications in this section. We believe this provides a good sample
of applications to be implemented on network processors. However, the following
applications are of importance to network processors also:
· VoIP gateway
· Internetworking – POS, already have AAL5
· Peer-to-peer
· SSL
· Different queuing algorithms
· Ethernet
· SONET

2.2 Kernels
To examine how the applications outlined in the previous section map to network
processors, we decompose the applications into their computational kernels. These kernels
broadly fall into six different categories: pattern matching, lookup, computation, data
manipulation, queue management, and control processing.

While these application kernels are the basic operations for a particular packet, single packet
processing makes poor utilization of network processor hardware (e.g. stalling on memory
access). To reach the required data rates, a network processing system must simultaneously
process multiple packets. We visit the many approaches network processors employ to solve
this problem in Section 4.

Pattern matching
Pattern matching is the process of matching bits in packet fields (either header or payload).
This kernel has two inputs: a regular expression pattern and the packet field. It outputs a

 Page 22 of 89

Understanding Network Processors

Boolean value reflecting whether or not the packet field matches the input pattern.
Common algorithms used for this kernel are calculation and lookup tables.

Lookup
The lookup kernel is the actual action of looking up data based on a key. It is mostly used in
conjunction with pattern matching to find a specific entry in a table. The data structures and
algorithms used are dependent on the type of lookup (one-to-one or many-to-one) required
and the size of the key. For ATM and MPLS, this field is quite small and the mapping is
one-to-one, so often only one lookup is required. However, for IPv4 and IPv6 routing, the
large address field and longest prefix matching (LPM) requirement make it impossible to
find the destination address in one memory access. Therefore, trees are used to efficiently
store the address table and multiple lookups are required.

Computation
The types of computation required for packet processing vary widely. To support IPSec,
encryption, decryption, and authentication algorithms need to be applied over an entire
packet. Most protocols require a checksum or CRC value be computed. Often, this value
just needs to be updated (not recalculated) based on changes to header fields. Network
equipment that implement protocols which support fragmentation (and reassembly) of
PDUs require computation to determine if all fragments of a particular PDU have arrived.

Data manipulation
We consider any function that modifies a packet header to be data manipulation. For
example, in IPv4 routing, the Time To Live (TTL) field must be decremented by one each
hop. Additional instances of data manipulation include adding tags, header fields, and
replacing fields. Other examples in this space include segmentation, reassembly, and
fragmentation.

Queue management
Queue management is the scheduling and storage of ingress and egress PDUs. This includes
coordination with fabric interfaces and elements of the network processor that need to
access packets. The queue management kernel is responsible for enforcing dropping and
traffic shaping policies and storing of packets for packet assembly, segmentation, and many
Quality of Service (QoS) applications.

Control processing
Control processing encompasses a number of different tasks that don’t need to be
performed at wire speed, like exceptions, table updates, details of TCP protocols, and
statistics gathering. While statistics are gathered on a per packet basis, this function is often
executed in the background using polling or interrupt-driven approaches. Gathering this
data requires examining incoming data and incrementing counters.

2.3 Summary
The following tables summarize how the applications described above can be decomposed
into the five main types of processing.

 Page 23 of 89

Understanding Network Processors

able 1. Applications and their kernels (part 1).

Switching AAL5 VLAN MPLS

Pattern
Matching

VCI (8 bits)
and VPI (16
bits)

MAC address (48
bits), IP subnet (8-
24 bits)

MPLS label (20
bits)

Lookup

VCI (8 bits)
and VPI (16
bits)

CPI field (for
reassembly)

MAC address (48
bits) or IP subnet (8-
24 bits)

MPLS label (20
bits)

Computation

check if all fragments
have arrived
(reassembly) checksum

Data
Manipulation

TTL
adjustment,
update
VCI/VPI

creating new packets and
populating fields
(segmentation),
extracting payloads and
combining them
(reassembly)

insert unique
identifier in VLAN
field, checksum

popping or
pushing labels to
packet, TTL
decrement

Queue
Management

incoming cell
management

organizing fragments
(reassembly)

Control
Processing

VCI/VPI table
update,
path/circuit
setup

VLAN group
updates

path table
updates

ATM

T

 Page 24 of 89

Understanding Network Processors

Routing Frag/Reas ARP IPv6 IPSec

Pattern
Matching

version & address
check check flags

IP address (128
bits)

verify address (32/128
bits), port (16 bits), mode

Lookup IP address (32 bits)

find other packets of a
fragment (12-bit
fragment offset)

IP address
(32 bits)

IP address (128
bits), flow label (20
bits)

find SA (based on
destination address
(32/128 bits) and SPI (32
bits))

Computation checksum

testing if all fragements
have arrived
(reassembly)

authenticator algorithm,
decryption/encryption,
checksum

Data
Manipulation

insert next hop,
TTL adjustment,
checksum

creating new packets
and populating fields
(fragmentation),
extracting payloads and
combining them
(reassembly)

insert MAC
address TTL adjustment

clear "mutable" fields,
pad packet, insert
headers and trailers,
checksum

Queue
Management

incoming packet
management, to
implement
QoS/CoS

organizing fragments
(reassembly)

queue
packets
waiting for
MAC
address

incoming packet
management,
based on flow label
for QoS

organize fragments
(reassembly)

Control
Processing

routing table
updates, group
control

manage
lookup table

routing table
updates, RSVP

update SA based on
connections

IPv4

Table 2. Applications and their kernels (part 2).

 Page 25 of 89

Understanding Network Processors

Wireless
TCP/IP NAT Web Switch

Usage-based
Accounting DiffServ IntServ

Pattern
Matching

IP address
(32/128 bits) and
TCP port (16
bits)

IP address
(32/128 bits) and
TCP port (16
bits)

many different
fields, depending
on application (e.g.
Ethernet, TCP/IP,
HTTP requests,
FTP)

many different
fields, depending
on application
(e.g. Ethernet,
TCP/IP, HTTP
requests, FTP)

DSCP field (6
bits), Ethernet
MAC, IP
address, TCP
port

Flow ID (20
bits),
Ethernet
MAC, IP
address, TCP
port, L5-7
field

Lookup

IP address
(32/128 bits) and
TCP port (16
bits)

IP address
(32/128 bits) and
TCP port (16
bits)

many different
fields, depending
on application (e.g.
Ethernet, TCP/IP,
HTTP requests,
FTP)

many different
fields, depending
on application
(e.g. Ethernet,
TCP/IP, HTTP
requests, FTP)

Ethernet
MAC, IP
address, TCP
port (if multi-
field
classification)

Flow ID (20
bits),
Ethernet
MAC, IP
address, TCP
port

Computation checksum update checksum update
moving
averages

Data
Manipulation

packet creation
for packets to
wireless
endstations

TCP/IP
address/port
replacement

field rewriting,
based on
application

remarking
DSCP fields

Queue
Management

RED, WFQ,
traffic shapers
for different
classes

RED, WFQ,
traffic shapers
for different
classes

Control
Processing

timers for each
connection to
determine
retransmission

timers to evict
old entries in
mapping table update mappings

counters
(packets &
bandwidth),
meters meters

schedulers,
resource
reservation
protocols

Table 3. Applications and their kernels (part 3).

 Page 26 of 89

Understanding Network Processors

3 Network Processors
This chapter surveys some of the current network processors in the market. We use the
following outline to characterize the network processors identified in this section:

1. Intended data rate and applications
Before analyzing any technical details of a network processor, we must first understand its target
uses. We present these target uses as data rates, types of layer processing (using OSI stack
model), and plane of processing (management, control, or data).

2. Architecture
In this subsection, we describe the major elements of the device –processing elements (type, number,
and layout of), description of specialized hardware (co-processors and functional units), on-chip
communication scheme (bandwidth, layout, special features), and memory (amount and type of).

3. Interfaces
A network processor is not a stand-alone system, but a portion of a larger system. It is important
to understand how it interfaces with other system components. This subsection describes the
interfaces supported.

4. Programmability/Integrated Development Environment (IDE)/OS support
Software support is key part of network processors as it defines the interface for users of the device.
In this subsection, we discuss the network processor’s programming interface (“programming
model”), included libraries, integrated development environment, and operating systems support.

5. Implementation (when available)
When available, we include implementation details of the device, like process technology, clock
speed, die area, and availability.

6. Cost (when available)
We give the cost of the device whether available as a soft or hard-core.

7. Design wins (if applicable)
If this network processor has been used in any network equipment that has been made public, we
list it in this subsection.

While many network processors are profiled here, there are numerous others for which we were unable to
gather enough information about: Bay Microsystems, Entridia Corporation, IP Semiconductors A/S, ishoni
Networks, Navarro Networks, and Onex Communications.

3.1 Agere (PayloadPlus)
The Agere network processing solution consists of three separate chips: Fast Pattern
Processor (FPP), Routing Switch Processor (RSP), and Agere System Interface (ASI). The
main data pipeline is from the physical interface to the FPP to the RSP. The ASI is only
used for exceptional cases and overall management. This solution is aimed at layer 2-4
processing and supports packet rates up to 2.5 Gbps [22].

Architecture
The system architecture consists of three chips: Fast Pattern Processor (FPP), Routing
Switch Processor (RSP), and Agere System Interface (ASI). Figure 16 shows the
PayloadPlus system and how it interfaces with the networking fabric, also note the main data
path from the physical interface to the Fast Pattern Processor to the Routing Switch
Processor and back to the fabric.

 Page 27 of 89

Understanding Network Processors

P
H
Y

FPP RSP
Fabric

Interface
Controller

Fabric

ASI

Figure 16. Agere PayloadPlus System.

Fast Pattern Processor (FPP)
The FPP performs pattern matching while receiving a frame or cell. The results of the
pattern matching are passed to the RSP for packet manipulation or queuing [24] via a 32-bit
POS-PHY Level 3 interface.

The FPP is a pipelined, multi-threaded processor with support for up to 64 threads. Each
Packet Data Unit (PDU) that arrives from the UTOPIA bus is assigned to a new thread
(context). Hardware support for fast context switching enables the FPP to process multiple
PDUs in parallel. PDUs are processed in two passes: The first pass stores the PDU into an
internal data format that consists of block data offsets and links blocks. The second pass
processes the entire PDU, performing pattern matching and handing off to the downstream
processor.

Figure 17 shows a block diagram of the FPP. The FPP includes an Input Framer that frames
the input stream into 64-byte blocks and stores them in the Data Buffer. The Context Memory
stores the blocks currently being processed in one of the 64 contexts. The Pattern Processing
Engine performs pattern matching on PDUs. The Checksum/CRC Engine calculates their
respective values for packets.

The FPP sends management frames to the ASI via the Management Path Interface (MPI).
The Configuration Bus Interface (CBI) is used to configure the FPP and RSP. The
PayloadPlus system supports a 32-bit UTOPIA Level 3/UTOPIA Level 2/POS-PHY Level
3 interface.

 Page 28 of 89

Understanding Network Processors

Figure 17. FPP Block Diagram [24].

The FPP uses a functional scripting language to specify protocol processing. The motivation
behind this approach is similar to the motivation of SQL for databases – the programmer
should only need to describe what to do, not how to do it. How this actually gets compiled
remains a mystery. [23], [24], and [25] describe the motivation and advantages of this
approach.

An Application Code Library is provided to support the IP protocol over ATM, Ethernet, and
Frame Relay.

Routing Switch Processor (RSP)
The RSP takes classification data and protocol data units (PDUs) from the FPP and outputs
PDUs to the fabric. It has four major functions: queuing, traffic management, traffic
shaping, and packet modification [26].

The RSP receives packet handling “instructions” from the FPP and stores the PDU in
SDRAM. Based on traffic management calculations, it either queues the PDU in one of 64k
programmable queues or discards it. For each queue, QoS and CoS policies are used for
traffic shaping. Once the PDU is chosen to transmitted, it is fetched from SDRAM,
modified, and transmitted.

There are 3 VLIW compute engines, each dedicated to a specific task:
· Traffic management compute engine: enforces discard policies and keeps queue
statistics
· Traffic shaper compute engine: ensures QoS and CoS for each queue
· Stream editor compute engine: performs any necessary PDU modifications

 Page 29 of 89

Understanding Network Processors

Figure 18. Architecture of the Agere Routing Switch Processor [26].

The RSP is programmed by configuring the ports and schedulers and defining the queues.
There is a scripting language that is used to program the RSP as well as an API that
“provides low-level access to the PayloadPlus chipset” [27].

Agere System Interface (ASI)
The main function of the ASI is to handle “slow path processing” – initialization, routing
table updates, queue processing updates, exception handling, and statistics gathering [28].

There is a PCI interface for external management and a PC133 SDRAM for access to off-
chip memory. The same scripting language used to program the RSP is used for the ASI.

Implementation
The FPP, RSP, and ASI are currently available in a 0.18µ process with a typical power
dissipation of 12W [22].

Cost
The cost for the PayloadPlus system is about $750 [22].

3.2 Alchemy (Au1000)
The Alchemy Au1000 is best suited for access equipment.. However, the company claims its
device is also targeted to edge routers and line cards. It is a low power MIPS core with a few
new instructions and a wide variety of integrated peripheral support.

Architecture
The Au1000 [29] is based on a scalar 32-bit MIPS processor. The processor has a 5 stage
pipeline optimized to reduce branch penalties. There is a 32x16 MAC (Multiply-
Accumulate) that runs in parallel with the CPU pipeline. In addition, there are special
instructions for conditional moves, counting leading ones/zeros, and prefetching memory.

With the core, there are two Ethernet controllers, an IrDA port, USB support, and four
UARTs. There is a 16KB instruction and data cache. The system architecture of the
AU1000 is shown in Figure 19.

 Page 30 of 89

Understanding Network Processors

Figure 19. Alchemy's System Architecture [29].

Programmability
Since this device is based on a MIPS core, it can be programmed in C. The programmer can
take advantage Alchemy’s software development tools as well as various third-party tools. In
addition, there is support for MS Windows CE, Linux, and VxWorks operating systems.

Implementation
The Au1000 is available as a soft core and can run at 266MHz, 400MHz, and 500MHz. At
these speeds, the core consumes <300mW, 500mW, and 900mW, respectively.

3.3 Applied Micro Circuits, formerly MMC Networks
(nP7xxx)

Applied Micro Circuits’ nP7 network processor family [30] is built upon the EPIF-200
packet processor [31]. With six EPIF-200s on a single chip, the nP7XXX can support
10Gbps packet rates. The nP family is aimed at processing layers 2-7.

Architecture
The EPIF-200 is a 64-bit processor with a network-optimized instruction set and zero-
overhead task switching among 8 threads. There is programmable Policy Engine for packet
classification and a Search Engine for layer 2 VLAN bridging and layer 3 longest prefix
match lookup. The Packet Transform Engines perform all the necessary packet

 Page 31 of 89

Understanding Network Processors

manipulation. In addition, there are Statistics Engines that collect RMON-compliant data.
The EPIF-200 is designed to seamlessly work with other EPIF-200, MMC switch chips, and
nP family co-processors. It also features an on-chip Fast Ethernet MAC. The macro-
architecture of the EPIF-200 is shown in Figure 20.

Figure 20. Applied Micro Circuits' EPIF-200 Network Processor [30].

Programmability
APPLIED MICRO CIRCUITS has simplified the multi-processor programming model by
letting the programmer think of the device as a single logical CPU. In addition, they provide
a C/C++ compiler, assembler, and debugger.

Implementation
The nPxxx family is implemented in a 0.18µ process and typically consumes 4W [22].

Cost
Applied Micro Circuits’ np7xxx will cost around $115 [22].

3.4 Bay Microsystems
Details of Bay Microsystems’ device are a bit weak; the company has not released much
information. All information here is from [32]. They claim deep packet analysis (layers 3-7)
at 10Gbps.

Architecture
Bay’s network processor uses a VLIW architecture with commodity DRAM. There is an
“ultrawide-bus” standard that used standard DRAM. In addition, their engine is pipelined
and superscalar.

 Page 32 of 89

Understanding Network Processors

Programmability
Not available

Implementation
Bay Microsystems’ chip will run at 166MHz.

