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Introduction

The data transmission and signal processing fields have known a tremendous develop-
ment due to the progress of the digital circuits technology. As most natural sources of
information are analog, the analog-digital conversion has become necessary to trans-
form anlog information into digital format. Analog-digital conversion is performed by
discretizing the analog signal first in time then in amplitude.

According to Shannon theorem, The time discretization doesn’t entail any loss of
information if the sampling frequency is more than twice the nyquist rate. However,
the amplitude discretization implies some irreversible loss of information. Therefore,
throughout the last decennies, researches have been conducted in order to produce
ADC with the least possible quantization noise.

Nowadays, Sigma Delta converters are the most qualified converters to meet this
requirement. But the theoretical study of these non linear systems didn’t yield satis-
factory results for designers. Thats’why simulations are still the only method to ensure
sigma delta converters stability.[1]

Sigma Delta modulators are usually simulated using MATLAB/Simulink and the
signal processing toolbox. But as Matlab is an interpreted langage, simulations require
a lot of time. The objective of my engineering internship is then to elaborate a C library
for simulating sigma delta modulators.

After giving a brief presentation of the hosting laboratory, I will begin in the first
chapter of this report by giving an overview of the different converters.Then, the second
chapter presents the ex-theoretical analysis that had been carried out in order to prove
some interesting results about Σ ∆ converters.After that the files’ organiztion of the C
simualtor will be presented in the third chapter. Finally, the last chapter compares the
simulation results of the C simulator with that of the Matlab simulator.
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Presentation of the hosting
laboratory

I have worked in my engineering internship in the ASIM Department of the LIP6 Lab-
oratory.

Presentation of the LIP6 laboratory

The LIP6 Laboratory is founded in January 1997 by the union of three laboratories
which are:

• LAFORIA

• LITP

• MASI

The activities of the LIP6 Laboratory covers a great variety of ingineering fileds like
microelectronics, network and performance analysis, Computer Algebra etc...

The lip6 laboratory has enhanced the creation of 2 centers of research which are:

• CERME(Centre Europen de recherche en Microlctronique)

The Center for European Research in Micro-Electronics (CERME) has been cre-
ated by the Universit Pierre et Marie Curie (UPMC) and the Centre National de
la Recherche Scientifique (CNRS) in january 2002, to support the research in the
field of CAD tools and methods for ”System on Chip” design.

• EURONETLAB

EuronetLab is a joint research laboratory that brings together LiP6 (and, through
it, the Universit Pierre et Marie Curie and the CNRS), the ENST, Thales, and
6WIND.

It has been created to develop solutions adapted to real-world telecommunication
systems.

Presentation of the ASIM department

The ”Architecture des systèmes intégrés et Micro électroniques” departement of the
LIP6 laboratory focuses on the design of highly complex integrated circuits, the devel-
opment of advanced CAD tools for circuits and integrated systems. It has also enhanced
the creation of four startups which are:
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• Tachys Thechnologies

(specialized in providing innovative, high-speed interconnect building blocks for
data communications equipment.)

• AED(created in 1997 by 3 researchers of the ASIM Department)

(Design of integrated circuits)

• AVERTEC(created in 1998 by 5 researchers of the ASIM Department)

(Development of CAO tools)

• Surf technology

(specialized in multimedia indexation)
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Chapter 1

An overview of the different
converters

1.1 The simple quantizer

The diagram of the simple quantizer is depicted below. As it is shown in fig 1.1, the
quantizer can be modelized as an additive noise in the system.[2]

Qinput X(k) output Y(k)
X(k)

E(k)

Y(k)

Figure 1.1: the diagram of the simple encoder

According to Bennett, the quantization noise can be assumed to be a a uniform
white quantization, under the following conditions:[3]

1-the quantizer doesn’t overload
2-the quantizer has a large number of levels
3-the distance between the levels is small
4-the probability distribution of pairs of input samples is given by a smooth proba-

bility density function.
Assuming that the quantization noise is uniformly distributed and uncorrelated with

the input signal (fig 1.2),the variance of the noise is then equal to:

σ2 =
1
∆

Z ∆
2

− ∆
2

q2dq =
∆2

12
(1.1)

where ∆ is the quantization step.[4]
The noise power spectrum density is then equal to:

E( f ) =
σ2

f e
=

∆2

12 f e
(1.2)
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+∆/2−∆/2

1/∆

error probability distribution p(e)

Figure 1.2: the noise distribution

where fe is the sampling frequency. The power in the band of interest is then given by
the next formula:

P =

Z f m

− f m
E( f )d f =

∆2

12OSR
(1.3)

where fm denotes the maximum frequency of the signal and OSR the oversampling
ratio.

OSR =
f e

2 f m
(1.4)

Therefore

P(db) = 10∗ log10(
∆2

12OSR
)

If the encoder samples data at the nyquist rate, adding one bit to the quantizer
devises the quantization step ∆ by 2 and decreases the quantization noise by 6 dB. In
fact

P(db) = 10∗ log10(
∆2

12 f e
)

Therefore, the variation of the noise power is

∆P(db) = −10∗ log10(4) = −6db

However, when operating at the nyquist rate, we need a very high number of com-
ponents of high accuracy in order to achieve high resolution ADC. Furthermore, we
need to use an anti-aliasing filter with a sharp cutoff in ordre to eliminate all signal
components with a frequency higher than the nyquist rate.(fig 1.3)

On the other hand, in oversampled ADCs, the used anti-aliasing filter has in general
a smooth slope, which reduces a lot its design complexity. (fig 1.4)

Besides, the reduction of the noise quantization power can be made possible by
only increasing the oversampling ratio OSR. For example, when doubling OSR, the
quantization noise power is reduced by 3dB. In fact when doubling OSR the variation
of the signal noise is

P(db) = −10∗ log10(2) = −3db

1.2 The sigma delta encoder: the predictive encoder

The principle of the sigma delta converter is to encode the error quantification rather
than the input signal.[2].

