CCIAC

Conception de Circuits Intégrés Analogique CMOS

Hassan.Aboushady@lip6.fr http://www-asim.lip6.fr/~hassan

References

• B. Razavi, "Design of Analog CMOS Integrated Circuits", Mc Graw-Hill, 2001.

• K. Martin & D. Johns, "Analog Integrated Circuits Design", John Wiley, 1997.

• W. Sansen & K. Laker, "Design of Analog Integrated Circuits & Systems", Mc Graw-Hill, 1994.

• P. Gray & R. Meyer, "Analysis and Design of Analog Integrated Circuits", third edition, John Wiley 1993.

• G. Temes & R. Gregorian, "Analog MOS Integrated Circuits for Signal Processing", John Wiley, 1986.

• Jacky Porte, "OCEANE: Outils pour la Conception et l' Enseignement des circuits intégrés ANalogiquEs", <u>http://www-asim.lip6.fr/recherche/analog/oceane/</u>

H. Aboushady

University of Paris VI

	Level	1 SPICE Models	s for NMOS and P	MOS Devices.	
	$\begin{array}{l} NMOS \ Model \\ LEVEL = 1 \\ NSUB = 9e{+}14 \\ TOX = 9e{-}9 \\ MJ = 0.45 \end{array}$	VTO = 0.7 LD = 0.08e-6 PB = 0.9 MJSW = 0.2	GAMMA = 0.45 UO = 350 CJ = 0.56e-3 CGDO = 0.4e-9	PHI = 0.9 LAMBDA = 0.1 CJSW = 0.35e-11 JS = 1.0e-8	
	$\begin{array}{l} PMOS \ Model \\ LEVEL = 1 \\ NSUB = 5e\!+\!14 \\ TOX = 9e\!-\!9 \\ MJ = 0.5 \end{array}$	VTO = -0.8 LD = 0.09e-6 PB = 0.9 MJSW = 0.3	GAMMA = 0.4 UO = 100 CJ = 0.94e-3 CGDO = 0.3e-9	PHI = 0.8 LAMBDA = 0.2 CJSW = 0.32e-11 JS = 0.5e-8	
	VTO: threshold voltag	ge with zero V_s	S_B (unit: V)		
	PHI: $2\Phi_F$ (unit: V)				
	TOX: gate oxide thickness (unit: m) NSUB: substrate doping (unit: cm ⁻³)				
	UO: channel mobility (unit: cm ² /V/s)				
	LAMBDA: channel-length modulation coefficient (unit: V^{-1})				
	CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m ²)				
	CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)				
		PB: source/drain junction built-in potential (unit: V)			
	MJ: exponent in CJ equation (unitless)				
	MJSW: exponent in CJSW equation (unitless)				
	CGDO: gate-drain overlap capacitance per unit width (unit: F/m)				
				. ,	
	CGSO: gate-source ov	erlap capacitar	nce per unit width	(unit: F/m)	