3.5 BRECIS Communications (MSP5000)
BRECIS Communications is developing a Multi-Service ProcessorTM aimed at connecting
the enterprise to the edge of the network. Their MSP family of processors handles voice
traffic from PBXs and data traffic from the network core to a LAN (layers 2-3) [33][34].
The heart of their solution lies in the Multi-Service Bus Architecture, which connects the
main processing elements and inherently supports QoS at the bus transaction level. Their
top-of-the-line product, the MSP5000, can simultaneously support 8-24 G711 voice
channels, 4-10 G729 voice channels, and a 52Mbps data rate.

Architecture
BRECIS’ MSP network processor consists of three processors, two DSPs (LSI ZSP400s) for
packet and voice processing and a MIPS R4KM processor for control-plane operations,
connected by a high bandwidth bus. The ZSP400 is a 4-issue superscalar processor with
80Kbytes of on-chip instruction and data memory. In addition, the DSP aimed at voice
processing has a co-processor for ADPCM (adaptive pulse code modulation) acceleration,
while the packet processor has a co-processor for efficient CRC generation. The ZSP400s
each run at 160MHz. The control processor runs at 180MHz and has instruction and data
caches of 16Kbytes. The MSP also has a shared co-processor for security-related operations
(e.g. MD-5 authentication, 3DES encryption) that is connected directly to the Multi-Service
Bus. Figure 21 shows a diagram of the system architecture.

The Multi-Service Bus Architecture has a 3.2Gbps peak bandwidth and connects the major
devices of the network processor, including the DSPs, control processor, security co-
processor, Ethernet MACs, and peripheral sub-system. The bus supports simultaneous
transactions and dynamic priority switching among three priority levels. The bus interface
for each sub-system (one for each processor) consists of a packet classifier and three packet
queues, which map directly to the three types of traffic handled by this device (voice, data,
and control). This enables efficient implementation of Quality of Service applications, a key
to supporting voice and data on the same processor. Each sub-system also contains a
context-aware DMA engine that offloads packet transferring duties from the data
processors.

The MSP5000 has two 10/100 Ethernet MAC interfaces and a UTOPIA interface to
support the networking side. For telephony support, the MSP5000 has dual TDM interfaces
(each supporting 128 channels).

 Page 33 of 89

Understanding Network Processors

Figure 21. BRECIS Communications' MSP5000 [34].

Programming
BRECIS provides APIs for the application-specific engines, like the security co-processor
and packet queues in the bus interface. Third party tool chains can be used to program the
LSI ZSP400 and MIPS R4KM. In addition, they provide firmware for common networking
applications (ATM AAL0/2/5, ATM SAR, Frame Relay encapsulation, and VoIP). The
MSP family supports VxWorks, Linux, and BSD operating systems.

Implementation
The MSP5000 has been implemented in a 0.18µ process technology. With 3.3Mbits of
SRAM, it is approximately 27mm on a side and consumes 2W of power. It will be sampling
in Summer 2001 [33].

Cost
The MSP5000 will cost less than $50 if purchased in large volume [33].

3.6 Broadcom, formerly SiByte (Mercurian SB-1250)
The Broadcom Mercurian SB-1250 primarily consists of two 64-bit MIPS cores (Broadcom’s
own SB-1 cores), three Gigabit Ethernet MACs, and a 256-bit wide bus [35]. The processors
don’t have any special instructions or hardware for packet processing as most NPUs do.
Instead of targeting data-plane operations, Broadcom is focusing on control-plane
operations. They claim performance numbers of up to 2.5 Gbps and are aimed at
processing layers 3-7.

 Page 34 of 89

Understanding Network Processors

Architecture
The SB-1250 has 2 64-bit MIPS CPUs (SB-1) running at up to 1 GHz. The SB-1s can
execute 4 instructions per cycle (2 load/store, 2 ALU operations). They have a 9-stage
integer ALU pipeline and a 12-stage floating-point pipeline [36][37]. Each processor has a
32kb L1 cache and the two cores share a 4-way associative 512kb L-2 cache. The
architecture of the SB-1250 is shown in Figure 22.

The SB-1250 also includes 3 on-chip Ethernet MACs and 2 packet FIFOs. Their
proprietary ZBbus (a 256-bit bus that runs at half of the processor speed) connects the
major components of the chip.

Figure 22. Broadcom’s Mercurian Architecture [37].

Programmability
Since the SB-1 cores are MIPS-based and do not have any special instructions, the Mercurian
uses the standard Gnu C/C++ tool chain with support for application specific extensions.
It also has operating system support for FreeBSD, Linux, and VxWorks.

Implementation
The SB-1 CPU core is ~25mm2 in a 0.15µ process. It runs at 1GHz and consumes only
~2.5W [38]. Samples of the SB-1 are currently available.

3.7 Cisco (PXF/Toaster 2)
The Cisco PXF is an internal product for Cisco edge routers [39] [66]. Details are a bit
sketchy, but it’s a network processor that’s used in routers, like the Cisco 10000 Edge
Service Router (ESR). The PXF is intended to perform only layer 3 data path calculations.
There is a separate route processor that handles network management tasks.

 Page 35 of 89

Understanding Network Processors

Architecture
The PXF consists of a pair of ICs, each comprised of 16 processors arranged in 4 pipelines.
When used together, the pair of PXFs results in a 4x8 systolic array. Each of the 32
processors is a 2-issue VLIW with special instructions for packet processing. Each
processor has an independent memory and each column of processors has access to its own
separate memory (off-chip). Each of the 8 stages in the pipeline is responsible for a
different packet forwarding function. Figure 23 shows an example of how the PXF could be
used. They claim that the allocation of features to microprocessors is flexible, but it is
unclear how that’s possible since specialized hardware is likely used to accelerate these
calculations.

Figure 23. Example use of Cisco's PXF NP [39].

Programmability
The Connected Components Corp. has recently written a C-compiler for the PXF. In
addition, the PXF supports Cisco’s internal operating system, IOS.

Implementation
A version of the PXF is currently used in Cisco routers.

3.8 ClearSpeed, formerly PixelFusion
ClearSpeed’s network processor is aimed at 40Gbps data rates for core routers, metro line
cards, and edge routers. Their architecture consists of a multiple Multi-Threaded Array
Processors (MTAPs) and shared co-processors connected by a high bandwidth bus. An
MTAP consists of multiple 8-bit Processing Elements that all execute the same code. Since
ClearSpeed is shipping their device as a soft core, many of the parameters are configurable
(e.g. number of MTAPs, number of Processing Elements per MTAP).

Architecture
An MTAP processor mostly consists of multiple (100’s to 1000’s) of 8-bit Processing
Elements. An MTAP’s main function is to control the execution of its Processing Elements

 Page 36 of 89

Understanding Network Processors

and data delivery to/from other MTAPs. Since all Processing Elements execute a common
instruction stream, an MTAP’s central instruction fetch unit is shared among all the
Processing Elements. An MTAP is capable of supporting up to 32 simultaneous threads.

A Processing Element is an 8-bit ALU with a small register file (configurable from 16-64
bytes) and a small amount of packet memory (1-16Kbytes). It also has memory controllers
that are responsible for loading a packet (or partial packet) into its own memory. Since each
Processing Element of an MTAP executes the same code, the execution of Processing
Elements is based on the packet data currently loaded in the packet memory.

The ClearSpeed platform gives users the ability to add co-processors to accelerate common
tasks. These user-defined co-processors are simply attached to the ClearConnect bus and
accessed like any other MTAP. One such co-processor that ClearSpeed provides is a Table
Lookup Engine (TLE). The TLE is able to perform multiple parallel searches on multiple
tables with key sizes ranging from 32 bits to 128 bits. The TLE is composed of many
parallel state machines, called Lookup Engines (LEs), and commodity memory. Since
ClearSpeed sells their network processor as a soft core, the user is able to configure the size
of the on-chip memory.

A scalable high-bandwidth bus called ClearConnect connects the MTAP processors, co-
processors, and memory. The ClearConnect bus is composed of Nodes and T-Switches
connected by Lanes. Nodes connect elements to the bus and function as repeaters, while T-
Switches route bus requests to different Nodes. Nodes and T-Switches are connected by
one or more Lanes, 50Gbps duplex links.

Programmability
ClearSpeed has an IDE in alpha release that includes a C compiler, assembler, debugger, and
profiler. In addition, they have an application development kit that includes a visual tool for
designing wire speed applications and a reference library of common networking functions.

Implementation
ClearSpeed’s network processor will be available 1H03 as a soft core running at 400MHz. In
a 0.13µ process technology, it is 180mm2 to 295 mm2, depending on the number of PEs per
MTAP and amount of on-chip memory.

3.9 Clearwater Networks, formerly XStream Logic
Devices (CNP810SP)

Clearwater Networks applies simultaneous multi-treading to network routing [41]. Their
CNP810SP processor issues 10 instructions per cycle and can simultaneously execute 8
threads. It is targeted at layers 4-7 processing for edge devices (edge routers, web switches,
SSL accelerators) at packet rates of 10Gbps [40].

Architecture
Clearwater Networks uses simultaneous multi-threading, which is a hardware
implementation of software multi-threading. Each thread has its own resources (register file,

 Page 37 of 89

Understanding Network Processors

PC, instruction prefetch buffer) and can conceptually be thought of as a separate superscalar
processor [41].

Currently, Clearwater supports 8 simultaneous threads; there are 8 instruction queues,
register files, and arithmetic units. The arithmetic functional units include some special
instructions for network processing. In addition, there are two address generation units,
which makes the CNP810SP a 10-issue machine. Clearwater uses superscalar techniques to
dynamically determine how threads use these issue slots. There is an on-chip 64kB
instruction and data cache and the ALU is a 9-stage pipeline.

The Packet Management Unit (PMU) handles packet I/O, leaving the CPU for deep packet
classification. The PMU reads packets from the network interface, classifies them, and
stores them in hardware-managed arrival queues. It also writes packets out to the network
interface. The PMU has some control over the processor, as it can load contexts and
context registers without processor intervention via the Register Transfer Unit (RTU). In
addition, the PMU supports 24 global masks and 8 masks per thread for key extraction.
Figure 24 shows the macro-architecture of Clearwater’s network processor.

The CNP810SP has a dual ported on-chip packet memory of 256 Kbytes called the
PacketCache. The structure of this memory allows for efficient implementation of packet
manipulation, header/packet growth (e.g. MPLS over IP/Ethernet shim header), and packet
memory allocation.

A high bandwidth interconnect, called XPress Switch connects the processor core, PMU,
PacketCache, and peripherals. It has a peak throughput of 225Gbps. The CNP810SP
supports numerous interfaces, including dial SPI-3, SPI-4 (Phase I), 64-bit PCI-X, and 2
serial ports.

Packet
Cache

DDR1 DDR2 DDR3 DDR4
PCI-X

UART1

UART2

SPI
EEPROM

JTAG &
Trace

SMT Core
RTUPMU

(PMMU,
Queues)

DMA1 DMA2 DMA3 DMA4

SPI-
4

SPI-
3

SPI-
3

XPress Switch (peak 225 Gbps)

Figure 24. Macro-Architecture of Clearwater Networks’ CNP810SP Network
Processor.

 Page 38 of 89

Understanding Network Processors

Programmability
Green Hills is currently developing a C compiler for Clearwater Networks. Since
simultaneous multi-threading makes each thread appear like a superscalar machine, the
programmer can think of the device as 8 different superscalar processors. In addition, the
programmer has some control over the resource sharing among those processors.

Implementation
The CNP810SP has been implemented in a 0.15µ process. Running at 300MHz, it consumes
12W. Clearwater’s network processor will be available as a soft core in 4Q2001.

3.10 Cognigine
Cognigine is one of the only network processors to use reconfigurable logic. Their Variable
Instruction Set Computer (VISCTM) allows the execution units to be dynamically
reconfigured. It is aimed at layer 2-7 processing at 10Gbps data rates [42].

Architecture
Cognigine’s network processor is a distributed multi-processor machine – it has 16
processing elements, or Reconfigurable Communications Units (RCUs) connected by a
crosspoint switch, called Routing Switch Fabric (RSF). Each RCU has four parallel
execution units that operate on a 64-bit wide data path. The execution units are dynamically
configurable by VISC instructions. A VISC instruction determines the major characteristics
of an instruction, including operand sizes, operand routing, base operation, and predicates.
The VISC instructions are stored in a Dictionary and decoded during the first stage of the
pipeline. The RCU has a five-stage pipeline and has hardware support for four threads.
Figure 25 shows the architecture of an RCU.

Each RCU has an associated RSF connector that serves as the RCU’s interface to the RSF.
This connector helps distribute arbitration of the fabric and schedule transactions. The RSF
connects the RCUs in a hierarchical manner – a crossbar is used to connect groups of four
RCUs and another RSF crossbar is then used to connect four groups of RCUs. The
hierarchical nature of the communication fabric makes this solution scalable to a large
number of RCUs. The RSF supports split transactions for hiding communication latency
and is accessed by the RCUs via a memory map.

 Page 39 of 89

Understanding Network Processors

Execution
Unit

Packet BuffersPointer
File

Ad
dr

es
s

Ca
lc

ul
at

io
n

D
ic

tio
na

ry
D

ec
od

e

Diction
ary Registers, Scratch Memory

Data
Memory

I
Cache

RSF Connector

Execution
Unit

Execution
Unit

Execution
Unit

Pi
pe

lin
e

&
 T

hr
ea

d
Co

nt
ro

l

Source
Route

Source
Route

Source
Route

Source
Route

64

256128128

Figure 25. Cognigine's RCU Architecture.

Programmability
Cognigine provides a C/C++ compiler, assembler, and debugger for their network
processor. They claim their tools can automatically determine VISC instructions from
C/C++ application code. We doubt this can be done well, given the current state of
compiler technology. Perhaps their tools are able to find some candidate VISC instructions,
but to make efficient use of their architecture, programmers will likely have to determine and
use their own VISC instructions, much like users of Tensilica’s environment. Cognigine also
provides an application level configuration tool that allows programmers to stitch together
common networking elements. They also provide an applications library of common layer
2-7 functions.

Implementation
Cognigine’s network processor has been manufactured in a 0.18µ process running at
200MHz. It will be available in December 2001.

3.11 Conexant, formerly Maker (MXT4400 Traffic
Stream Processor)

Conexant’s Traffic Stream Processor (TSP) is aimed at Layer 2 processing – internetworking
(AAL SAR, MPLS), buffer management, congestion control, bandwidth management, CRC
& FCR error checking, traffic shaping. It can support packet rates up to 2.5Gbps [43].

Architecture
The core of the TSP is a 32-bit RISC processor (Octave) optimized for traffic stream
processing. It has specialized instructions for internetworking and traffic management. In
addition, the Octave processor efficiently dispatches parallel hardware operations and
minimizes context-switching overhead by switching in the background. The Channel

 Page 40 of 89

Understanding Network Processors

Descriptor Look-up Engine examines packet headers, while the Packet/Command Engine
maps traffic streams to processes on the Octave core. The Traffic Scheduling System
handles controls protocols for bandwidth reservation and scheduling. The TSP supports
UTOPIA 2 and has a 32-bit PCI bus interface.

Programmability
The development kit includes a C compiler, debugging tools, as well as simulation and
analysis tools. Their PortMaker software provides a modular software architecture on top of
the TSP.

Implementation
The TSP runs at 125 MHz and has a maximum power dissipation of 4.2W.

3.12 EZchip (NP-1)
EZchip uses specialized processors for different tasks required for network processing [44]
[45]. These specialized processors, or Task Optimized Processors (TOPs), are superscalar
processors arranged in a pipelined fashion. The NP-1 is designed for Layer 2-7 packet
processing at 10Gbps. There is an interface for a separate control processor to handle
control-plane operations.

Architecture
The EZchip NP-1 has many Task Optimized Processors (TOPs), each with their own
customized instruction set and data path. These TOPs are arranged in a pipelined fashion
(see Figure 26). There are four types of TOPs:
· TOPparse: identifies and extracts various packet headers and protocols
· TOPsearch: performs lookups at different levels (layer 2-7)
· TOPresolve: assign packet to appropriate queue and/or port
· TOPmodify: modifies packet contents

In addition, they claim to have patent-pending algorithms for leveraging embedded memory
to search external memory to support line rates of 10Gbps. These algorithms and associated
data structures enable long and variable-length string searching. Further details of their
approach are not available.