Called also the noise shaping encoders, Σ∆ converters have the advantage of push-
ing the signal noise outside of the band of interest.(fig1.5)
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X(f)

-fm fm
f

fe-fe-2fe 2fe

Xp(f)

f

Anti-aliasing filter

(b)

(a)

(c)

f

P(f)

fe 2fe-fe-2fe

fe=2fm

Figure 1.3: Sampling at the nyquist frequency:(a)Signal input spectrum,(b)Spectrum of the sampling
function (c)Spectrum of the sampled signal

-fm

X(f)

f
fm

Xp(f)

f

f

P(f)

0-fe fe

fe-fe

fe >> 2fm

anti_aliasing filter

Figure 1.4: Oversampling: the anti-aliasing filter has a smooth slope
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power spectrum of quantized signal

input signal

quantization noise

in-band noise

frequency ω-ωm ωm

2ωm

ωs

input
signal

quantization noise

power spectrum of quantized signal

in-band
noise

frequency ω-ωm ωm

2ωm

ωs

Figure 1.5: Power spectrum of the output of oversampled A/D conversion. (a) simple encoding (b) Σ ∆
converter

In this report we will focus on the following Σ∆ configurations:
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1. The single loop modulator

The diagram of the single loop modulator is depicted in (fig1.6)

Hint(z)
y(t)

u(t)

Figure 1.6: the diagram of the single loop converter

Examples:

• CIFF(cascade of integrators Feedforward) architecture:(fig1.7)

y(t)a2

−1

a1

R

R

u(t)

Figure 1.7: a second order CIFF architectured sigma delta converter

• CRFF(cascade of Resonators Feedforward):(fig1.8)

−1

r1

a2

a1

R

u(t)
R

Figure 1.8: a second order CRFF architectured sigma delta converter

2. The multi loop modulator

The diagram of the multi loop modulator is depicted in (fig1.9)

Examples:
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a1 a2 ai an

Hint(z) Hint(z) Hint(z)u(t)

Figure 1.9: General diagram of multiloop converter

• CIFB architecture (fig1.10)

a1 a2

y(t)
u(t) α1

R

α2
R

Figure 1.10: A second order CIFB architectured modulator

• CRFB architecture (fig1.11)

a1 a2

y(t)

r1

u(t) α1
R

α2
R

Figure 1.11: A second order CRFB architectured modulator
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A Σ ∆ converter could be then characterized by:

• its order: the order of a Σ ∆ converter is equal to the number of integrators.

• its architecture

• The number of levels of its quantizer

15



Chapter 2

Σ ∆ converters: Theoretical
analysis and techniques of
design

There are two different approachs for the analysis of a sigma delta converter which are

• The linear modelization of the quantizer:

This analysis is based on linearizing Σ ∆ modulators and yields some interesting
theoretical results like the SNR theoretical expression.

• The linear gain model:

Modeling the quantizer as a source of an additive noise isn’t sufficient to predict
the converter stability. Another method based on determining the root locus is
rather used in order to determine whether a sigma delta converter is stable or not.

In the following, we will focus on the description of the first theoretical anlysis.

2.1 The linear modelization of the quantizer

This approach consists in modeling the quantizer as a source of additive noise in the
system. According to this appraoch, The general diagram of a Σ ∆ converter is depicted
in (fig2.1)

The output of the modulator can be then expressed as the sum of two terms, one
containing the input signal, and the other containing the noise:

V (z) = G(z)U(z)+H(z)E(z)

where G and H are respectively the signal and noise transfer functions.
As this diagram shows, the main parts of a Σ ∆ converter are:

• the loop filter: which is a linear system with two inputs U and V, where U denotes
the analog input to the system and V denotes the output of the DAC.

• the quantizer: which is a nonlinear system whose input Y comes from the loop
filter.

16



loop filter

U

V

E

V=GU+HE
Y

L0= G
H

L1=H−1
H

Figure 2.1: a General diagram of single quantizer Σ ∆ converter

The choice of the quantization noise plays a significant role in the achievable per-
formance of the converter.

While the attenuation of the NTF(H(z):noise transfer function) in the band of inter-
est is provided by its zeros, the out of band gain is controlled by its poles. Reducing
the out of band gain improves stability but decreases the signal to noise ratio.

The design requirements for the NTF could be resumed into 3 criteria:

1. system realizability

The loop around the quantizer (H(z)-1) must be strictly causal. This constraint
forces:

limz→+∞H(z) = 1;

2. An important in band noise attenuation:
The Schreier toolbox offers two methods for shaping the quantization noise.

• a direct method: this method considers coincident zeros.
• an optimized method: this method consists in spreading the zeros

across the band of interest. We have considered in the C simualtor
the discrete coefficients returned by Matlab using the direct method.

(a) low pass converters
Using the direct method, The NTF has the next form:

NT F =
(z−1)n

∏i=n
i=1(z− pi)

where pi is the it h pole of the NTF and n is the degree of the modulator.
Thus, for a nth order modulator, we have n degrees of freedom. In order
to reduce the number of degree of freedom to 1, we consider that the NTF
poles are arranged into an inverse chebychev configuration, so that the sin-
gle degree of freedom becomes the cutoff frequency.

(b) pass band converter
For pass band converter, the NTF has the next formula:

NT F =
(z−2π f 0)n

∏i=n
i=1(z− pi)

17



where pi is the ith pole of the NTF, n is the degree of the modulator and f0
is the center frequency for the modulator.