Figure 26. EZChip's NP-1 Architecture [45].

The NP-1 supports either eight 1 Gigabit Ethernet interfaces, one 10 Gigabit Ethernet
interface, or one OC-192 interface.

 Page 41 of 89

Understanding Network Processors

Programmability
EZchip has a software development environment for the NP-1 that includes an assembler,
debugger, and simulator [46]. A high-level language compiler is planned for future designs.
In addition, they ship a library of common switching and routing applications. The cost for
the software development environment is $20,000 plus a 15% annual maintenance fee.

Implementation
The NP-1 should be available in August 2001 [47]. They recently announced a partnership
with IBM, who will manufacture prototypes of the NP-1 in 0.18µ and production parts in
0.13µ [48].

Design Wins
Avaya plans to use the NP-1 in their next generation routing switches [49].

3.13 IBM (PowerNP)
The IBM PowerNP is multi-processor solution with 16 protocol processors, 7 specialized
co-processors, and a PowerPC core. It supports Packet over SONET (POS) and Gigabit
Ethernet at 2.5Gbps and is targeted for layer 2-5 processing.

Architecture
IBM’s network processor consists of the Embedded Processor Complex (EPC), special
frame processing hardware, and peripheral interfaces. The EPC has a PowerPC core and 16
programmable protocol processors (that make up the Embedded Processor Complex) [50].
Each pair of protocol processors shares a hardware co-processor to accelerate tree searching
and frame manipulation. Each protocol processor has a 3-stage pipeline. Two of the
protocol processors are specialized – one for “guided frames” (special Ethernet frames that
allow one processor to communicate with other network processing devices) and one for
building lookup tables. The seven co-processors execute the following functions:
· Data store: interfaces frame buffer to provide DMA capability
· Checksum: calculates header checksums
· Enqueue: interfaces with the Completion Unit to enqueue frames to the switch and
target port queues
· Interface: provides all protocol processors access to internal registers, counters, and
memory
· String Copy: enables efficient data movement within the EPC
· Counter: manages counter updates for the protocol processors
· Policy: examines flow control information and checks for conformance with
preallocated bandwidth

Each Protocol Processor has an instruction memory of 8kb. There are various internal
control memories sprinkled about the chip ranging from 8kb to 32kb. Figure 27 shows the
macro-architecture of the PowerNP and Figure 28 illustrates the architecture of the
Embedded Processor Core.

 Page 42 of 89

Understanding Network Processors

Figure 27. IBM's Network Processor [50].

Figure 28. Embedded Processor Complex Architecture [50].

A large part of the packet processing actually occurs outside the EPC. An ingress frame first
comes into the Ingress Physical MAC Multiplexer (PMM), which validates the frame (CRC
check) and stores it in a buffer. It then passes part of the frame to the Protocol Processor

 Page 43 of 89

Understanding Network Processors

for frame lookups. The Classifier Hardware Assist helps identify the frame format, which is
used by the Protocol Processor to perform lookups. The Tree Search Engine (TSE) aids in
the search process by performing lookups in tables that reside in the Control Memory. The
Control Memory Arbiter is used to manage multiple memory lookups from the different
protocol processors. Once the lookup is completed, Ingress Switch Interface performs the
necessary frame alterations (like adding a tag). The Completion Unit ensures the correct
frame ordering before the frames are put back onto the switch fabric. Incoming egress
frames are the handled in the reverse manner (see Figure 29).

The PowerNP has on-chip support for 4 Gigabit Ethernet ports, 40 Fast Ethernet MACs,
and Packet over SONET (POS) on-chip.

Figure 29. Ingress and Egress Frame Flow [50].

Programmability
The Code Development Suite includes a picocode assembler, debugger, and system
simulator.

Implementation
The PowerNP is implemented in a 0.18µ process, consumes about 20W, and runs at
133MHz [22].

Design Wins
Alcatel and Asante Technologies will use IBM’s PowerNP devices in their IP core router and
switch products [51].

3.14 Intel, formerly Level-One (IXP1200)
The Intel IXP1200 was one of the first network processors on the scene. Oddly enough, the
design was actually done by DEC, which Intel acquired. The IXP1200 is mostly meant for
layer 2-4 processing and can support a packet rate for 2.5Mpackets/s. As with other devices,

 Page 44 of 89

Understanding Network Processors

higher layers can be supported by connecting external processors to the PCI interface. The
IXP consists of 6 “micro-engines” and a StrongARM controller. The micro-engines have
hardware support for up to 4 threads each. In addition, there is special hardware to perform
hash functions, queuing, and single cycle shifting and rotating.

Architecture
The IXP1200 consists of six programmable micro-engines and a 200 MHz StrongARM that
coordinates system activities. The IX bus, a 64-bit bus, provides high bandwidth
connectivity to the micro-engines, StrongArm, memory, and off-chip devices like a MAC
device or another IXP1200. A PCI-bus interface allows integration with an external control
processor.

The micro-engines perform all the packet processing tasks. They have hardware support (i.e.
zero-overhead swapping) for four threads each, for a grand total of 24 threads on the chip.
While the four threads on a micro-engine share a common register file, there is a software
policy that splits the register file into four parts (one for each thread). This makes it possible
for the device to swap contexts in a single cycle. The micro-engines also have special
instructions for packet processing, like find first bit set, barrel shift, and extract byte/word.

In addition to the micro-engines, the IXP has some special hardware units that aid in packet
processing. There is a programmable hash engine and specialized queues that are shared by
all the micro-engines and the StrongARM. Receive (Transmit) FIFOs provide an interface
to MAC-layer devices by reading (writing) packets into (out of) on-chip queues that can be
accessed via the IX bus.
There is an on-chip data cache of 8KB, 16KB of instruction cache for the StrongARM, and
4kbyte of on-chip Scratchpad SRAM.

SDRAM
Ctrl

MicroEng

PCI
Interface

SRAM
Ctrl

SA Core

MicroEng

MicroEng

MicroEng

MicroEng

MicroEng

Mini
DCache

DCache

ICache

Scratch
Pad

SRAM

IX Bus
Interface

Hash
Engine

Figure 30. Intel’s IXP1200 Architecture.

 Page 45 of 89

Understanding Network Processors

Programmability
Programming the IXP1200 is all done in macro-assembly, though they will release a C
compiler in 2H01 [52]. Given that the 6 micro-engines running in parallel, programming the
IXP proves to be a difficult task. This process is exacerbated by the assembly language
including context switching and other unique features. However, their IDE (Integrated
Development Environment) tremendously aids in programming the device. Their
configurable simulation environment and visualizations clearly show all activities of the chip,
making debugging much easier.

Implementation
The IXP is implemented in a 0.28µ process, runs at 200 MHz, consumes about 5W and is
available now [22].

Cost
The IXP1200 costs less than $300 [22].

Design Wins
The IXP1200 is currently being used by Broadband Access Systems, Mayan Systems and
NorthChurch [53]. Cloudshield Technologies is also using IXP1200s for their dedicated
routing network device [54].

3.15 Lexra (NetVortex & NVP)
Lexra has two network processing products, the NetVortex and the NVP. The NetVortex
uses multiple (up to 16) MIPS R3000 cores that are specialized for network processing. It is
targeted for layer 2-4 processing at speeds of greater than 10 Gbps. Their second product,
the NVP, is currently in development. It has an improved communication infrastructure
and more co-processors to accelerate common networking tasks.

Architecture

NetVortex
The Lexra NetVortex strings together multiple LX8000 32-bit RISC network processor units
(NPUs). Each NPU is a MIPS R-3000 core augmented with hardware support for single
cycle context switch among 8 contexts – aside from PCs (program counters), there are
separate register files for each context. The cores also have special instructions to speed up
packet processing (e.g. ones complement add, insert and extract bit fields). They also have
two level branch instructions for case statements often found in control-plane code [55] [56].
Lexra also has a unit to assist fetching packets from memory, called a Block Transfer Unit,
that is accessible via the system bus. Since the NetVortex is available as a soft-core, the user
is able to add co-processors and other engines. Figure 31 shows an example of this.

The NPUs are connected by a multi-channel DMA controller that transfers packets to/from
local memories.

 Page 46 of 89

Understanding Network Processors

P(1)
Packet

Processor

P(2)
Packet

Processor

P(N-1)
Packet

Processor

P(N)
Control

Processor
...

PCI

Shared
Data RAM

Block
Transfer
ControllerTransfer Buses

Coprocessor Coprocessor Coprocessor

Packet
Buffers

Table
Lookup

Unit

System Bus

Figure 31. An Example Use of Lexra's NetVortex System Architecture [56].

NVP
The architecture of the NVP is similar to that of the NetVortex, however it has some key
improvements. With the NVP, Lexra has removed the co-processors that were tied to
individual packet processors and added a few shared co-processors for lookup, metering,
and statistics [57]. Each of these has access to its own off-chip memory. The packet
processors have a few more specialized instructions for network processing (checksum
calculation, table lookup, hashing, and bit field extraction/manipulation). Each packet
processor has 16Kbytes of instruction and data memory and supports eight contexts. A
block transfer engine offloads the packet processors from packet I/O tasks by supporting
block moves to/from shared memory. It also includes hardware management of 144
buffers.

In addition, a wide crossbar connects the co-processors and the 16 packet processors. This
crossbar had a peak bandwidth of 270Gbps, supports internal queuing to prevent blocking,
and is pipelined for greater throughput.

Programmability
Despite some minor architectural differences, the programmability for the NetVortex and
NVP are very similar. While C is used for the standard portion of the MIPS processors,
assembly code is required for Lexra-specific instructions. A graphical debugger with multi-
processor and multi-thread support is also provided.

Implementation

NetVortex
The NetVortex is available as a synthesizable RTL macro. This will allow 1-16 packet
processors running at 250 MHz in a 0.15µ process [56].

 Page 47 of 89

Understanding Network Processors

A hard macro with 16 packet processors should be currently sampling; it runs at 450 MHz in
a 0.15µ process. It is estimated to be 64 mm2 and consume 6.8W [56].

NVP
When implemented in a 0.13u process, the NVP is 134mm2. Running at 420MHz, it
consumes 12W. When released, the NVP will be available as a synthesizable RTL macro.

Cost
The standard up-front license fee for the NetVortex is $645,000, plus per-chip royalties of
$1.00 to $2.50 per core.

3.16 Motorola, formerly C-Port (C-5 DCP)
The Motorola C-5 DCP is a single chip multi-processor network processor [58] [59]. There
are 16 channel processors (with 5 co-processors) and 1 general-purpose processor for system
coordination. Each channel processor consists of a RISC core with two Serial Data
Processors. The C-5 is targeted at layers 2-7 processing at 2.5Gbps rates.

Architecture
The C-5 DCP consists of 16 channel processors with 5 co-processors (executive processor,
fabric processor, table lookup unit, queue management, buffer management). Each channel
processor can be used individually, organized in banks to handle data streams in parallel, or
organized serially with each processor handling a different task.

A channel processor consists of a RISC core plus two (one for send, one for receive) parallel
Serial Data Processors (SDPs) that act as communication building blocks to talk to other
channel processors. The RISC cores handle characterization and classification, policy
enforcement, and traffic scheduling, while the SDPs handle programmable field parsing,
header validation, extraction, insertion, deletion, CRC validation/calculation, framing and
encoding/decoding.

There are 5 shared co-processors, each with a different function:
· executive processor: coordination with external processors
· fabric processor: for using multiple C-5’s in a fabric
· table lookup unit: table lookup and update
· queue management: manage packet queues
· buffer management: fast, flexible memory management

In addition, there are three internal buses with an aggregate bandwidth of 60Gbps. The C-5
DCP supports Level 2/3 UTOPIA and PCI bus interfaces. The macro-architecture of the
C-5 DCP is shown is Figure 19.

 Page 48 of 89

Understanding Network Processors

Figure 32. Motorola C-5 DCP Macro-architecture [60].

Programming
The C-5 DCP is C/C++ programmable and uses the C-Ware Communications
Programming Interfaces (CPI) – an open set of standard interfaces that abstract “common
network task building blocks” such as physical interface management, data forwarding, table
lookups, buffer management, queuing operations, etc [60]. The CPI is mainly used to access
the co-processors. There is also a C-Ware reference library for use in common applications
[61].

Implementation
The C-5 is implemented in a 0.18µ process and consumes 15W during typical operation. It
is currently available.

Cost
The projected cost is $400 [22].

Design Wins
Extreme Networks is using the Motorola C-5 in their BlackDiamond® 6800 series chassis
for Packet over SONET (POS) applications. In April 2001, Atoga Systems announced they
were using the C-5 in their Optical Application Router 5 (OAR 5), a router that uses
software tunable lasers for on-demand bandwidth provisioning and dynamic optical scaling.
Empirix is using the C-5 for their new network emulator that allows users to test IP
networks in the face of jitter, delay, loss, duplication, and reordering at wire speeds.

 Page 49 of 89

Understanding Network Processors

3.17 PMC-Sierra, formerly Quantum Effect Devices
The PMC-Sierra RM7000 is more of a high-end digital signal processor than a network
processor. It’s a 64-bit MIPS-compatible superscalar microprocessor that has several
specialized DSP instructions, a 256KB secondary cache, and a high-performance floating-
point unit [62]. Since its architecture is not geared for network processing, we do not profile
it. Like other MIPS-based processors, the RM7000 can take advantage of numerous 3rd
party software development environments.

3.18 Vitesse, formerly SiTera (PRISM IQ2000)
The PRISM IQ2000 is a network processor that works with existing standard processors
(from IDT, QED, and NEC) [63][64][65]. The standard processor does control-plane
processing and system management, while the network co-processor does packet processing
for classification, lookups, and QoS/CoS priority checking. The IQ2000 is aimed at aimed
at layer 2-3 processing for edge routers and supports packet rates up to 2.5Gbps [66].

Architecture
The architecture of the IQ2000 consists of four 200MHz scalar RISC processor cores with
co-processors for lookup, classification, packet order management, multi-cast support, DMA
management, and context management. The RISC processors have an optimized instruction
set for network operations. The co-processors and CPUs are arranged in a streaming
fashion: As packet stream on to the chip, the Classification Engine classifies packets. The
Order Management block assigns each packet to a thread on a particular CPU. After the
packet has been processed, it is forwarded to the Queue Management co-processor, which
queues the packet. The QoS engine handles packet priorities and transferring the packet to
the output interface. The standard processor is used for route processing and system
management. A block diagram of Vitesse’s network processor is shown in Figure 33.

 Page 50 of 89

Understanding Network Processors

Figure 33. Vitesse's PRISM IQ2000 Architecture [64].

Programmability
Their software development environment uses standard high-level programming languages
and development tools (GNU-based). The Vitesse development suite provides a graphical
environment for system simulation and hardware-assisted debug, as well as an integrated
environment for system regression and performance testing. In addition, there is network
software library for common functions.

Implementation
The PRISM runs at 200 MHz and is implemented in a 0.25µ process. It typically consumes
12W [22].

Cost
The PRISM IQ2000 sells for $250 [22].

3.19 Xelerated Packet Devices (X40 & T40)
Xelerated Packet Devices provides a two chip solution to network processing – the X40
Packet Processor and the T40 Traffic Manager. Both chips are based on a packet-driven
computation paradigm that Xelerated calls Packet Instruction Set Computing [67].
Xelerated’s solution is geared for layer 2-7 processing at 10Gbps data rates.

 Page 51 of 89

Understanding Network Processors

Architecture
Packet Instruction Set Computing can be characterized as a programmable pipeline of
processors where each pipeline stage executes a fixed function on a different packet. Each
processor is composed of a classifier and an action block - the classifier identifies particular
packets, while the action block alters or examines them. The action block (called a Packet
Instruction Set Computer) is a processor with a specialized ISA for packet processing.
Every clock cycle, a new packet enters and exits the pipeline, giving a deterministic per
packet latency and throughput for a series of packet streams.