3. system stability

Simulations have been proven that having |H( jw)| < 2 for monobit converters
and 3.5 for multibit converters is necessary to ensure stability.

2.2 Techniques for producing Σ ∆ converters

There are two techniques for producing Σ ∆ converters:

• The first technique consists in using Discrete time circuits: the converter input is
sampled.(fig2.2)

V(z)U(s) Hd(z)

U(z)

T

Figure 2.2: a Discrete time Σ ∆ converter

• The second technique consists in using continuous time circuits: the sampling
operation takes place inside the modulation loop (just before the quantization).(fig2.3)

T

Hc(s)
V(z)U(s)

HDAC(s)

Figure 2.3: a continuous time Σ ∆ converter

Discrete time converters are easier to design and simulate, but they are more
sensitive to sampling errors. In fact, the sampling errors for CT converters are
suppressed by the high gain of the loop in the passband. Therefore, CT converter
can operate at higher sampling rate.[5] CT Σ ∆ converter coefficients could be
determined by applying a transfomation to the DT Σ ∆ converter coefficients.[5]

18



2.3 Determination of the theoretical expression of the
noise’s power

Let’s take the example of a discrete first order modulator. (fig2.4) where E(z) is a

++ +
+

v(n)x(n)
z(n)

E(n)

− +

z−1

Figure 2.4: The linear model of a first order modulator

uniform white source of noise. Therefore, we have:

z(n) = x(n−1)− v(n−1)+ z(n−1)

Then
v(n) = z(n)+E(n) (2.1)

v(n) = x(n−1)− v(n−1)+ z(n−1)+E(n) (2.2)

Using 2.1 and 2.2, we obtain

v(n) = x(n−1)+E(n)−E(n−1)

The quantification noise is then equal to:

N(n) = E(n)−E(n−1)

Therefore
N(z) = E(z)(1− z−1)

The expression of N(f) is:
N( f ) = N(z)

|e
2 jπ f

f e

|N( f )| = 2E( f )(1− e
2 jπ f

f e )

|N( f )|2 = 4|E( f )|2sin2(
π f
2 f e

)

|N( f )|2 = 4
∆2

12 f e
sin2(

π f
2 f e

)

Consequently, the power noise expression is

P =
Z fm

− fm
|N( f )|2d f = 2

∆2

12 f e

Z fm

− fm
(1− cos(

π f
f e

))d f
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Then

P = 4
∆2

12 f e
( fm −

f e
π

sin(
π fm

f e
))

As fm � fe

sin(
π fm

f e
) '

π fm

f e
−

1
3
(

π fm

f e
)3

The expression of power is then equal to:

P =
∆2

12
π2

3
1

OSR3

where OSR = f e
fm

More generally, it could be proved that the in-band noise for an n loop Σ∆ converter
is: [2]

P =
π2n

(2n+1)OSR2n+1

∆2

12
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Chapter 3

Description of the C code

The code source of the C simulator deals with 24 possible configurations of continuous
time sigma delta converters partitioned to 4 different architectures which are : CIFB,
CIFF, CRFB, CRFF. Each architecture is described in a seperate file, called a configu-
ration file, whose name is composed of two fields which are ordrei and archi, where i
∈{1,2,3,4,5,6} and archi ∈ {CIFB,CIFF,CRFB,CRFF}.

3.1 External files and libraries

The simulator uses the fftw library, a library developed at MIT by Matteo Frigo and
Steven G. Johnson, for the computation of the discrete fourier transform of signals.
It makes also use of an external file (mt19937.c) containing the source code of the
Mersenne Twister random variable generator which is developed by Makoto Mat-
sumoto and Takuji Nishimura in 1996/1997. Using this file, only uniform random
variables could be generated. So, we have added a new function that returns a vector
of guassian random variables. The prototype of this function is:

Vector* randn(int dim);
where dim is the size of the vector.
The function’s algorithm is:

1. generating two independent uniform random variables s1 and s2

2. guassien=cos(2πs1)
√

(−2log(1− s2)) is then a guassian random variable

3.2 Some particular variables

1. structure variables: The main used variable structures are:

(a) param: A param: is a structure including many fields for setting initial
parameters.

(b) SigmaC Delta: This structure is defined in sigma continu.h. It completely
caracterizes the modulator as it defines the integrator gain, the feedback,
feedforward and resonators coefficients.

(c) Vector: A vector is a structure defined by its dimension and a pointer to
a double type variable. This structure is defined in utils.h. It is used by
almost all functions.
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(d) Matrix: This structure has three fields which are the number of rows, the
number of columns and a vector containing the value of each coefficient.
This structure is defined in utils.h. It is used by many functions.

2. external variables

Some variables need to be visible to many files.So we have declared them as
external variables in the file sigma continu.h.

Examples:

(a) S, a variable of type Vector whose components design the variables’ state of
the simulator, is declared as an external variable in the file sigma continu.h
so as to be visible in each of the 24 configuration files.

(b) Amax inti, i∈{1,2,3,4,5,6} are variables of type double and designs the
limit excursions of the output integrators. They are declared in the sigma continu.h
and set in the simul.c file.

(c) Number is an integer that designs the position of the first elements to be
selected at the next time. This variable is declared in the sigma continu.h,
set to zero by the function init() in the file sigma continu.c, and modified
by the function D2A DWA in the file D2A DWA.c.