The X40 Packet Processor [68] is composed of 10 macro-pipeline stages. In addition to the
classifier/PISC pairs, the X40 also includes 384k counters and 128k meters for making
traffic metering and conditioning decisions. In addition there is a small internal CAM and an
arbiter that controls access to an external CAM (for larger tables). The counters, meters, and
CAMs are accessible to all pipeline stages. Figure 34 shows the micro-architecture of the
X40.

PI
SC

C l
as

s i
fie

r

PI
SC…

P I
SC

Cl
a s

si
f ie

r

C l
as

s i
fie

r

C l
as

s i
fie

r

Exception
Handler

Tx
Ports

Tx CPU
Port

Tx Loop
Port

MetersSampling
Meters Counters Internal

CAM

Internal
RAM

Rx
Ports

Rx CPU
Port

Rx Loop
Port

DRR/
SPQ

Arbiter

External
RAM

External
CAM

Figure 34. Macro-architecture of the X40.

Figure 35 shows an example configuration of the macro-pipeline for IP routing. For a single
packet processing function that takes longer than one clock cycle to execute, multiple
pipeline stages may be used (e.g. packet forwarding stage).

 Page 52 of 89

Understanding Network Processors

PI
S C

C l
as

s i
fie

r

PI
SC

C l
as

s i
fie

r

PI
SC

C l
as

s i
fie

r

PI
SC

Cl
as

si
fie

r

P I
SC

Cl
as

si
f ie

r

P I
SC

Cl
a s

si
f ie

r

P I
SC

Cl
a s

si
f ie

r

P I
SC

Cl
a s

si
fi e

r

PI
SC

Cl
a s

si
fi e

r

PI
SC

Cl
a s

si
fie

r

Strip L2 IPv4

Accept

Deny

Meter

Non-Conforming

Conforming

Partly Conforming
Unicast Forwarding

Multicast Forwarding

Cl
as

si
fie

r

L2
Decode

L3
Decode

Packet
Filter

Traffic
Conditioning

Packet
Forwarding

Figure 35. Example use of Xelerated's X40 Packet Processor.

The T40 Traffic Manager [69] is also based on the PISC paradigm, but includes more
specialized hardware for traffic management. In particular, there is a classifier/PISC pair on
ingress and egress of the pipeline with a Queue Engine in the middle. The Queue Engine is
responsible for most of the traffic management tasks, like congestion control, traffic
shaping, and fragmentation and reassembly. The T40 includes shared access to 64k queues,
has hardware support for Weighted Random Early Detection (WRED) and fragmentation
and reassembly, and has three levels of scheduling.

Programmability
To program the X40 and T40, users must program each of the pipeline stages separately, as
each stage is executing a different program. Xelerated provides development tools for
programming in an augmented version of C and simulating compiler code. In addition, they
provide building blocks for implementing control-plane processing.

Implementation
The X40 and T40 have been implemented in a 0.13µ process technology and will be
available in April 2002.

3.20 Summary
Figure 36 shows the network processors profiled in this report mapped onto Figure 3. It is
interesting to note that many of the original network processors (Applied Micro Circuits,
Conexant, IBM, Intel, and Motorola) are architecturally similar: they are composed of one or
more processing elements and a couple of co-processors for common networking
applications. From this initial group, network processors architectures have spread out into
a number of different solutions:
· General-purpose processor-like architectures (Alchemy, Broadcom)
· Dataflow processing architectures (Cisco, EZchip, and Xelerated Packet Devices)
· Simultaneous Multi-threading (Clearwater Networks)
· Digital Signal Processing (BRECIS Communications, PMC-Sierra)

 Page 53 of 89

Understanding Network Processors

13
2 8

1

5

16

9

12

11
7

15

310

6
14

4

General Purpose
Processors

Digital Signal
Processors

Communication
Processors

ASIC
Solutions

Network
Co-Processors

17

18

Network
Processors

1 Agere
2 Alchemy
3 Applied Micro Circuits
4 BRECIS Communications
5 Broadcom
6 Cisco
7 ClearSpeed
8 Clearwater Networks
9 Cognigine

10 Conexant
11 EZchip
12 IBM
13 Intel
14 Lexra
15 Motorola
16 PMC-Sierra
17 Vitesse
18 Xelerated Packet Devices

13
2 8

1

5

16

9

12

11
7

15

310

6
14

4

General Purpose
Processors

Digital Signal
Processors

Communication
Processors

ASIC
Solutions

Network
Co-Processors

17

18

Network
Processors

13
2 8

1

5

16

9

12

11
7

15

310

6
14

4

General Purpose
Processors

Digital Signal
Processors

Communication
Processors

ASIC
Solutions

Network
Co-Processors

17

18

Network
Processors

13
2 8

1

5

16

9

12

11
7

15

310

6
14

4

General Purpose
Processors

Digital Signal
Processors

Communication
Processors

ASIC
Solutions

Network
Co-Processors

17

18

Network
Processors

1 Agere
2 Alchemy
3 Applied Micro Circuits
4 BRECIS Communications
5 Broadcom
6 Cisco
7 ClearSpeed
8 Clearwater Networks
9 Cognigine

10 Conexant
11 EZchip
12 IBM
13 Intel
14 Lexra
15 Motorola
16 PMC-Sierra
17 Vitesse
18 Xelerated Packet Devices

Figure 36. Varying Solutions of Network Processors.

Appendix A contains detailed summary tables of these network processors on many
different axes: micro-architecture, architecture, software support, memory features, and
physical implementation.

 Page 54 of 89

Understanding Network Processors

4 Analysis
In the last section, we introduced a number of network processors; in this section, we
analyze their different approaches. In this section, we move from the technical
specifications of network applications and capabilities of network processors to market
segments. First, we describe the market segmentation occurring in this market to lay the
foundation upon which to compare network processors. Then, we compare different
architectural and programmability aspects of network processors. Lastly, we summarize the
results of our analysis.

4.1 Market Segmentation
As the number of applications for network processors has grown, the market has begun to
segment into three main network equipment areas: core, edge, and access. Each of these
areas has different target applications and performance requirements. Core devices sit in the
middle of the network. As a result, they are the most performance critical and least
responsive to flexibility. Examples of these devices are gigabit and terabit routers. Edge
devices sit in between the core network and access devices. Examples of edge devices
include URL load balancers and firewalls. They are focused on medium-high data rates and
higher layer processing, so a certain amount of flexibility is required. Access equipment
provides various devices access to the network. Most of their computation relates to
aggregating numerous traffic streams and forwarding them through the network. Examples
of access devices include cable modem termination systems and base stations for wireless
networks. Table 4 summarizes the characteristics of the three target markets of network
processors.

Performance Flexibility Examples
Core High Low Gigabit/terabit router
Edge Medium Medium URL load balancer

Access Low High
CMTS, wireless
network basestation

Table 4. Characteristics of the 3 major NP markets.

Another consideration for network processors is the network processing functionality they
perform: data-plane, control-plane, or management-plane. Each has different processing
needs and requirements. Data-plane processing consists of forwarding packets or frames
from the input ports to the output ports. This is the most performance hungry, as it must
be executed at wire speed to avoid dropping packets. As a result, data-plane processing
systems often take advantage of the packet independence by processing multiple packets in
parallel. Control-plane processing refers to processing the control packets that aid network
equipment in performing data-plane tasks. Examples of control-plane processing include
routing table updates, ATM virtual circuit setup and teardown, and IPSec’s Internet Key
Exchange. These operations have little or no performance requirements and exhibit little
data parallelism. As a result, they are often executed on a general-purpose processor.
Management-plane operations refer to the processing of network management packets. Like
control-plane processing, these operations have little or no performance requirements.
Table 5 summarizes the salient characteristics of the different planes of computation.

 Page 55 of 89

Understanding Network Processors

Performance
Requirements

Data
Parallelism Examples

Data plane High High Routing packets

Control plane Low Low
ATM VC

setup/teardown
Management
plane Low Low SNMP processing
Table 5. Comparison of Network Processing Planes.

4.2 Architecture
In this section we compare and contrast the architectures of the various NPs described in
the last section. We first present a timeline of network processor release dates. This is
important for providing a reference to the different target markets and implementation
details of NPs. Then, we examine their approaches to parallel processing, namely multiple
processors and multiple issue. Third, we look at the specialized hardware employed to
accelerate network processing, both at the co-processor level and at the functional unit level.
Lastly, we examine techniques for hiding latency of various elements.

Timeline
Since many of the NPs profiled in this report have varying release dates, we first present a
timeline of network processors. Because application requirements and process technology
change rapidly, it is important to consider the release date when comparing architectural
features of different devices. Figure 37 shows the timeline of network processor releases.
The dates of releases indicate when devices began (or will begin) the sampling phase. On
average, full-scale production occurs two to four quarters after sampling. Despite the many
network processors profiled in this report, only seven are shipping – Agere, Applied Micro
Circuits, Conexant, IBM, Intel, Motorola, and Vitesse. A large number of the NPs have yet
to pass the testing phase (i.e. done sampling). This is important to note when comparing
many metrics of network processors. For example, in Figure 39, the four highest MIPS
devices are not in production yet; two of them will not begin sampling until the fourth
quarter of this year.

1Q99 2Q 3Q 4Q 1Q00 2Q 3Q 4Q 1Q01 2Q 3Q 4Q 1Q02 2Q 3Q 4Q 1Q03 2Q

Applied Micro Intel Motorola Agere PMC-Sierra Xelerated ClearSpeed
Conexant Vitesse IBM Alchemy Clearwater

Lexra EZchip
Broadcom Cognigine

BRECIS

Figure 37. Timeline of Network Processor Releases.

Parallel Processing
Many architectures use parallel processing to increase the throughput of their device. This is
enabled by the independent nature of traffic streams and increased per packet computation
requirements of new applications. Two architectures for parallel processing are multiple
processor and multiple issue.

 Page 56 of 89

Understanding Network Processors

Of the large number of NPs that use independently executing multiple processing elements
(PEs), there are two prevalent configurations:
· Pipelined: each processor is designed for a particular packet processing task and
communicates in a pipelined fashion

In this approach, inter-PE communication is very similar to data-flow processing – once a PE is
finished processing a packet, it sends it to the next downstream element. Examples of this
architectural style include Cisco’s PXF, Motorola’s C-5 DCP, and Xelerated Packet Devices.

· Parallel: each PE is performing similar functionality
This approach is commonly coupled with numerous co-processors to accelerate specific types of
computation. Since these co-processors are shared across many PEs, an arbitration unit is often
required. The Agere PayloadPlus, Intel IXP1200, IBM PowerNP, and Lexra NetVortex are
examples of this type of macro-architecture.

At the processing element level, relatively few NP architects have embraced multiple issue
architectures – those that issue multiple instructions per program counter (thread). The
Agere Routing Switch Processor, Brecis’ MSP5000, and Cisco’s PXF use VLIW
architectures; this allows them to take advantage of intra-thread instruction-level parallelism
(ILP) at compile time by leveraging sophisticated compiler technology. Clearwater
Networks takes another approach - they use a multiple issue superscalar architecture in
which a hardware engine finds the available ILP at runtime. Cognigine also has multiple
issue PEs (4-way), but they have a run-time configurable instruction set that defines data
types, operations, and predicates.

To compare the different approaches to parallel processing, we attempt to characterize NPs
by their computation power. To do this, we divide computational elements of NPs into two
categories:
· Processing Elements (PEs): instruction set processors that decode their own
instruction stream; and
· Functional Units (FUs): computational blocks that fit within the pipeline of a PE

Ideally, we would also include co-processors and special functional units (SFUs) as
computational elements. This would allow the comparison to serve as a benchmark for
network processors. However, the performance of co-processors and SFUs is impossible to
evaluate without reference to a specific application. As a result, we separate the analysis of
special hardware (see the next section) from the parallel processing comparison. For a
detailed performance benchmarking effort of network processors, the reader is referred to
Tsai’s work [70].

The diversity of the approaches to parallelism by different NPs is shown in Figure 38. By
plotting issue width per PE versus number of PEs, we can graphically depict the trade-off
various network processor architects have made between number of processing elements
and number of functional units. Clearwater Networks, at one extreme, has a single PE with
10 issue slots, while EZchip has 64 scalar PEs. On this chart, we have also plotted iso-
curves of issuing 8, 16, and 64 instructions per cycle. While the clock speed and specialized
hardware employed by network processors are not represented in Figure 38, it does illustrate
the trade-offs NPs have made between processing element and functional unit parallelism.

 Page 57 of 89

Understanding Network Processors

Figure 38 also illustrates the future scalability of various network processors. To handle
increasing data rates, network processors will need to grow increasingly parallel. Current
approaches by those in the lower right corner of Figure 38 (Alchemy, Conexant, PMC-
Sierra) will not scale to higher data rate applications (like those required for the core market).
Most likely, these devices will appear in access devices and low-end edge equipment.

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9
Issue width per PE

N
um

be
r o

fP
Es

32

48

64

Cognigine

Cisco

EZchip

Xelerated

IBM
Lexra
Motorola

Intel

BRECIS
Broadcom

Applied
Micro

Clearwater

ClearSpeed
Vitesse

Agere

PMC-Sierra

Alchemy
Conexant

64 instrs/cycle

16 instrs/cycle

8 instrs/cycle

10

Figure 38. Issue Width per Processing Element Versus Number of Processing
Elements.

To account for clock speed in this analysis, Figure 39 plots the number of processing
elements versus MIPS (log scale). The MIPS of an NP is calculated by multiplying the
number of PEs, issue rate per PE (number of FUs that can execute in parallel), and clock
rate. Figure 39 shows a staggering two orders of magnitude range in MIPS among NPs.
Note that some of the network processors are not represented due to the unavailability of
their clock rate.

Figure 39 also shows how increased clock speed can make up for a lack of parallelism. For
instance, Broadcom’s network processor issues eight instructions per cycle, but runs at
1GHz, giving it 8000 MIPS. While Figure 39 does not account for specialized hardware, but
it does hint at relative data rates different NPs can support. Therefore, caution must be
taken in drawing too many conclusions from this analysis. For example, Vitesse’s IQ2000
appears to be computationally underpowered, however, it has a variety of special hardware
for packet processing, like classification, lookup, and queue management.

 Page 58 of 89

Understanding Network Processors

From Figure 39, we can draw some interesting conclusions. The parallelism and
computational power provided by the NPs in the upper left corner (Cognigine, Lexra,
Motorola, IBM) makes them good candidates for data processing for high-speed
applications, like core networking equipment. The high processing element parallelism is
necessary to simultaneously support multiple traffic streams. The high MIPS/low PE
network processors like Broadcom and Clearwater Networks, are better suited for high data
rate control-plane applications and higher layer data processing, both of which have limited
amounts of task-level parallelism, but require a large amount of processing. The network
processors in the lower left corner (Alchemy, Conexant, PMC-Sierra) have limited MIPS and
processing element parallelism. These devices are best suited for access equipment, which
has low data rate requirements. BRECIS’ network processor is also geared toward access
equipment, however, it is somewhat misrepresented in Figure 39 – about half of its
computing resources (MIPS) are dedicated to telephony processing.

100

1000

10000

100000

0 5 10 15 20

Number of PEs

M
IP

S
(lo

g
sc

al
e)

Cognigine

Lexra

IBM
Motorola

Intel

Applied Micro
Circuits

Broadcom

Clearwater

BRECIS
ClearSpeed

VitessePMC-Sierra

Alchemy

Conexant

Figure 39. Number of Processing Elements Versus MIPS (log scale).

Special Hardware
Network processors have extensively used specialized hardware to accelerate common
networking computational kernels. In this section, we examine the two major approaches
used:
· Co-processor: a computational block that is triggered by a processing element (i.e. it
does not have an instruction decode unit) and computes results asynchronously
· Special functional unit: a specialized computational block that computes a result within
the pipeline stage of a processing element

 Page 59 of 89

Understanding Network Processors

In general, a co-processor is used for more complicated tasks, may store state, and may have
direct access to memories and buses. On the other hand, a special functional unit is used for
simpler operations, is usually stateless, and only writes back to registers. As a result of its
increased complexity, a co-processor is more likely to be shared among multiple processing
elements, while a special functional unit is not. Usually, interfaces to special functional units
are instructions, while co-processors may be accessed via a memory map, special
instructions, or bus. Given the orthogonality of these two approaches, a majority of NPs
employ co-processors for some tasks and special functional units for others.