3.3 Description of the general flowchart

The general flowchart describing the links between the main source code functions is
depicted in (fig 3.1)

3.3.1 simul.c file

This file contains the main function whose outlines are:

1. setting of the required parameters

2. Call for the function sinus from the file signal.c to compute the input signal.

3. Call for the function initalisation from the file simulation.c to set the modulator
with the optimized coefficients

4. Call for the function init generateur from the file sigma continu.c in order to set
the random variable generator

5. Call for the function Simulation SDM from the file simulation.c to execute the
simulation of the modulator

6. Call for the function Simulation SPEC from the file analyse.c in order to com-
pute the power spectrum of the output signal

7. Computing the value of the snr by either calling the Simulation SNR LP or Sim-
ulation SNR BP from the file analyse.c

8. Call for the function Simulation scale from the file simulation.c in order to sim-
ulate the modulator having scaled coefficients.

9. Call for the function Simulation SNR CURVE in order to determine the snr
curve for the scaled modulator
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3.3.2 Description of the configuration file organisations

For each configuration, we have written a file that contains 5 functions.

1. The first function computes the optimized coefficients of the modulator. Its name
is given by archii, where archi∈ {CIFB,CIFF,CRFB,CRFF} and i ∈ {1,2,3,4,5,6}

2. The second function sets the modulator with the optimized coefficients. Its name
is given by initi archi

3. The third function returns for a given sigma delta converter the constants for the
state presentation of the modulator. Its name is given by Statearchi ordrei

4. The fourth function simulates the converter and returns its output. Its name is
given by Simularchi Ordrei

5. The fifth function determines the scaling coefficients and simulates the scaled
modulator

The flowchart describing a configuration file is depicted in (fig 3.2)
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Chapter 4

Simulation of Σ ∆ converters

4.1 Determination of optimized coefficients for contin-
uous Sigma delta converter

It has proved that the optimized coefficients for a given continuous Sigma delta con-
verter could be determined by applying a transformation to the discrete time Σ ∆ con-
verter coefficients.[5]

1. Determination of CT resonator feedback coefficients:

CT resonator feedback could be determined using the next formula:

gci = cos−1(1−
g2

di

2
);

where gci is the CT feedback resonator and gdi is the DT feedback resonator.

2. Determination of CT feedback and feedforward coefficients:

CT feedback and feedforward coefficients could be determined using the next
formula:

A = C−1DB

where

(a) A is the CT Vector coefficients.

(b) B is the DT Vector coefficients

(c) C is a constant matrix that depends on the DAC transfer function.

(d) D is a constant matrix.

The computation of these coefficients are achieved by the function archii from the file
ordreiarchii.

4.2 State representation of the Σ∆ modulator

4.2.1 integrator model

To compute the output of a continuous time integrator, we need to know the value of
the input over time. But in the case of sigma delta converters, the input of integrators
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depends on the previous outputs. In order to describe the system continuously in time,
we have chosen to modelize the integrator by using a discrete time model with an
infinitesimal time step.

H(z) =
Aintz−1
1− z−1

(4.1)

where Aint is the gain of the discrete time integrator.
Verification of the model:

H(z) =
Aintz−1
1− z−1

=
Aintz

−1
2

z
1
2 − z

−1
2

Then

H( f ) = H(z)|e2 jπ f T =
Ainte− jπ f T

jsin(π f T )

where T is the step size and f is the input signal frequency.
when fT → 0, the expression of H(f) become:

H( f ) =
e
− jπ f T

2

jπ f T

It turns out that for a small infinetisimal step, the response of the disrete time inte-
grator is similar to that of a continuous time integrator whose gain is equal to A’int= Aint

T
For instance, a continuous time integrator with a gain equal to 1 is modelized by a dis-
crete time one with a gain equal to T.

4.2.2 State representation of a Σ ∆ converter

Lets Yi and Xi denotes respectively the output and the input of the ith discrete time
integrator with a gain of αi

Yi(z)
Xi(z)

= αi
z−1

1− z−1

So, for each integrator, the dynamical equation is:
yi(n) = yi(n−1)+αi ∗ xi(n−1)
As xi(n− 1) is a linear function of the different outputs, a matrix representation

which makes use of the variable states of the system could be elaborated. Let’s take an
example of a second order CRFB converter. Lets Sn denotes the output of the integra-

a1 a2

r1

−
+

−−

v(n)y1 + y2
u(t) α1

R α2
R

Figure 4.1: a second order CRFB converter
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tors at the nt h step of time.

Sn =

(

y1

y2

)

n

The state representation of the system is then:

Sn+1 =

(

1 −r1α1

α2 1

)

Sn +un

(

1
0

)

− vn

(

α1a1

α2a2

)

where vn is the nth output of the converter. More generally, the dynamical equations
of a Σ ∆ converter could be written as

S(n+1) = AS(n)+Bu(n)−Cv(n)

where

• S(n+1) denotes the integrator output at the time (n+1) and y(n) denotes thes
output of the modulator.

• A is a constant vector given by the next formula:

A =































1 −r1,2g1 0 · · · · · · 0

g2 1 −r2,3g2
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . gi 1 −ri,i+1gi

. . .
...

...
. . .

. . .
. . .

...
...

. . .
...

0 · · · · · · 0 gn 1































where ri,i+1 is different from zero iff there exists a resonator coefficient between
the ith and the (i+1)th integrators, and gi is the gain of the ith integrator

• B is a constant vector equal to:

B =











1
0
...
0











• C is a constant vector given by the next expression:

C =











c1g1

c2g2
...

cngn











where ci and gi are respectively the feedback coefficients and the integrators
gains.