Integrated Co-processors
Of the 19 NPs profiled in this report, 14 of them have integrated co-processors for common
networking tasks; nine NPs have more than one co-processor. Operations ideally suited for
co-processor implementation are well defined, expensive and/or cumbersome to execute
with an instruction set, and prohibitively expensive to implement as a special functional unit.

The most common integrated co-processors execute lookup and queue management
functions. The functionality of lookup is clear – given a key, lookup a value in a mapping
table. The main design parameter is the size of the key. For additional flexibility, some co-
processors also support variable sized keys. Since lookup often references large memory
blocks, it needs to operate asynchronously from a processing element. Common uses of
lookup are for next hop addresses and for accessing connection state. The global aspect of
lookup operations (with respect to the device) requires the co-processor be shared by all
processing elements. Queue management is another good candidate for an integrated co-
processor as the memory requirement for packet queues is large and queues are relatively
cheap to implement in hardware. The small silicon overhead eliminates many memory read
and write operations that would otherwise be required. Other common co-processors are
for pattern matching, computing checksum/CRC fields, and encryption/authentication.

The functions of co-processors vary from algorithmic-dependent operations to entire
kernels of network processing. For example, the Hash Engine in the Intel IXP1200 is only
useful for lookup, if the algorithm employed requires hashing. For IP routing, the most
common algorithms (trie table-based) do not use hash tables. Algorithm-specific co-
processors limit the freedom of software implementation on network processors – the
software programmer is forced to implement a task using a specific algorithm that can make
use of the co-processor. While this may be desirable in some cases, the majority of
customers will want to design their own algorithms for product differentiation reasons.

Special Functional Units
Most network processors have special functional units for common networking operations
like pattern matching and bit manipulation. The computation required for these operations
is cumbersome and error-prone to implement in software (with a standard instruction set),
yet very easy to implement in hardware. For example, Intel’s IXP1200 has an instruction to
find the first bit set in a register in a singe cycle. With a standard instruction set, this would
quite tedious and take numerous cycles. As with co-processor candidates, the transistor
overhead is well worth the convenience and speedup.

 Page 60 of 89

Understanding Network Processors

Summary
Table 6 shows the types and applications of specialized hardware employed by various
network processors. We measure different network processors by the six kernels identified
in Section 2.2: pattern matching, lookup, computation, data manipulation, queue
management, and control processing. We use shades of gray to give a rough indication of
the amount of specialized hardware on the level of specialized hardware used by each
network processor. In addition to functional units and co-processors, we also include
application-specific bus and memory features and entire processors dedicated to networking
kernels.

This analysis shows the diversity among different network processors. For example, IBM
and Motorola have co-processors for most or all packet-processing kernels, while Cognigine
relies solely on their reconfigurable functional units. EZchip has entire processors devoted
to pattern matching, lookup, data manipulation, and queue management. On the other
hand, PMC-Sierra’s network processor has no specialized hardware; Broadcom and Alchemy
have very little. A number of processors have interesting mixes of functional units, memory
features, co-processors, and processors for various tasks. Agere’s PayloadPlus system uses a
special processor for pattern matching and data manipulation, a co-processor for
checksum/CRC computation, and has memory features for queue management. Vitesse and
Xelerated Packet Devices shy away from special bus or memory features and simply use a
mix of co-processors and functional units. Intel and Lexra also include special memory and
bus features and have a dedicated processor for the control-plane.

 Page 61 of 89

Understanding Network Processors

pat
te

rn
 m

at
ch

in
g

lo
ok

up

co
m

puta
tio

n

dat
a m

an
ip

ulat
io

n

queu
e m

an
ag

em
en

t

co
ntro

l p
ro

ce
ss

in
g

Agere (PayloadPlus)

Alchemy

Applied Micro Circuits (nP)

BRECIS Communications
(MSP5000)

Functional
Unit

Broadcom (Mercurian SB-1250)

Bus/
memory
features

Cisco (PXF/Toaster 2)
Co-
processor

ClearSpeed Processor

Clearwater Networks (CNP810SP)

Cognigine

Conexant (CX27470 Traffic Stream
Processor)

EZchip (NP-1)

IBM (PowerNP)

Intel (IXP1200)

Lexra (NetVortex & NVP)

Motorola (C-5 DCP)

PMC-Sierra

Vitesse (PRISM IQ2000)

Xelerated Packet Devices (X40 &
T40)

Legend

Table 6. Specialized Hardware Employed by Network Processors.

Appendix B provides an in-depth analysis of how networking applications map to network
processor architectures.

Hiding Latency
Hiding latencies of various operations is a key aspect to efficiently using the hardware of a
network processor. There are three ways NPs hide latency: multi-threading, memory
prefetching, and split transaction buses. Multi-threading, by far the most common
approach, is used to efficiently multiplex a processing element’s hardware. The stalls
associated with memory access are well known to waste many valuable cycles. Multi-
threading allows the hardware to be used for processing other streams while another thread
waits for a memory access (or a co-processor or another thread). Without dedicated
hardware support, the cost of operating system multi-threading would dominate
computation time, since the entire state of the machine would need to be stored and a new
one loaded. As a result, many NPs have separate register banks for different threads and
hardware units to schedule threads and swap them in one cycle. Clearwater Networks takes
a slightly different approach – they have eight threads executing in parallel on the same
processing element (which can issue 10 instructions per cycle). In addition, their processing
element employs superscalar techniques to dynamically determine the available instruction-
level parallelism and functional unit usage.

 Page 62 of 89

Understanding Network Processors

Figure 40 shows a chart of the number of threads per processing element different network
processors support. At one extreme, Agere’s PayloadPlus Fast Pattern Processor supports
64 simultaneous threads; at the other, we have six single-threaded network processors. Not
surprisingly, a majority of the single-threaded NPs are either targeting the access market or
control-plane processing. All of the multi-threaded architectures, except for Agere and
Clearwater, have multiple processing elements and support multiple threads per processing
element. This implies there are numerous (up to 128) threads running simultaneously on
these network processors, which has serious implications on the difficulty of programming
these devices.

0

10

20

30

40

50

60

70

Age
re

Clea
rS

pe
ed

App
lie

d M
icr

o

Clea
rw

ate
r

Le
xra

Vite
ss

e

Cog
nig

ine Int
el IBM

Alch
em

y

BRECIS

Broa
dc

om

Moto
rol

a

Xele
rat

ed

N
um

be
r o

f t
hr

ea
ds

/P
E

Single-threaded

PMC-S
ier

ra

Figure 40. Comparison of Multiple Thread Support among Network Processors.

In some cases, the latency of a long memory access can be hidden by prefetching – accessing
the memory location well before it is needed. For many streaming operations, like packet
processing, this is not possible, but for control-plane operations, like routing table updates,
this is an efficient way to hide memory access latency without the additional register or
thread scheduling cost of a multi-threaded approach.

Another source of latency on multi-processor systems is communication across the bus.
Increased integration in network processing systems will increase the communication time
between processing elements, co-processors, memory, and physical and data link devices.
Buses that support split transactions help hide this latency in the same way prefetching helps
hide memory access latency, by splitting the issuance and completion of a bus request.

As memory and processor speeds continue to diverge and as communication architectures
increase in complexity due to improved integration, the importance of hiding memory access
time and communication latency will become more important. Pipelined multi-PE
architectures are an example of this trend. By limiting the inter-PE communication, they are
able to decrease communication latency. New architectural techniques to reduce this latency
will also emerge.

4.3 Programmability
While parallel processing, specialized hardware, and hiding latency are important to
executing applications efficiently, programming use these features is paramount to a

 Page 63 of 89

Understanding Network Processors

successful system implementation. We discuss three major topics related to the
programmability of NPs: programming model, integrated development environment (IDE),
and operating systems (OS) interaction.

Programming Model
The programming model for network processors is a difficult problem. Many NPs are
composed of multiple processors, which has traditionally been a difficult programming
problem. The specialized hardware present on these devices exacerbates the issue. NP
companies have attacked the problem is various ways.

Clearwater Networks claims their “dynamic multistreaming” (i.e. simultaneous multi-
threading) paradigm is natural to think about, as it is similar to programming on top of
Windows or UNIX. Viewed from another angle, their processor can be thought of eight
independent processors. The hardware schedules threads and their resource usage, but for
fine-grain control, the programmer is able to guide the scheduler.

Agere has an interesting solution to programming their device. They use a declarative
language for pattern matching, with patterns and associated actions, much like SQL [23].
While a scripting language raises the level programmer’s level of abstraction, it is unclear if
the mapping of the program to the hardware is visible to the programmer. If it’s not, it will
be difficult to improve the performance of an existing program (a common step in the
embedded software development cycle).

Applied Micro Circuits has simplified the multi-processor programming model by letting the
programmer think of their six processing element device as a single logical CPU. Further
details on their approach were not available, but many similar past efforts were met with
limited success.

Integrated Development Environment (IDE)
Increasingly, there has been more focus on the programmability of these devices. This has
manifested itself in many ways. First, NP vendors are basing their products on standard
processor cores to get the benefit of existing tool chains. For example, Broadcom’s
Mercurian uses two MIPS processors augmented for network processing. This allows them
to use the GNU C/C++ too chain for (almost) free.

An increasing number of NPs have C compilers: Alchemy, Applied Micro Circuits,
Broadcom, Cisco, Clearwater Networks, Conexant, EZchip, Intel (coming soon), Lexra, and
Motorola [71]. Programming in C is only a first step; to take advantage of the specialized
architectural features, pragmas and inlined assembly coding are still required.

Operating System (OS)
For NP operating systems support, there’s an increasing trend to implement more OS
functionality in hardware and expose an interface to the application. As a result, there is
only a small software component to the operating system. For example, the Intel IXP1200
provides instruction set extensions to perform fast context swapping (there is a hardware
thread scheduler). Applications use these instructions to perform context swapping without

 Page 64 of 89

Understanding Network Processors

the need of an operating system. On the IXP1200, memory management is handled in a
similar fashion: the SRAM queues can be used as freelists, thus obviating the need for a
separate OS service routine. Some NPs have special hardware that handles the common
I/O path (i.e. packet flow). Clearwater’s Packet Management Unit copies data from a MAC
device into a memory shared by the core. IBM, Motorola, Intel, EZchip have similar units.
In fact, many network processors do not even run an OS on the data-plane processing
elements. Operating systems will still be needed for control processors, some memory
management, and limited I/O handling. Currently, most of the NPs that have OS support
are based on a standard architecture (e.g. MIPS).

4.4 Summary
Based on a synthesis of the characteristics analyzed in this section, we can estimate the target
markets of the network processors profiled in this report. Figure 41 presents a comparison
of network processors along two axes, data rate and computational requirements. The x-axis
represents increasing computational requirements: from control and management-plane
support to low layer (layers 2-3) data-plane processing to higher layer (layers 4-7) data-plane
processing. On the y-axis, we identify the three target markets for network processors in
order of increasing data rate requirements: access, edge, and core. The labels on each axis
represent points on a continuum, rather than separate categories, as a network processor
targeted for high-end edge equipment can also be used for low-end core equipment, for
example.

Control & Mgmt
Plane Data Plane

A
cc

es
s

Ed
ge

C
or

e

L2-3 L4-7

Cognigine

Lexra

IBM

Motorola

Intel

Applied Micro

Broadcom

Clearwater

BRECIS

ClearSpeed

Vitesse

PMC-Sierra

Alchemy

Conexant

Agere

Xelerated

EZchip

Figure 41. Map of Network Processor Market.

The analysis reflected in Figure 41 reveals a few groups of network processors. PMC-Sierra,
Alchemy, and Conexant are focused on low computation (i.e. management, control, and
possibly lower layer data-plane processing) for access and low-end edge equipment.
Broadcom and Clearwater Networks have much more computational power, but lack the

 Page 65 of 89

Understanding Network Processors

support for data parallelism to perform core data-plane processing. As a result, they are
targeted for control and management-plane processing for high data rate networking
equipment. The bulk of the market is focused on data-plane operations for edge and core
equipment, representing a response to the massive recent growth in this area. Agere,
Applied Micro Circuits, and Intel have enough computational power and specialized
hardware to perform layer 2-3 data-plane tasks for edge equipment, but not enough of either
for the higher layers or the core market. The increased parallelism of the NPs from Lexra
and IBM enable them to hit core equipment data rates performing lower-layer data-plane
processing. The powerful co-processors of Motorola’s C-5 DCP and the numerous 8-bit
computational blocks of ClearSpeed’s NP allow both of them to perform higher layer
processing for edge equipment. Cognigine, EZchip, and Xelerated Packet Devices are best
suited for higher layer processing at the highest data rates. Not coincidentally, none of these
devices are currently even sampling, let alone shipping product.

 Page 66 of 89

Understanding Network Processors

5 Looking Forward
In this section, we explore some trends in networking applications and network processing
architectures. We also speculate on the future of mapping networking applications onto
network processing architectures.

5.1 Applications
The most salient trend with respect to applications is the increase in data rates. This impacts
all segments of the network processor market as the hunger for bandwidth comes from the
very edge of the network, individual nodes. As individual nodes demand more bandwidth,
they push on all classes of network devices, access, edge, and core. With data rates
increasing at a super-Moore’s Law rate, every 12-18 months each segment must a data rate
more than double what it previously supported. Today, the core devices support 2.5Gbps,
the next generation will have to support 10Gbps, or even 40Gbps. While core devices must
support the fastest data rates, edge devices usually lag them by one generation. Likewise,
access devices lag edge devices by a generation.

Networking applications appear to be moving in a couple directions. First, they tend to
break the traditional OSI stack model. Often, higher layer information is used to make
lower layer decisions. For example, a “web switch” or a URL load balancer uses TCP ports
and/or HTTP protocol information to determine which server to route requests to. Since
higher layer protocols/applications change rapidly and are difficult to predict (e.g. the rise of
peer-to-peer), it is important for network processors to not focus on supporting a single
protocol, but rather be able to implement many different ones.

The move to IPv6 will have profound differences on lookup implementations, as IPv6
addresses are 128 bits long (compared to 32-bit IPv4 addresses). Since many applications
require lookup on multiple fields, lookups of >300-bit keys will become common.
Currently, the largest third-party co-processors can only handle 288 bits (that too, for only a
small number of entries). IPv6 also requires supporting the IPSec protocol. This will
require implementations for various encryption and authentication algorithms, which are
extremely computationally intensive. These changes will require NPs to not only support
higher data rates, but also an increasing amount of computation.

The accelerating adoption of MPLS as an interoperability standard between various core
protocols like Ethernet, SONET, Frame Relay, and ATM will require network processing
systems to support all the control protocol processing required for Label Switch Routers. It
is unclear if a standard control processor (i.e. general-purpose processor) will be able to
support this.

5.2 Architecture
To date, network processors have exhibited great architectural diversity. Based on changing
application requirements, Moore’s Law increases, and the analysis in Section 4.2, we predict
architectural changes in network processing systems. Specifically, we examine the increasing
importance of parallel processing, co-processors, and communication architectures.

 Page 67 of 89

Understanding Network Processors

Parallel Processing
While Figure 38 and Figure 39 may give the impression that many network processors are
already highly parallel, we note that many of them have not yet been released. Consider the
highly parallel network processors of Figure 38: EZchip’s 64 processing element NP-1 and
Cognigine’s 16 PE 4-issue processor are scheduled to sample later this year. Xelerated
Packet Device’s 12 PE device is not due until the second quarter of 2002. Likewise, many of
the highest MIPS network processors of Figure 39 are not in full production either.

A major aspect of the future of the parallel processing of network processors is their ability
to scale to higher data rates of the future. Many of the older network processors will benefit
more from technology scaling as they are currently achieving their performance with an old
process technology. For example, Intel is using a 0.28µ process technology for their
IXP1200. Moving to a 0.13µ process technology should enable them to double their clock
rate (at least). On the other hand, Broadcom’s Mercurian is already implemented in 0.15µ
process and runs at 1GHz. It is unlikely they will get much improvement moving to 0.13µ.
Since data rates continue to rise faster than Moore’s Law, advances in process technology
will not be enough. The scalability of architectures will also play a role. Scalar architectures
like those of Alchemy and Conexant will require major redesign. To achieve more
parallelism, wide issue architectures (like the 10-issue CNP810SP from Clearwater
Networks) will struggle as adding extra functional units reaches the point of diminishing
returns.

Rise of Co-processors
The rise of co-processors represents a shift from ASIPs towards ASICs (see Figure 1). In
this section, we examine the impact of the two types of network co-processors, integrated
and external. Integrated co-processors are tightly coupled to the processing elements of a
network processor. Their functionality may be either algorithm-specific or task/kernel
specific. External co-processors are third party developed blocks that are specific to
particular networking tasks. Since these devices must work with a variety of NPs, they are
interfaced through a bus or memory mapped. This is an exploding field that has yielded
almost as network co-processor companies as NP companies.

The increasing use of co-processors raises a couple of issues. First, co-processors are less
programmable than network processors. Since most of the functionality of a co-processor is
hard-wired, the future use of the device is limited (for in the field software upgrades to
support new protocols or applications, for example). In addition, the widespread use of
external co-processors makes it difficult to develop software for networking processing
systems. Since there is no standard application-level interface for co-processors, each of
them has a different mode of interaction.

Second, the use of external network co-processors increases overall system cost. Since most
network processors and co-processors are not available as IP, a network processing systems
with external co-processors will likely be composed multiple chips. This not only increases
system power consumption, but also requires a larger printed circuit board area (which is
directly related to cost). The rise in adoption of external co-processors is not allowing
network processing systems to take advantage of silicon integration that technology scaling
provides.

 Page 68 of 89

Understanding Network Processors

By extrapolating from the current use of co-processors, we can imagine a network
processing system consisting of co-processors for pattern matching, lookup, queue
management, security, and packet manipulation controlled by a general-purpose processor.
Writing a networking application for this device will mostly be a series of calls to these co-
processors. The “network processor” will be little more than a controller. This solution also
provides little flexibility to adapt to future changes in protocols or applications. We would
expect these solutions to be used only for performance critical applications, like core devices.

Communication Architectures
While processing packets faster with increased parallelism will be important in the future, the
increased integration of future network processors will place a larger burden on the
communication fabric that connects various on-chip components. As more processing
elements, co-processors, and memories are integrated on a chip, simple buses and local
connection schemes that are used to connect a handful of elements will not be sufficient.
Interconnect schemes that scale to 128 or 256 components will have a distinct advantage.

The complexity of these schemes will likely increase communication latency; effective means
to hide this latency will also be important. BRECIS’s communication architecture has taken
an interesting approach of mapping application characteristics directly to their bus
architecture. Their bus supports three priority levels, which correspond to the three types of
packets their device processes: voice, data, and control. This allows programmers to handle
the different latency and throughput requirements of these packet types.

5.3 Mapping Applications onto Architectures
As more programmable solutions for networking emerge, the importance of software will
only increase. The current method of ASIP design is for some architects to build a device
for a particular application space using their own knowledge of that space. Then, they hand
it off to the software team who writes (or attempts to write) a compiler for it. This hides
many of the design decisions and relies on the judgment capabilities of the architect.
Instead, an approach that couples hardware and software together and evaluates trade-offs
of particular implementations will emerge. The result is an architecture for a particular
application domain along with a method to map software to this architecture. Vissers et al
[72] [73] have demonstrated this approach for multimedia processors at Trimedia. The
MESCAL [74] research group is developing methodologies and tools to support this
approach for future designs.

Recently, a few networking software companies have started targeting network processors,
reflecting the importance of software in the end system. However, many of the network
software companies deliver a solution in C and presume the presence of operating systems
like Linux, FreeBSD, or VxWorks (e.g. Trillium, IPinfusion). Nortel’s Open IP
Environment provides a framework and building blocks (modules) for developing
networking applications. These modules are implemented in C/C++ and communicate via
a well-defined APIs. Modules for most IP protocols has already been built and many
network processor companies have partnered with Nortel on this effort including IBM,
Intel, Motorola, and Vitesse [75]. In addition, the Network Processing Forum, an industry

 Page 69 of 89

Understanding Network Processors

consortium, is also developing standard software interfaces to network processors. Their
API will not be released until the fourth quarter of 2001 [76]. It is unclear whether either of
these will succeed, as the efficiency of the mapping these APIs onto various NPs must first
be demonstrated.

Teja Technologies has taken an interesting angle by developing a “network processor
operating system.” Their flagship product provides a higher level of abstraction for
designing networking applications. This allows application designers to design and modify
applications independent of the target architecture. The basic elements of this abstraction
are servers (compute elements) and queues that interact using communicating finite state
machines. In addition, they allow designers to specify memory layout of packets. From this
abstract application representation, they generate scheduling and computational code for
network processors. Currently, Teja only supports code generation for Intel’s IXP1200.
Since a code generator of a network processor is a substantial effort, the manifold of
network processors on the market severely hampers the scalability of this approach.

Companies that are known for developing DSP (Digital Signal Processor) compilers have
also developed compilers for network processors. For example, Connected Components
Corporation wrote a compiler for Applied Micro Circuits’ nP7000 and Cisco’s PXF. Green
Hills is currently developing a compiler for Clearwater Network’s network processor.

 Page 70 of 89

Understanding Network Processors

6 Conclusions
In this report, we’ve surveyed and evaluated the diverse field of network processors. Since
network processors are “application-specific,” we first explored networking applications.
After analyzing these applications, we extracted some common networking tasks. These
kernels provided a sort of “benchmark” by which to compare the functionality of different
network processors.

We then surveyed in detail many network processors on the market in addition to those
scheduled to be released. For each network processor, we examined their architecture,
programmability, implementation details, and announced design wins. To better understand
the numerous NP offerings, we synthesized this “raw data” along many axes. We identified
and described different market segments of networking equipment (access, edge, and core).
We then plotted the timeline, parallel processing features, specialized hardware, and latency
hiding capabilities of network processor architectures. Combining this with their various
programmability aspects results in our conclusions regarding what target markets network
processors are best suited for.

The analysis used in reaching these conclusions also helps us identify future trends of the
network processor market. The increasing data rate requirements across all market segments
will force higher throughput. The ever-changing networking applications will reinforce the
programmability of network processors. The move to 128-bit IPv6 address will have
profound effect on access to memory and table lookup functions. On the architecture front,
our analysis raises more questions than it does answers:
· What is the right mix of processing element and functional unit parallelism?
· How will the increasing use of co-processors affect network processor architectures?
Will future network processors be merely a collection of co-processors coordinated by a
controller? What about the lack of flexibility of such an approach?
· How will on-chip communication architectures adapt to the increasing number of
processing elements, co-processors, memories, and peripherals they must connect?

While much of the industry has focused on the hardware side of the system, what about the
software side? The complexities of these architectures make them very difficult for
programmers to think about, let alone to provide effective high-level language support for.
While C/C++ compilers exist for many network processors, performance critical code will
continue to be written in assembly. Is there a common programming model that can be
used to target multiple network processors (much like C is to general-purpose processors)?
Will this software difficulty force future architectures to be much more programmable?

As stated in the introduction, the emergence of network processors is part of a broader
paradigm shift from ASICs to ASIPs. Networking is a great example of where
programmable solutions have an advantage over hardwired solutions; the changing standards
and applications require flexibility, and the increasing data rate requirements push for faster
performance and for fast time-to-market. Being a leading example of the move to
programmable systems, we can learn a great deal from their maturation process and apply
this to other application areas beginning this shift.

 Page 71 of 89

Understanding Network Processors

7 Web Sites
The following is a list of relevant web sites as of July 23, 2001.
· Network Processors

o AGERE: http://www.agere.com/
o Alchemy Semiconductor, Inc.: http://www.alchemysemi.com/
o Allayer: http://www.allayer.com/
o Bay Microsystems: http://www.baymicrosystems.com/
o Brecis Communications: http://www.brecis.com/
o C-Port Corporation, A Motorola Company: http://www.cportcorp.com/
o Cisco: http://www.cisco.com/
o ClearSpeed (formerly PixelFusion): http://www.clearspeed.com/
o Clearwater Networks (formerly XStream Logic Devices):

http://www.clearwaternetworks.com/
o Cognigine: http://www.cognigine.com/home.html
o Entridia Corporation: http://www.entridia.com/
o EZchip: http://www.ezchip.com/
o IBM Networking Technology:

http://www.chips.ibm.com/products/wired/communications/network_pro
cessors.html

o IP Semiconductors A/S: http://www.ipsemiconductors.com
o Intel(R) Networking and Communications Building Blocks:

http://developer.intel.com/design/network/INDEX.HTM
o ishoni Networks: http://64.35.17.187/index.asp
o Lexra: http://www.lexra.com/
o Maker Communications, Inc. (now Conexant): http://www.maker.com/
o MMC Networks, Inc. (now Applied Micro Circuits):

http://www.mmcnet.com/
o Navarro Networks: http://www.navarronetworks.com/
o Onex Communications: http://www.onexaco.com/
o PMC-Sierra TT1 Chip Set:

http://www.pmcsierra.com/products/details/pm9311/
o SiByte Inc. (now Broadcom): http://www.sibyte.com/
o Silicon Access Networks: http://www.siliconaccess.com/
o SiTera (now Vitesse): http://www.sitera.com/
o Xelerated Packet Devices: http://www.xelerated.com/

· Network Co-processors
o Acorn Networks: http://www.acornnetworks.com/
o Chrysalis-ITS: http://www.chrysalis-its.com/
o Fast-Chip: http://www.fast-chip.com/
o Hifn: http://www.hifn.com/
o Lara Networks (now Cypress Semiconductor):

http://www.laranetworks.com/home.html
o NetLogic Microsystems: http://www.netlogicmicro.com/
o Orologic (now Vitesse): http://www.oro-logic.com/
o Solidum Systems: http://www.solidum.com/home.cfm

 Page 72 of 89

http://www.agere.com/
http://www.alchemysemi.com/
http://www.allayer.com/
http://www.baymicrosystems.com/
http://www.brecis.com/
http://www.cportcorp.com/
http://www.cisco.com/
http://www.clearspeed.com/
http://www.clearwaternetworks.com/
http://www.cognigine.com/home.html
http://www.entridia.com/
http://www.ezchip.com/
http://www.chips.ibm.com/products/wired/communications/network_processors.html
http://www.ipsemiconductors.com/
http://developer.intel.com/design/network/INDEX.HTM
http://64.35.17.187/index.asp
http://www.lexra.com/
http://www.maker.com/
http://www.mmcnet.com/
http://www.navarronetworks.com/
http://www.onexaco.com/
http://www.pmcsierra.com/products/details/pm9311/
http://www.sibyte.com/
http://www.siliconaccess.com/
http://www.sitera.com/
http://www.xelerated.com/
http://www.acornnetworks.com/
http://www.chrysalis-its.com/
http://www.fast-chip.com/
http://www.hifn.com/
http://www.laranetworks.com/home.html
http://www.netlogicmicro.com/
http://www.oro-logic.com/
http://www.solidum.com/home.cfm

Understanding Network Processors

o SwitchCore: http://www.switchcore.com/
o ZettaCom: http://www.zettacom.com/

· Embedded Network Software
o Connected Components Corp.: http://www.concmp.com/
o GreenHills Software: http://www.ghs.com/
o Teja Technologies: http://www.teja.com/
o Trillium: http://www.trillium.com/

· Other Resources
o EE Times: http://www.eetimes.com/
o The Linley Group: http://www.linleygroup.com/
o Network Processing Forum: http://www.npforum.org/
o NPC 2001 Network Processors Conference:

http://www.networkprocessors.com/

 Page 73 of 89

http://www.switchcore.com/
http://www.zettacom.com/
http://www.concmp.com/
http://www.ghs.com/
http://www.teja.com/
http://www.trillium.com/
http://www.eetimes.com/
http://www.linleygroup.com/
http://www.npforum.org/
http://www.networkprocessors.com/

Understanding Network Processors

8 Acronym Dictionary
AAL – ATM Adaptation Layer OS – Operating System
AH – Authentication Header OSI – Open System Interconnect
ARP – Address Resolution Protocol P2P – Peer-to-Peer
ASIC – Application Specific Integrated Circuit PDU – Packet Data Unit
ASIP – Application Specific Instruction Processor PE – Processing Element
ATM – Asynchronous Transfer Mode PHB – Per-Hop Behavior
BA – Behavior Aggregate POS – Packet over SONET
CMTS – Cable Modem Termination System QoS – Quality of Service
CoS – Class of Service RFC – Request For Comments
CPI – Common Part Indicator RSVP – Resource Reservation Setup Protocol
CRC – Cyclic Redundancy Check RTSP – Real Time Transport Protocol
DSCP – Differentiated Services codepoint SA – Security Association
DSM – Deep Sub-Micron SAR – Segmentation & Reassembly
DSP – Digital Signal Processor SFU – Special Functional Unit
ESP – Encapsulating Security Payload SLA – Service-Level Agreement
FPGA – Field Programmable Gate Array SMT – Simultaneous Multi-Threading
FU – Functional Unit SPI – Security Parameters Index
GPP – General-Purpose Processor SSL – Security Socket Layer
HTTP – HyperText Transfer Protocol TCA – Traffic Conditioning Agreement
IDE – Integrated Development Environment TCP – Transmission Control Protocol
ILP – Instruction-Level Parallelism TOS – Type Of Service
IP – Internet Protocol TTL – Time-To-Live
IPSec – Internet Protocol Security TTM – Time-To-Market
IPv4 – Internet Protocol Version 4 UDP – User Datagram Protocol
IPv6 – Internet Protocol version 6 URL – Uniform Resource Locator
LAN – Local Area Network UU – User-to-User
LER – Label Edge Router VC – Virtual Circuit
LPM – Longest Prefix Match VCI – Virtual Circuit Identifier
LSR – Label Switch Router VLAN – Virtual Local Area Network
MAC – Media Access Control VLIW – Very Long Instruction Word
MF – Multi-Field VoIP – Voice over IP
MIPS – Millions of Instructions Per Second VP – Virtual Path
MPLS – Multi-protocol Label Switching VPI – Virtual Path Identifier
MTU – Maximum Transmission Unit VPN – Virtual Private Network
NAT – Network Address Translation WFQ – Weighted Fair Queuing
NP – Network Processor

 Page 74 of 89

Understanding Network Processors

9 References
All URLs are as of July 23, 2001.

[1] K. Keutzer. “Enabling Fully Programmable Embedded System Solutions.”
Presentation. Gigascale Silicon Research Center Annual Review. December 1999.
[2] Agere, Inc. “The Challenge for Next Generation Network Processors.” White Paper.
Agere, Inc. September 10, 1999.
[3] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley.
January 1994.
[4] A. Tanenbaum. Computer Networks. Prentice Hall PTR. January 1996.
[5] M. Rose. The Open Book: A Practical Perspective on OSI. Prentice-Hall. 1990.
[6] P. Loshin. Essential ATM Standards: RFCs and protocols made practical. John Wiley & Sons.
2000.
[7] Cisco Systems. “Cisco VLAN Roadmap.” April 15, 1999. Available at
http://www.cisco.com/warp/public/538/7.html.
[8] D. Passmore and J. Freeman. “The Virtual LAN Technology Report.” Available at
http://www.sunset.ch/~bro/vlan/3com/vlan.html.
[9] E. Rosen, A. Viswanathan, R. Callon. Multiprotocol Label Switching Architecture;
RFC3031. Internet Request for Comments. January 2001.
[10] D. Comer, D. Stevens. Internetworking with TCP/IP Volume II. Prentice Hall. 1994.
[11] R. Braden. Requirements for Internet Hosts -- Communication Layers; RFC1122.
Internet Request for Comments. October 1989.
[12] S. Deering, R. Hinden. Internet Protocol, Version 6 (IPv6) Specification; RFC2460.
Internet Request for Comments. December 1998.
[13] J. C. Bays. “The Complete PATRICIA.” PhD thesis, University of Oklahoma, 1974.
[14] C. Partridge. Using the Flow Label Field in IPv6; RFC1809. Internet Request for
Comments. June 1995.
[15] N. Doraswamy and D. Harkins. IPSec: the new security standard for the Internet, intranets, and
virtual private networks. Prentice Hall. 1999.
[16] N. Deshpande. “TCP Extensions for Wireless Networks”. Available at
ftp://ftp.netlab.ohio-state.edu/pub/jain/courses/cis788-99/tcp_wireless.pdf
[17] K. Egevang, P. Francis. The IP Network Address Translator (NAT); RFC1631. Internet
Request for Comments. May 1994.
[18] Alteon Web Systems. “The Next Steps In Server Load Balancing.” White Paper.
November 1999.
[19] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. An Architecture for
Differentiated Services; RFC2475. Internet Request for Comments. December 1998.
[20] K. Nichols, S. Blake, F. Baker, D. Black. Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers; RFC2474. Internet Request for Comments. December
1998.
[21] R. Braden, D. Clark, S. Shenker. Integrated Services in the Internet Architecture: an
Overview; RFC1633. Internet Request for Comments. June 1994.
[22] Linley Gwenap. “Net processor makers race toward 10-Gbit/s goal.” EE Times. June
19, 2000. Available at http://www.eetimes.com/story/OEG20000619S0011.
[23] Lucent Technologies. “PayloadPlus Functional Programming Language.” Preliminary
Product Brief. Lucent Technologies, Microelectronics Group. April 2000.