The determination of the constants of the representation state of a given Σ ∆ converter
is achieved by the function Statearchi ordrei.
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4.3 Simulation of monobit converters

4.3.1 Simulation

Simulation is achieved by the functions whose names are given by Simularchi Ordrei.
It consists in computing the output of the converter at each step of time by using the
dynamical equations and the model of the DAC and the quantizer. So for each step of
time, Simulation consists in:

• computing the state variables

• computing the output of the DAC

• computing the output of the ADC

Several kinds of DACs have been considered. The computation of their outputs is
achieved by the function DAC in the file DAC.c. This function has three parameters
which are:

• i: is the number of time steps since the beginning of the simulation

• k: the number of periods since the beginning of the simulation

• v: is a Vector that contains the output values since the beginning of the simula-
tion.

1. RZ DAC for monobit converters

The delay of the quantizer response has a negative effect on the performance
of the Σ ∆ converter and may sometimes entail its instability. To overcome this
problem, the NRZ DAC should be substituted by a RZ one. As it is shown in
(fig 4.2), the RZ feedback signal is applied after a delay time, td and lasts for a
period equal to τ.

NRZ feedback signal

Clock

RZ feedback signal

td

loop delay

τ

Figure 4.2: comparision between RZ and NRZ signal feedback

As the method of the determination of the CT coefficients takes into account the
shape of the DAC transfer function, using a RZ signal feedback didn’t degrade
the SNR level. To compute the output of the DAC, we need to determine delay
times td and τ in terms of number of time steps. We have declared then two
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variables index tdk and index tauk which denote respectively the number of time
steps for td and τ. These variables are given by the next expression:

index tdk = E(
td
pas

); index tauk = E(
τ

pas
);

where pas denotes the time step of the simulation. For RZ DACs, the response
of the DAC is different from zero iff

mod(i,
1

pas
) <= index tdk + index tauk

and

mod(i,
1

pas
) >= index tdk

The (fig4.3) shows that the return to zero DAC didn’t degrade the performance
of the CT modulator.

 0

 10

 20

 30

 40

 50

 60

 70

-70 -60 -50 -40 -30 -20 -10  0

snr curve: archi=CIFF,ordre=5,OSR=32

DAC=RZ (td=20%T,tau=40%T)
DAC=NRZ

Figure 4.3: snr curves of a fifth order CIFF architectured modulator

2. Sinsodal DAC for monobit converters

The response of the sinusodal DAC is:

y(t) = 1− cos(wt)

if the input is positive
y(t) = −1+ cos(wt)

otherwise.

We have simulate converters having a sinusodal DAC for a second and a third
order Σ ∆ architectured converter. We have obtained the following results:

• Second order CIFF architectured modulator (fig4.4)
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Figure 4.4: DSP curve of a second order CIFF architectured modulator
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Figure 4.5: DSP curve of a third order CIFF architectured modulator
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• Third order CIFF architectured modulator (fig4.5)

The advantage of the sinusodal DAC is that it can attenuate the negative effect of the
jitter noising as its response tends to zero at each period. (fig4.6)
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DAC sinsoîdal
DAC non sinusoîdal

Figure 4.6: the advantage of the sinsodal DAC

4.3.2 Power spectrum density estimation

The power spectrum density estimate of a discrete signal x is given by the next expres-
sion

Sxx( fk) =
|XN( fk)|

2

N
;k ∈ 0, ..,N −1and fk =

k fs

N

where N is the number of data points available, |XN( f )|2 is the discrete fourier trans-
form of x. In order to avoid spectral leakage, the C simulator make use of 4 types of
windows whose characteristics are depicted in tab4.1
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Window -3db Main Lobe
Width(bins)

-6db Main Lobe
Width(bins)

Maximum Side
Lobe level(db)

Side Lobe
Roll-off rate
(db/decade)

Hanning 1.44 2 -32 60
Hamming 1.3 1.81 -43 20
Blackman 1.68 2.35 -58 18
Blackman Harris 1.9 2.72 -92 6

Table 4.1: Characteristics of the used window functions

The (fig 4.7) shows the frequency spectrum characteristics of a window in more
detail.

Figure 4.7: Frequency response of a window

4.3.3 SNR estimation

The SNR is defined by the next formula:

SNR(db) = 10log(
P signal
P bruit

)

Both the signal and noise power should be computed by considering the frequency bins
that lies in the band of interest.

The width of the band of interest is equal to f e
2OSR , where OSR is the oversampling

ratio. The signal power lies in an interval centered on the input frequency. The width
of the interval depend on the main lobe window wide.

Table4.2 shows the number of frequency bins that should be used for the computa-
tion of the signal power.
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window number of fre-
quency bins

Blackman win-
dow

11

Blackman harris
window

11

Hann window 5
hamming win-
dow

5

Table 4.2: number of frequency bins used for each window

4.3.3.1 low pass converters

For low pass converters, the signal frequency input is a fraction of the sampling fre-
quency. We have chosen for example, an input signal frequency equal to

fin =
13 f s

N

where N is the number of data points available. We have defined then next variables
which are:

• Ns: the number of the frequency bins that corresponds to the input signal fre-
quency

• Nbw: is the number of frequency bins in the band of interest.

• nbrepoints snr: is the number of frequency bins to be considered while comput-
ing the signal power.

The power signal Ps and the power noise Pb signal are estimated by using the following
expressions:

Ps =
k=Ns+ nbrepointssnr

2

∑
k=Ns− nbrepointssnr

2

Sxx( fk)

Pb =
k=Ns− nbrepointssnr

2

∑
k=0

Sxx( fk)+
Nbw

∑
k=Ns+ nbrepointssnr

2

Sxx( fk)

4.3.3.2 pass band converters

For pass band converters, the input signal is equal to a fraction of the sampling fre-
quency added by the value of the central frequency. We have chosen for example an
input signal frequency equal to:

fin = f o+
13 f s

N

The estimation of the signal power and the noise power are computed by using the same
strategy as above with the single difference that the band of interest lies now between
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No− Nbw
2 and No+ Nbw

2 , where No is the number of the frequency bin that correspond
to the central frequency. Consequently, the expression of the signal power remains the
same as above, while that of the noise power is now given by the following expression:

Pb =
k=Ns− nbrepointssnr

2

∑
k=No− Nbw

2

Sxx( fk)+
No+ Nbw

2

∑
k=Ns+ nbrepointssnr

2

Sxx( fk)

4.3.3.3 Scaling

The objective of scaling is to limit the integrators output swing. A systematic approach
has been presented in [6], where it has been proved that this scaling method preserves
the NTF and the STF functions and therefore the SNR level. This approach consists in:

• Simulate the Σ∆ converter with the original coefficients.

• For each integrator, we compute the scaling factor fi, where

f i =
max(out putintegrator)

desiredit hintegrator

• distribute f i in order to preserve the same NTF and STF functions.(fig4.8)

(fig4.9) represents the output integrators for both original and scaled coefficients.

4.3.3.4 Jitter noising

1. Modelization of the jitter noising

The jitter noising is caused by the delay made by the clock when transiting from
upper value to lower value or vice versa. As this delay is very small, we have
considered to modelize its effect rather than modelizing it directly. In fact, An
ideal DAC has its response x verify the following condition:

1
T

Z td+τ

td
x(t) =

1
T

Z td+τ

td

T
τ

= 1

But with jitter noising, we have

1
T

Z td+τ+δτ

td

T
τ

= 1+
δτ
τ

(4.2)

where δτ denotes a gaussian distributed noise. Then the jitter noising could be
modelized by a DAC whose reponse’s amplitude is equal to T

τ +δA, where δA is
a gaussian distributed noise. We have then

1
T

Z td+τ

td
(

T
τ

+δA)dt = 1+
δAτ
T

As the DAC’s response must verify (4.2)

δA =
δτT
τ2

2. evaluation of simulation results

The snr curve vs the power of the jitter noising is depicted in (fig 4.10.) We can
notice that the snr level goes down when the power of the jitter noising increases.
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Figure 4.8: Scaling method for feedback(a) and feedforward(b) Σ ∆ architectures
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Figure 4.9: Integrators swings decrease
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4.4 multi bit converters

Multi bit converters have two main advantages over the signle bit one.

1. A higher performance: In fact, having the same OSR and the same order as a
monobit converter, the multibit converter could achieve a higher signal to noise
ration for two reasons:

• According the linear analysis of a Σ ∆ converter, the adding of a single bit
to the quantizer is equivalent to an SNR improvement of 6 dB.

• Besides, as we have seen before, the NTF constraint is less limiting for
multibit converters.

2. A better resolution: In fact, the output of the converter is closer to the desired
output. However, the main inconvenients of multibit converters is that the DAC
cannot be made perfectly linear since it is impossible to manufacture DAC’s
element sources with exactly the same step size.

The problem is made worse by the fact that any error introduced into the feedback
signal will translate into errors for the overall converter. To illustrate this, lets’consider
the linear multibit Σ ∆ converter: (fig4.11) The output of the converter is therefore
equal to

V (z) = G(z)U(z)+H(z)E(z)+(H(z)−1)EDAC(z)

In the band of interest, H(z) is attenuated, so H(z)-1=' -EDAC(z). The in-band noise
will be then dominated by the DAC noise. To correct the DAC nonlinearity, several
algortihms have been used. In the following, we will consider the most common one
which is Data Weighted averaging.
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Figure 4.11: a general diagram of multibit Σ ∆ converter

4.4.1 the multibit quantizer

The response of a 8 level quantizer is depicted in (fig4.12) where

∆ =
2

2NN −1

We have represented with dashed points the translation of the response curve by 0.5∆
along the y axis. Let’s y and x denote respectively the output and the input of the
quantizer,and f(x) denotes the analytical expression of the dashed curve. Then

f (x) = (E(
x
∆

)+1)∆ = round(
x
∆

)+0.5)∆

where round(x) returns the nearest integer to x. The expression of y vs x is then

y(x) = (round((
x
∆

)+0.5)−0.5)∆

Each level is then represented by a single code which is equal to:

code = round(
y(x)

∆
+1)

The determination of the output of the multibit quantizer is achieved by the A2D func-
tion in the file A2D.c

4.4.2 DAC architecture

The DAC is composed of current sources whose number is equal to the number of the
quantizer levels.(fig4.13) For each time, the number of elements selectioned is equal to
code, where code is the output of the ADC. A gaussian distributed error with zero mean
and standard deviation equal to σ is added to each current source.That’s mean that each
current source provides a DC signal equal to 1 added by a certain value of error which
is constant over time. The idea of the DWA algorithm is to introduce a transfer function
in the feedforward path,denoted the MTF(mismatch transfer function), that eliminates
the noise caused by the DAC in the band of interest.
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∆

Figure 4.12: A 8 level quantizer response

4.4.3 Data Weighted Averaging algorithm for low pass converters

1. Theoretical analysis

For low pass converters, the MTF of the DWA algorithm is equal to

H(z) = 1− z−1

The thoretical model of this algorithm is depicted in 4.14, where ptr(n) is the
position of the unit element selected at time n. [7][8] lets V(z) and dV(z) denote
respectively the input and the output of the DAC. Then,

dV (z) = V (z)+(1− z−1)EDAC

|H( f )| = H(z)|e2 jπ f T = 2|sin(π f T )|

for low frequencies, fT→ 0, —H(f)—→ 0, and then the error of the DAC is
attenuated.