 Page 75 of 89

http://www.cisco.com/warp/public/538/7.html
http://www.sunset.ch/~bro/vlan/3com/vlan.html
ftp://ftp.netlab.ohio-state.edu/pub/jain/courses/cis788-99/tcp_wireless.pdf
http://www.eetimes.com/story/OEG20000619S0011

Understanding Network Processors

[24] Lucent Technologies. “PayloadPlus Fast Pattern Processor.” Preliminary Product
Brief. Lucent Technologies, Microelectronics Group. April 2000.
[25] Rothfus, Eric J. “The Case for a Classification Language.” Agere White Paper. Sept 10,
1999.
[26] Lucent Technologies. “PayloadPlus Routing Switch Processor.” Preliminary Product
Brief. Lucent Technologies, Microelectronics Group. April 2000.
[27] Lucent Technologies. “PayloadPlus Software Development Environment”,
Preliminary Product Brief, Lucent Technologies, Microelectronics Group, April 2000.
[28] Lucent Technologies. “PayloadPlus Agere System Interface”, Preliminary Product
Brief, Lucent Technologies, Microelectronics Group, April 2000.
[29] Alchemy Semiconductor, Inc. “The Alchemy Au1000 Internet Edge Processor.”
Product brief. 2000.
[30] MMC Networks. “nP Family.” Data Sheet.
[31] MMC Networks. “EPIF-200 Packet Processor Product Overview.” Data Sheet.
[32] Loring Wirbel. “Network processor handles mix of carrier services.” EE Times.
September 18, 2000.
[33] Michael Ngo. “Introducing the BRECIS Multi-Service Processor™.” Presentation.
Network Processor Forum. June 14, 2001.
[34] BRECIS Communications. “MSP5000 Multi-Service Processor.” Product Brief. May
2001.
[35] SiByte. “SB-1250.” Data Sheet. October 2000.
[36] SiByte. “SB-1 CPU.” Fact Sheet. October 2000.
[37] Linley Gwennap. “SiByte net processor shoots for control.” EE Times. October 9,
2000. Available at http://www.eetimes.com/story/OEG20001009S0031.
[38] Robert Stepanian. “SiByte SB-1 MIPS64 CPU Core.” Presentation. June 13, 2000.
[39] Cisco Systems. “Parallel eXpress Forwarding in the Cisco 10000 Edge Service Router.”
White Paper. October 2000.
[40] Narendra Sankar. “CNP810™ Network Services Processor Family.” Presentation.
Network Processor Forum. June 14, 2001.
[41] Mario Nemirovsky. “Simultaneous Multithreading Architectures: Enabling the Next-
Generation Internet.” Presentation. XStream Logic Devices. 2000.
[42] Rupan Roy. “A Monolithic Packet Processing Architecture Monolithic Packet
Processing Architecture.” Presentation. Network Processor Forum. June 14, 2001.
[43] Maker. “MXT4400: Traffic Stream Processor.” Product Brief. 1999.
[44] EZchip Technologies. “7-Layer Packet Processing: A Performance Analysis.” White
paper. July 2000.
[45] EZchip Technologies. “Network Processor Designs for Next-Generation Networking
Equipment” White paper. December 1999.
[46] EZchip Technologies. “EZchip Technologies Software Development Suite Now
Available For Its 10-Gigabit 7-Layer Network Processor.” Press Release. January 17, 2001.
[47] EZchip Technologies. “EZchip Technologies: 10-Gigabit 7-Layer Network
Processors.” Corporate Presentation. Available at http://www.ezchip.com/.
[48] EZchip Technologies. “EZchip Technologies And IBM Sign Network Processor
Technology Deal.” Press Release. November 1, 2000.
[49] EZchip Technologies. “Avaya Chooses EZchip's 10-Gigabit, 7-Layer Network
Processor for its Next Generation Routing Switches.” Press Release. May 7, 2001.

 Page 76 of 89

http://www.eetimes.com/story/OEG20001009S0031
http://www.ezchip.com/

Understanding Network Processors

[50] IBM Corp. “IBM Network Processor (IBM32NPR161EPXCAC100).” Product
Overview. November 1999.
[51] Jayant Mathew. “IBM Ropes In Partners for Network Processors.” Electronic News
Online. May 15, 2000.
[52] Bernard Cole. “Intel net processor boosts clock, adds C compiler.” EE Times.
February, 20, 2001. Available at http://www.eetimes.com/story/OEG20010220S0029.
[53] Jayant Matthew. “Network Processor Companies Face the Same Tough Issues.”
Electronic News Online. July 17, 2000. Available at
http://www.electronicnews.com/enews/Issue/RegisteredIssues/2000/07172000/z24f-
1.asp
[54] Craig Matsumoto. “CloudShield pushes net processors to next performance level.” EE
Times. June 26, 2001. Available at http://www.eet.com/story/OEG20010625S0088.
[55] Linley Gwennap. “Lexra offers NetVortex net processor as licensable core.” EE
Times. June 12, 2000. Available at http://www.eetimes.com/story/OEG20000610S0001.
[56] Paul Alexander, Robert Gelinas, W. Patrick Hays, Sol Katzman, William J. Dally.
“NetVortex: A Scalable, Multiprocessor for Network Communications.” Presentation.
Embedded Processor Forum. June 14, 2000.
[57] Bob Gelinas, Paul Alexander, Charlie Cheng, W. Patrick Hays, Ken Virgile, William J.
Dally. “NVP: A Programmable OC-192c Powerplant.” Presentation. Network Processor
Forum. June 14, 2001.
[58] Motorola Corp. “C-5 Digital Communications Processor.” Product Brief. May 4, 2000.
[59] D. Husak. “Communication Processors: a definition and comparison.” White paper.
Motorola Corp. May 3, 2000.
[60] David Husak & Robert Gohn. “Network Processor Programming Models: The Key to
Achieving Faster Time-to-Market and Extending Product Life.” White Paper. Motorola
Corp. May 4, 2000.
[61] Motorola Corp. “C-Ware Software Toolset.” Product brief. May 2, 2000.
[62] Quantum Effect Devices. “QED RISCMark.” Product Sheet.
[63] SiTera. “Intelligent Network Processing.” Network Processor Brochure. 1999.
[64] SiTera Corp. “PRISM IQ2000.” Product Brief. February 2000.
[65] SiTera Corp. “Ushering in a New Era of Performance & Flexibility.” Presentation.
April 2000.
[66] Peter Glaskowsky. “Network Processors Multiply.” Microprocessor Report. Jan 29,
2001.
[67] Thomas Eklund. “The World’s First 40Gbps (OC-768) Network Processor.”
Presentation. Network Processor Forum. June 14, 2001.
[68] Xelerated Packet Devices. “Xelerator™ X40 Packet Processor.” Preliminary Product
Brief. June 2001.
[69] Xelerated Packet Devices. “Xelerator™ T40 Traffic Manager.” Preliminary Product
Brief. June 2001.
[70] Mel Tsai. Personal Communication. 2001.
[71] Linley Group. “IXP1200 Enhancements Include Compiler.” Article. February 19,
2001.
[72] J.T.J. van Eijndhoven, F.W. Sijstermans, K.A. Vissers, E.J.D. Pol, M.J.A. Tromp, P.
Struik, R.H.J. Bloks, P. van der Wolf, A.D. Pimentel, H.P.E. Vranken. “TriMedia CPU64
Architecture.” ICCD 1999, International Conference on Computer Design, October 10-13, 1999,
Austin Texas.

 Page 77 of 89

http://www.eetimes.com/story/OEG20010220S0029
http://www.electronicnews.com/enews/Issue/RegisteredIssues/2000/07172000/z24f-1.asp
http://www.electronicnews.com/enews/Issue/RegisteredIssues/2000/07172000/z24f-1.asp
http://www.eet.com/story/OEG20010625S0088
http://www.eetimes.com/story/OEG20000610S0001

Understanding Network Processors

[73] G.J. Hekstra, G.D. La Hei, P. Bingley, F.W. Sijstermans. “TriMedia CPU64 Design
Space Exploration.” ICCD 1999, International Conference on Computer Design, October 10-13,
1999, Austin Texas.
[74] K. Keutzer, S. Malik, R. Newton, J. Rabaey and A. Sangiovanni-Vincentelli. “System
Level Design: Orthogonalization of Concerns and Platform-Based Design.” IEEE
Transactions on Computer-Aided Design of Circuits and Systems, Vol. 19, No. 12, December 2000.
[75] Nortel Networks. “Open IP Environment.” Product brochure. November 2000.
[76] Network Processing Forum. “Network Processing Forum Unveils Specifications
Roadmap.” Press Release. April 30, 2001.

 Page 78 of 89

Understanding Network Processors

Appendix

A. Detailed Network Processor Summary
The following spreadsheets summarize the architectures of the network processors
presented across multiple categories: micro-architecture, architecture, memory, software
support, and physical implementation.

Note: many of these network processors are still in the development phase. As a result, some of the details of
these products are not available, especially regarding software support and physical implementations.

Micro-Architecture
We summarize the micro-architectures of the NPs described in this section in Table 7.
Definitions and implications of the categories used to compare micro-architectures are given
below:
· Task-based – Does this NP have any hardware for specific tasks? These are often co-
processors or special functional units (FUs).

Since many of the tasks involved in network processing are quite specific, specialized hardware can
be used to speed up common operations (relative to a software implementation). The functions of
task-based hardware employed is a good indicator for what types of processing an NP is targeted
towards.

· Special instructions – What kind of special instructions does this NP have, if any?
These instructions may be interfaces to special FUs, co-processors, or other pieces of
hardware (e.g. CAMs).

Special instructions are an interface to specialized hardware. This gives an indication of how the
software programmer can take advantage of this hardware.

· Number of active contexts – How many different contexts (either threads or
processes) can be physically executing at a time?

This counts the number of program counters on the NP. The number of active contexts gives an
idea for how many independent executing entities there are.

· Number of contexts per active contexts – For each active context, there is hardware
support for how many contexts to exist?

Since many NPs have hardware support for multiplexing resources across contexts and fast
switching between them, we only include the number of contexts that hardware can efficiently support.
With the appropriate operating system software, many of these devices can support an infinite
number of contexts. However, switching between them would be prohibitively slow, as the entire state
of the machine would have to be stored to memory and another one loaded from memory.

 Page 79 of 89

Understanding Network Processors

Task-based Special Instructions
of Active
Contexts

of Contexts
per Active
Context

Agere (PayloadPlus)

- FPP: pattern matching on a frame
- RSP: packet manipulation, traffic
management
- ASI: "slow path" processing

Yes, for traffic
management, QoS/CoS,
and packet modifications 3 64 for the FPP

Alchemy
None

Yes, but very generic -
conditional moves, count
leading 0s/1s. 1 1

BRECIS
Communications
(MSP5000) ADPCM, CRC, security co-processors Yes, for DSP 3 1
Broadcom (Mercurian
SB-1250) 2 packet FIFOs None 2 1

Cisco (PXF/Toaster 2)
None Yes at least 32

ClearSpeed

Table Lookup Engine None

1 per MTAP;
variable number
of MTAPs

up to 32 per
MTAP

Clearwater Networks
(CNP810SP) Packet Management Unit Yes 8 1

Cognigine
None

Yes, variable (based on
application) 16 4

Conexant (CX27470
Traffic Stream
Processor)

Channel Descriptor Lookup Engine and
Packet/Command Engine map packets to
SW processes Yes 1 multiple

EZchip (NP-1)

· Parse: identifies and extracts packet
headers and protocols
· Search: performs lookups
· Resolve: assign packet to appropriate
queue and/or port
· Modify: modifies packet contents

Yes, the ISA of each
TOP is customized to a
set of tasks

IBM (PowerNP) Hardware coprocessor accelerates tree
searching and frame manipulation Yes 16 2

Intel (IXP1200)
Specialized functional units for hashing and
queue management Yes 6 4

Lexra (NetVortex &
NVP) None Yes 2

configurable
from 1-8

Applied Micro Circuits
(nP) Policy Engine and Search Engine Yes up to 8 8

Motorola (C-5 DCP)

· Fabric processor: for using multiple C-5’s
· Table lookup unit
· Queue management
· Buffer management: fast, flexible memory
management Yes, accessed via CPI 16 1

PMC-Sierra
None

Yes, for DSP and
networking 2 1

Vitesse (PRISM IQ2000) Network co-processors for packet
processing for classification, lookups, and
QoS/CoS priority checking Yes 4 5

Xelerated Packet
Devices (X40 & T40)

Meters, counters, WRED,
Fragmentation/Reassembly

Yes, packet-based
instruction set

10 for X40, 2 for
T40 1

Table 7. Micro-architectural Comparison of NPs.

 Page 80 of 89

Understanding Network Processors

Architecture
To summarize the architectures of different NPs, we use the following axes:
· Central control – Does this NP have a central control processor? If so, what is it?

Control-plane operations are very diverse and often quite complicated. As a result, they are often
executed on a general-purpose processor to take advantage of HLL tool support (i.e. compiler and
debugger). Given the coupling between control and data-plane operations, it would be advantageous
have a control processor integrated with the packet processors.

· Multi-PE – Does this NP employ multiple PEs? If so, what kinds?
Multiple processors can be used to take advantage of the inherit parallelism involved in datagram
processing. How different NPs use multiple PEs has an impact on their overall performance.

· Inter-PE communication structure – What does the NP use to communicate with
various PEs, co-processors, and memory.

Although there is a lot of inherent parallelism in network processing, communication between
different hardware elements (especially memory) is paramount to an efficient implementation.

· Interfaces – What kind of interfaces does this NP support?
The interfaces an NP supports indicates the ease of integrating this device into an overall system.

 Page 81 of 89

Understanding Network Processors

Table 8. Architectural Comparison of NPs.