2. implementation

According to the theoretical analysis:

V (n) = ptr(n)− ptr(n−1)

therefore
ptr(n) = V (n)+ ptr(n−1)
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Figure 4.13: A 8 level DAC architecture

DAC outputDAC input ptr(z)

EDAC

1
1−z−1 1− z−1

Figure 4.14: A theoretical model of DWA algorithm

The DWA algorithm consists then in selecting adjacent elements from an array
beginning with the next unused element. Consequently, all the DAC elements are
used at the maximul possible rate. The element selection pattern is depicted in
(fig 4.15). The DWA algorithm make use of an external variable, number, which
points on the next selected element, and is updated at each step of time. For low
pass converters,the DWA algorithm is achieved by the D2A DWA function in
the D2A DWA.c file.

3. Evaluation of the results

• DSP curve The fig4.16 shows simulation results for a fifth order low pass
modulator. With 1% of mismatch, the SNR drops to 41,34 db if no mis-
match shaping algorithm is used, but rises to 99.7 db if the element selec-
tion strategy described above is employed.

• SNR curves The fig4.17 shows that, using the mismatch shaping algorithm,
we could obtain the same level of SNR as that of the ideal DAC.

4.4.4 DWA algorithm for pass band converters

1. Theoretical analysis

For pass band converters, the band of interest has a width equal to f s
2OSR and lies

on an interval centered on the central frequency denoted by fo which is equal to
f s
4 (where fs is the sampling frequency). In reference to [7], the MTF that cut off

the signal in the band of interest is equal to:

H(z) = 1+ z−2
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Figure 4.15: The element selection pattern of an 8 level DAC

|H( f )| = H(z)|e2 jπ f T = 2|sin(2π f T )| = 2|sin(2π
f
fs

)|

We can verify easily that by introducing in the feedforward path H(f) the signal
is attenuated in the band of interest.

2. Implementation

The element selection pattern is depicted in (fig4.18)

where sens denotes the direction of the rotation into the selected elements. For
pass band converters, the DWA algorithm makes use of 4 external variables
which are number, number 1, number 2 and sens.

• number: number denotes the position of the current selected element at
time n.

• number1: number 1 denotes the position of the selected element at time
n-2.

• number2: number 2 denotes the position of the selected element at time n-
1. The values of number 1 and number 2 are updated each period of time.
(not as the previous algorithm where the value of number is updated each
step of time).

• sens:denotes the direction of the rotation into selected elments. The value
of sens changed each two period of time.

The DWA algorithm for pass band converters is achieved by the D2A DWApb
function in the file D2A DWA.c

3. Evaluation of the results

• DSP curves
The (fig4.19) shows simulation results for a fourth pass band CRFB ar-
chitectured modulator. With 20% of mismatch, the snr drops to 36 db if
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Figure 4.16: Evaluation of the DWA algorithm

no misamtch shaping algorithm is used, but rises to 51db if the proposed
algorithm is employed.

• SNR curves

The (fig4.20) shows that the DWA algorithm is more efficient for higher
amplitudes.

4.5 Validation of the results

In order to validate the results, we compare the SNR Curve vs the amplitude and the
power spectrum curve provided by the Matlab simualtor with that of the C simualtor.
We have represented in the annexe chapter all the DSP and SNR curves for both the
C and the Matlab simulators for all possible configurations. These curves prove the
validity of the results obtained by the C simulator. Besides, simulations have been done
on a PC-2Ghz (Ram=512 Octets) and have showed that the time execution needed for
simulation using the Matlab simulator is much higher than that of the C simulator. (See
Annexe tables)

43



 0

 20

 40

 60

 80

 100

 120

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5  0

DWA evaluation:SNR curves: archi=CRFB,ordre=5,OSR=16,NN=4,DAC=NRZ,1% mismatch

DWA shaping
no shaping

ideal

Figure 4.17: Evaluation of the DWA algorithm

}
}

}sens=1

sens=−1

sens=1

0 1 2 3 4 5 6

V(n)

source number

a selectioned current source

3

4

2

5

5

4

3

sens=−1

Figure 4.18: The element selection pattern for pass band converters
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Chapter 5

Conclusion

In my engineering internship, I had to develop a C library for simulating continous time
Σ ∆ converters.

In this report, I have presented first the theoretical studies that had been carried out
about Σ ∆ converters. Then, I have presented the results’ simulations in order to prove
the validity of the C simulator.

However, this library could be improved by

• considering complex architectures composed of multi stage converters.

• Adding an algorithm that computes the invariant sets of the converter,thus veri-
fying the system stability

• Considering the error induced by the delay time error before turning on or off
the DAC’s element sources and implementing the algorithm that resolves this
problem.
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Chapter 6

annexes

6.1 DSP Curves

1. CIFB architecture
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Figure 6.1: DSP curve of a second order Σ ∆ CIFB architectured modulator
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Figure 6.2: DSP curve of a third order Σ ∆ CIFB architectured modulator
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Figure 6.3: DSP curve of a fourth order Σ ∆ CIFB architectured modulator
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Figure 6.4: DSP curve of a fifth order Σ ∆ CIFB architectured modulator
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2. CRFB architecture
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Figure 6.6: DSP curve of a second order Σ ∆ CRFB architectured modulator
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Figure 6.8: DSP curve of a third order Σ ∆ CRFB architectured modulator
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Figure 6.9: DSP curve of a fourth order Σ ∆ CRFB architectured modulator
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Figure 6.10: DSP curve of a fourth order pass band Σ ∆ CRFB architectured modulator
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Figure 6.11: DSP curve of a fifth order Σ ∆ CRFB architectured modulator
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3. CIFF architecture
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Figure 6.12: DSP curve of a second order Σ ∆ CIFF architectured modulator
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Figure 6.13: DSP curve of a third order Σ ∆ CIFF architectured modulator
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Figure 6.14: DSP curve of a fourth order Σ ∆ CIFF architectured modulator
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Figure 6.15: DSP curve of a fifth order Σ ∆ CIFF architectured modulator