Central control Multi-PE

Inter-PE
communication
structure Interfaces

Agere (PayloadPlus)
ASI

3 (FPP, RSP - which has 3
VLIW compute engines,
ASI)

Functional Bus
Interface to connect
FPP/ASI

UTOPIA Level 2/3,
POS-PHY Level 3, MPI,
FBI, CBI, PCI

Alchemy Yes. Single 32-bit
MIPS processor No N/A

2 Ethernet controllers,
IrDA, USB

BRECIS Communications
(MSP5000)

MIPS R4KM
2 LSI ZSP400s - 4 issue
superscalars

Multi-Service Bus
Architecture -
3.2Gbps b/w, 3
priorities

2 10/100 Ethernet
MACs, UTOPIA 2, 128
channel TDM

Broadcom (Mercurian SB-1250)
None 2 64-bit MIPS CPUs; 4 issue

256 bit bus; runs at
1/2 CPU speed

3 On-chip Gigabit
Ethernet MACs

Cisco (PXF/Toaster 2)
None

32 2-issue VLIWs arranged
in a 4x8 systolic array

ClearSpeed

Depends variable number of MTAPs

ClearConnect bus
connects MTAPs - 50-
200Gbps peak b/w

Clearwater Networks
(CNP810SP)

Simultaneous
MultiThreading, 8
issue superscalar No N/A

Cognigine
None 16 RCUs

RSF - hierarchical
crossbar SPI-4, PCI

Conexant (CX27470 Traffic
Stream Processor) Yes, RISC No N/A UTOPIA, PCI
EZchip (NP-1) None 64 (TOPs)

IBM (PowerNP)
On-chip Power PC
core

16 programmable protocol
processors

40 Fast Ethernet/4Gb
MACs with SMII and
GMII, POS

Intel (IXP1200)

on-chip 200MHz
StrongARM
coordinates system
activities

6 programmable
microengines

Microengines
communicate via Fast
Bus Interface (FBI)

4.2Gb/s 66MHz IX bus,
PCI

Lexra (NetVortex & NVP)
1 control processor

modified RISCs with multi-
threading support

64-bit Vortex bus
running at chip speed

Applied Micro Circuits (nP)

None Yes

Designed to work
with other nP’s,
MMC switch chips,
nP co-processors Fast Ethernet

Motorola (C-5 DCP)

1 executive
processor 16 channel processors

3 internal buses
connect CPs and co-
processors (60Gb/s
aggregate bandwidth)

33/66MHz PCI,
UTOPIA (Level 2 and 3)

PMC-Sierra
None

2 64-bit MIPS compatible
CPUs; Dual issue,
superscalar SysAD interface

Vitesse (PRISM IQ2000)
None

4 CPUs for route processing
and system management

Input and Output
Streaming Busses

Xelerated Packet Devices (X40
& T40)

None

- X40: 10 classifier/PISC
pairs
- T40: 2 classifier/PISC pairs

 Page 82 of 89

Understanding Network Processors

Software Support
With software becoming an increasingly important part of the overall system, it is important
to compare the software support of NPs. We include the following comparisons in Table 9:
· Compilers – Is a compiler, interpreter, and/or assembler available for this device?
What about other development tools, like a debugger, simulator, etc?
· Operating systems – What operating systems have been ported to this device? As an
increasing amount of OS functionality is moved into hardware, the role of an operating
system diminishes.
· Libraries – Many NPs include libraries for common networking applications as well as
APIs for accessing specialized hardware.

 Page 83 of 89

Understanding Network Processors

Compilers
Operating
systems Libraries

Agere (PayloadPlus)
Yes, for FPP,
RSP, and ASI

Application Code Library
with basic wire-speed
classification and forwarding

Alchemy C/C++ compiler
Windows CE,
Linux, VxWorks None

BRECIS Communications
(MSP5000) C/C++ compiler

VxWorks, Linux,
BSD

firmware for common
networking apps

Broadcom (Mercurian SB-1250)

Standard Gnu
C/C++ tool
chain

FreeBSD, Linux,
and VxWorks OS
support

Cisco (PXF/Toaster 2) C compiler IOS

ClearSpeed C compiler

Application development
kit, reference library of
common networking apps

Clearwater Networks
(CNP810SP) C/C++ compiler

Cognigine C/C++ compiler
application library for
common L2-7 functions

Conexant (CX27470 Traffic
Stream Processor)

C Compiler and
Assembler

Modular SW architecture;
Libs for AAL5, AAL2 SAR,
POS

EZchip (NP-1)
C compiler and
Assembler

IBM (PowerNP) Assembler only None

Intel (IXP1200)
C compiler and
Assembler None

Lexra (NetVortex & NVP) C compiler

Applied Micro Circuits (nP) C/C++ compiler Wind River
network software reference
library

Motorola (C-5 DCP) C/C++ compiler
CPI that abstracts common
networking tasks

PMC-Sierra C/C++ compiler Many

Vitesse (PRISM IQ2000) yes
Network software library for
common functions

Xelerated Packet Devices (X40
& T40) C compiler

building blocks for control-
plane processing

Table 9. Comparison of Software Support for NPs.

Memory
We profile the NPs with respect to their memory support in Table 10 based on the following
categories:
· Shared/Distributed – Is the memory shared or distributed (or some combination)
across multiple PEs?
· Size/Type – What is the size and type of any on-chip memory?

 Page 84 of 89

Understanding Network Processors

· Cache size/Associativity – What are the characteristics of any caches that are included
on chip?
· Special features – Any other relevant details or features relating to memory

 Page 85 of 89

Understanding Network Processors

Shared/ Distributed Size/Type
Cache Size/
Associativity Special Features

Agere (PayloadPlus)
Shared between the FPP
and RSP External None

All memory is off chip; supports 64-
bit interface to PC-133 SDRAM
and 133MHz pipelined ZBT-style
SSRAM

Alchemy
16KB instruction
and data cache Prefetch instructions

BRECIS Communications
(MSP5000) Shared External

- 80KB I and D
cache for each ZSP
- 16KB I and D
cache for MIPS

Packet queues in each bus interface;
intelligent DMA engines

Broadcom (Mercurian SB-
1250)

Shared main memory and
L2 Cache; distributed L1
Cache External

32KB L1 for each
CPU; share 512KB
L2 cache 2 Packet FIFOs

Cisco (PXF/Toaster 2)

Vertical slces of pipeline
have access to shared
memory External None

ClearSpeed Distributed among PEs

Per PE: 16-64 byte
register files, 1-
16KB packet
memory

None
Memory controllers to load packets
into packet memory

Clearwater Networks
(CNP810SP) N/A External

64KB I and D
Cache; Dual Ported

Packet Management Unit; 2 address
generation units

Cognigine External
I and D cache per
RCU

Conexant (CX27470 Traffic
Stream Processor) N/A 8KB scratchpad 4KB Instruction Buffer management unit

EZchip (NP-1)
Algorithms that leverage embedded
memory to search external memory

IBM (PowerNP) Distributed

32KB
SRAM/Protocol
Processor (8KB for
instruction
memory) None

Data store co-processor, control
memory arbiter, ingress/egress data
storage

Intel (IXP1200) Shared
4KB SRAM
(ScratchPad) None SRAM Queues; Xmit/Recv FIFOs

Lexra (NetVortex & NVP) Shared External
Block transfer controller, table
lookup unit, packet buffers

Applied Micro Circuits (nP)

Motorola (C-5 DCP)

Accessed by queue mgmt,
table lookup, and buffer
mgmt units External None

Table lookup unit, queue and buffer
management co-processor

PMC-Sierra N/A External

16KB 4-way
associative Instr &
Data Cache; 256
KB L2 cache None

Vitesse (PRISM IQ2000) Shared
Separate bus for lookups; 256-bit
wide bus

Xelerated Packet Devices
(X40 & T40)

Distributed by function -
counter, meter, CAM,
pipeline buffer None

Table 10. Comparison of Memory for NPs.

 Page 86 of 89

Understanding Network Processors

Physical Implementation
Lastly, we summarize the NPs in this report regarding physical implementation. Some these
categories are not relevant or indicative given that some of these NPs are available as soft
cores.
· Process technology – What process technology is being used for this NP?
· Die size
· Core – Is this NP available as a core?
· Speed – Speed of the global clock
· Power – Average power consumption
· Availability – When is this NP available?

Process
technology Die size Core Speed Power Availability

Agere (PayloadPlus) 0.18u 12W Now

Alchemy Yes

266MHz /
400MHz /

500MHz

<300mW /
500mW /

900mW Sampling

BRECIS Communications
(MSP5000) 0.18u 160MHz 2W 3Q01
Broadcom (Mercurian SB-
1250) 0.15u 25mm2 Yes 1GHz 2.5W Sampling
Cisco (PXF/Toaster 2) Cisco internal
ClearSpeed 0.13u 180-295mm2 Yes 400MHz 1H03
Clearwater Networks
(CNP810SP) 0.15u Yes 300MHz 12W 4Q01
Cognigine 0.18u 200MHz 12/01

Conexant (CX27470 Traffic
Stream Processor) 125MHz 4.2W
EZchip (NP-1) 3Q01
IBM (PowerNP) 0.18u Yes 133MHz 20W Now
Intel (IXP1200) 0.28u 200MHz 5W Now

Lexra (NetVortex & NVP) 0.28u 200MHz 5W Sampling

Applied Micro Circuits (nP) 0.18u 165MHz 4W Now
Motorola (C-5 DCP) 0.18u 15W Now
PMC-Sierra 0.18u 400MHz Now
Vitesse (PRISM IQ2000) 0.25u No 200MHz 12W Now
Xelerated Packet Devices
(X40 & T40) 0.13u 4/02

Table 11. Comparison of Physical Implementation for NPs.

B. Applications/Architecture Mapping Table
Table 12 and Table 13 summarize the mapping of application kernels to the architectures
examined in Section 3. The application kernels defined earlier (pattern matching, lookup,
computation, data manipulation, queue management, and control processing) are the basic
operations for a particular packet. However, single packet processing makes poor utilization

 Page 87 of 89

Understanding Network Processors

of network processor hardware (e.g. stalling on memory access). As a result, a network
processing system must simultaneously process multiple packets. To account for this in our
analysis of mapping applications onto architectures, we include network processor features
for multiple packet processing.

able 12. Mapping of Applications onto Architectures (part 1).

pattern matching lookup computation
data
manipulation

queue
management

control
processing

Agere
(PayloadPlus)

64 contexts; 2 issue
VLIW

FPP; Pattern
Processing Engine

CRC/checks
um engine

Stream editor
compute engine

programmable
queues; queue
management
engine

Alchemy
prefetching

few basic special
instructions

few basic special
instructions

BRECIS
Communications
(MSP5000)

Multi-Service Bus, 2
4-issue DSPs

security co-
processor

bus interface has
packet queues MIPS

Broadcom
(Mercurian SB-
1250) 2 64-bit MIPS

CPUs; 4 issue 2 packet FIFOs

device meant
for control
plane

Cisco
(PXF/Toaster 2) 32 2-issue VLIWs

in systolic array special instructions
special
instructions

special
instructions

ClearSpeed multiple MTAPs;
up to 32 threads
per MTAP many 8-bit PEs

Table Lookup
Engine

many 8-bit
PEs many 8-bit PEs

Clearwater
Networks
(CNP810SP) SMT; 10 issue

packet management
unit

special
instructions

packet
management
unit

Cognigine 16 4-issue RCUs, 4
threads each

special instructions
(variable)

special
instructions
(variable)

special
instructions
(variable)

special
instructions
(variable)

Conexant (CX27470
Traffic Stream
Processor)

multiple contexts;
background context
swap

Channel Descriptor
Look-up Engine

special
instructions

Traffic
Scheduling
System; buffer
management

Single Packet Processing FeaturesFeatures for
Multiple Packet
Processing

T

 Page 88 of 89

Understanding Network Processors

pattern matching lookup computation
data
manipulation

queue
management

control
processing

EZchip (NP-1)

4 TOPs, pipelined TOPparse

TOPsearch;
technique to
leverage
embedded
memory to
search TOPmodify TOPresolve

IBM (PowerNP)

16 protocol
processors

Classifier Hardware
Assist

Data store co-
processor; Tree
Search Engine

Checksum co-
processor

Ingress/Egress
Switch Interface

Enqueue and
Policy co-
processors

Counter co-
processor

Intel (IXP1200)
6 micro-engines; 4
threads each with 0-
overhead context
swapping special instructions Hash Engine

special
instructions

Receive/Transm
it FIFOs; queue
interface to
SRAM StrongArm

Lexra (NetVortex
& NVP)

multiple RISCs; 8
threads each with 0-
overhead context
swapping special instructions

Table Lookup
Unit

special
instructions Packet buffer

Control
processor

Applied Micro
Circuits (nP)

up to 6 processors;
0-overhead context
swapping among 8
threads

programmable policy
engine search engine

packet transform
engine

statistics
engine

Motorola (C-5
DCP) 16 channel

processors SDP
Table Lookup
Unit SDP SDP

Queue
Management
Unit

PMC-Sierra

Vitesse (PRISM
IQ2000) 4 scalar RISCs;

share threads classification engine
lookup co-
processor

special
instructions

queue
management co-
processor

Xelerated Packet
Devices (X40 &
T40)

10 stage macro-
pipeline of
classifier/PISC
pairs special instructions

internal CAM,
interface to
external CAM

special
instructions,
HW support for
frag/reass

Queue Engine,
HW support for
WRED

meters,
counters

Single Packet Processing FeaturesFeatures for
Multiple Packet
Processing

Table 13. Mapping of Applications onto Architectures (part 2).

 Page 89 of 89

	Table of Contents
	List of Figures
	List of Tables
	Intended Audience
	Introduction
	What is a Network Processor?
	A Brief History

	A Profile of Network Applications
	Network applications
	Protocol Standards
	Asynchronous Transfer Mode (ATM) Switching
	Virtual Local Area Network (VLAN)
	Multi-Protocol Label Switching (MPLS)
	Internet Protocol Version 4 (IPv4)
	Internet Protocol Version 6 (IPv6)
	IP Security (IPSec)
	User Datagram Protocol (UDP)
	Transport Control Protocol (TCP)

	Gateway Applications
	Wireless TCP/IP
	Network Address Translation (NAT)
	Web “Switch”

	Quality of Service Related Applications
	Usage-based Accounting
	Differentiated Services (DiffServ)
	Integrated Services (IntServ)

	Others applications

	Kernels
	Pattern matching
	Lookup
	Computation
	Data manipulation
	Queue management
	Control processing

	Summary

	Network Processors
	Agere (PayloadPlus)
	Architecture
	Fast Pattern Processor (FPP)
	Routing Switch Processor (RSP)
	Agere System Interface (ASI)

	Implementation
	Cost

	Alchemy (Au1000)
	Architecture
	Programmability
	Implementation

	Applied Micro Circuits, formerly MMC Networks (nP7xxx)
	Architecture
	Programmability
	Implementation
	Cost

	Bay Microsystems
	Architecture
	Programmability
	Implementation

	BRECIS Communications (MSP5000)
	Architecture
	Programming
	Implementation
	Cost

	Broadcom, formerly SiByte (Mercurian SB-1250)
	Architecture
	Programmability
	Implementation

	Cisco (PXF/Toaster 2)
	Architecture
	Programmability
	Implementation

	ClearSpeed, formerly PixelFusion
	Architecture
	Programmability
	Implementation

	Clearwater Networks, formerly XStream Logic Devices (CNP810SP)
	Architecture
	Programmability
	Implementation

	Cognigine
	Architecture
	Programmability
	Implementation

	Conexant, formerly Maker (MXT4400 Traffic Stream Processor)
	Architecture
	Programmability
	Implementation

	EZchip (NP-1)
	Architecture
	Programmability
	Implementation
	Design Wins

	IBM (PowerNP)
	Architecture
	Programmability
	Implementation
	Design Wins

	Intel, formerly Level-One (IXP1200)
	Architecture
	Programmability
	Implementation
	Cost
	Design Wins

	Lexra (NetVortex & NVP)
	Architecture
	NetVortex
	NVP

	Programmability
	Implementation
	NetVortex
	NVP

	Cost

	Motorola, formerly C-Port (C-5 DCP)
	Architecture
	Programming
	Implementation
	Cost
	Design Wins

	PMC-Sierra, formerly Quantum Effect Devices
	Vitesse, formerly SiTera (PRISM IQ2000)
	Architecture
	Programmability
	Implementation
	Cost

	Xelerated Packet Devices (X40 & T40)
	Architecture
	Programmability
	Implementation

	Summary

	Analysis
	Market Segmentation
	Architecture
	Timeline
	Parallel Processing
	Special Hardware
	Integrated Co-processors
	Special Functional Units
	Summary

	Hiding Latency

	Programmability
	Programming Model
	Integrated Development Environment (IDE)
	Operating System (OS)

	Summary

	Looking Forward
	Applications
	Architecture
	Parallel Processing
	Rise of Co-processors
	Communication Architectures

	Mapping Applications onto Architectures

	Conclusions
	Web Sites
	Acronym Dictionary
	References
	Appendix
	Detailed Network Processor Summary
	Micro-Architecture
	Architecture
	Software Support
	Memory
	Physical Implementation

	Applications/Architecture Mapping Table