54



-160

-140

-120

-100

-80

-60

-40

-20

 0

 1e-05  0.0001  0.001  0.01  0.1  1

DSP Curve:archi=CIFF,ordre=6,passe bas,OSR=32,DAC=NRZ

SNR(Matlab)=65.1897

SNR(C)=63.75

simulateur Matlab
simulateur C

Figure 6.16: DSP curve of a sixth order Σ ∆ CIFF architectured modulator
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4. CRFF architecture
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Figure 6.17: DSP curve of a second order Σ ∆ CRFF architectured modulator
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Figure 6.18: DSP curve of a second order pass band Σ ∆ CRFF architectured modulator
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Figure 6.19: DSP curve of a third order Σ ∆ CRFF architectured modulator
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Figure 6.20: DSP curve of a fourth order Σ ∆ CRFF architectured modulator
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Figure 6.21: DSP curve of a fourth order pass bandΣ ∆ CRFF architectured modulator
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Figure 6.22: DSP curve of a fifth order Σ ∆ CRFF architectured modulator
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6.2 SNR Curves

1. CIFB architecture
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Figure 6.23: SNR curve of a second order Σ ∆ CIFB architectured modulator
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Figure 6.24: SNR curve of a third order Σ ∆ CIFB architectured modulator
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Figure 6.25: SNR curve of a fourth order Σ ∆ CIFB architectured modulator
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Figure 6.26: SNR curve of a fifth order Σ ∆ CIFB architectured modulator
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Figure 6.27: SNR curve of a sixth order Σ ∆ CIFB architectured modulator
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2. CRFB architecture
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Figure 6.28: SNR curve of a second order Σ ∆ CRFB architectured modulator
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Figure 6.29: SNR curve of a second order pass band Σ ∆ CRFB architectured modulator
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Figure 6.30: SNR curve of a third order Σ ∆ CRFB architectured modulator
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Figure 6.31: SNR curve of a fourth order Σ ∆ CRFB architectured modulator
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Figure 6.32: SNR curve of a fourth order pass band Σ ∆ CRFB architectured modulator
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Figure 6.33: SNR curve of a fifth order Σ ∆ CRFB architectured modulator
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3. CIFF architecture
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Figure 6.34: SNR curve of a second order Σ ∆ CIFF architectured modulator
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Figure 6.35: SNR curve of a third order Σ ∆ CIFF architectured modulator
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Figure 6.36: SNR curve of a fourth order Σ ∆ CIFF architectured modulator
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Figure 6.37: SNR curve of a fifth order Σ ∆ CIFF architectured modulator
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Figure 6.38: SNR curve of a sixth order Σ ∆ CIFF architectured modulator
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4. CRFF architecture
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Figure 6.39: SNR curve of a second order Σ ∆ CRFF architectured modulator
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Figure 6.40: SNR curve of a second order pass band Σ ∆ CRFF architectured modulator
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Figure 6.41: SNR curve of a third order Σ ∆ CRFF architectured modulator
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Figure 6.42: SNR curve of a fourth order Σ ∆ CRFF architectured modulator
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Figure 6.43: SNR curve of a fourth order pass band Σ ∆ CRFF architectured modulator

71



 0

 10

 20

 30

 40

 50

 60

 70

 80

-80 -70 -60 -50 -40 -30 -20 -10  0

snr Curve: archi=CRFF ,ordre =5, passe bas, DAC=NRZ

simulateur C
simulateur Matlab

Figure 6.44: SNR curve of a fifth order pass band Σ ∆ CRFF architectured modulator
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6.3 Comparision between the time execution of the C
and the Matlab simulators

Order Time execution (s)(matlab) Time execution (s) (C) step size (for C)
2 15.063 3.77 0.01
3 40.093 1.84 0.1
4 54.36 1.85 0.1
5 65.625 1.95 0.1
6 4.328 5.95 0.01

Table 6.1: Time execution of the Matlab and C simulator for the CIFB architectured
converter

Order Time execution (s)(matlab) Time execution (s) (C) step size (for C)
2 (low pass converter) 12.3750 3.83 0.01
2 (pass band converter) 455.5470 6.03 0.005

3 15.031 1.84 0.1
4 (low pass converter) 35.75 1.89 0.1
4 (pass band converter) 896.968 32.83 0.001

5 23.65 1.93 0.1

Table 6.2: Time execution of the Matlab and C simulator for the CRFB architectured
converter

Order Time execution (s)(matlab) Time execution (s) (C) step size (for C)
2 14.6090 3.83 0.01
3 109.89 27.9 0.001
4 184.921 4.66 0.01
5 212.87 40.08 0.001
6 209.14 5.89 0.01

Table 6.3: Time execution of the Matlab and C simulator for the CIFF architectured
converter

Order Time execution (s)(matlab) Time execution (s) (C) step size (for C)
2 (low pass converter) 17.25 1.81 0.1
2 (pass band converter) 276.296 24.03 0.001

3 112.36 27.31 0.001
4 (low pass converter) 200.563 4.61 0.01
4 (pass band converter) 589.9070 32.46 0.001

5 207.516 1.9 0.1

Table 6.4: Time execution of the Matlab and C simulator for the CRFF architectured
converter
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