LSL3D: a run-based CCL algorithm for 3D volumes

 COMPAS 2022Nathan Maurice, Florian Lemaitre, Julien Sopena, Lionel Lacassagne

July 6, 2022

Connected Component Labeling

Connected Component Labeling

Connected Component Labeling

Connected Component Labeling

Applications: autonomous driving, biology, pre-processing for $A I$
Goals: $\quad \Rightarrow$ Performance: for real-time applications \Rightarrow Regularity: reduce sensitivity to image type

State of the Art: Pixel-based 2D

Naive approach: test all neighbouring pixels

State of the Art: Pixel-based 2D

Naive approach: test all neighbouring pixels

Pixel-based: Rosenfeld [1],SAUF[2],LEB [3], PRED [4]
Rosenfeld mask

State of the Art: Pixel-based 2D

Naive approach: test all neighbouring pixels

Pixel-based: Rosenfeld [1],SAUF[2],LEB [3], PRED [4]

Block-based: BBDT [7], Spaghetti [8]

State of the Art: Pixel-based 2D

Naive approach: test all neighbouring pixels

3D algorithms: usually extensions of 2D algorithms

State of the Art: Pixel-based 2D \rightarrow 3D

Naive approach: test all neighbouring pixels

Pixel-based: Rosenfeld [1],SAUF[2],LEB [3], PRED [4] \Rightarrow Rosenfeld 3D, SAUF 3D [5], LEB 3D [6], PRED 3D [5]

Block-based: BBDT [7], Spaghetti [8]
\Rightarrow EPDT (19C, 22C, 26C) [9]
Rosenfeld mask
Rosenfeld 3D

3D algorithms: usually extensions of 2D algorithms

State of the Art (segment-based)

Input Image

State of the Art (segment-based)

Segment-based: $\quad \operatorname{RBTS}[10] \Rightarrow$ RBTS 3D [6]

$$
L S L[11][12] \Rightarrow \text { LSL3D is missing }
$$

State of the Art (segment-based)

Segment-based: $\quad \operatorname{RBTS}[10] \Rightarrow \operatorname{RBTS} 3 D[6]$

$$
\operatorname{LSL}[11][12] \Rightarrow \text { LSL3D is missing }
$$

This contribution: LSL3D, a new segment-based algorithm
Step 1: Extension of $L S L$ to 3D images
Step 2: Segment overlap detection with Finite State Machine (FSM)
Step 3: Computational re-use \& simplification of FSM

Algorithm structure: Direct algorithms

Algorithm structure: LSL3D

Run-Length Encoding (RLE) algorithm: pixels \rightarrow segments
Unification: segments \rightarrow provisional labels

Transitive Closure: provisional labels \rightarrow final labels
Relabeling: write final labels

Algorithm structure: LSL3D

Run-Length Encoding (RLE) algorithm: pixels \rightarrow segments
\Rightarrow store segments (start \& end) into RLC table \& ER table (pixel pos. \rightarrow segment id)
Unification: segments \rightarrow provisional labels
\Rightarrow detect segments overlaps between lines, store provisional labels into ERA table
Transitive Closure: provisional labels \rightarrow final labels
Relabeling: write final labels

Step 1: Extension of LSL to 3D volumes

RLE algorithm: Same as in 2D
Unification 3D: between 5 lines (vs 2 in 2D)

Step 1: Extension of LSL to 3D volumes

RLE algorithm: Same as in 2D
Unification 3D: between 5 lines (vs 2 in 2D)

Step 1: Extension of LSL to 3D volumes

RLE algorithm: Same as in 2D
Unification 3D: between 5 lines (vs 2 in 2D)

Step 1: Extension of LSL to 3D volumes

RLE algorithm: Same as in 2D
Unification 3D: between 5 lines (vs 2 in 2D)

Random datasets: State of the Art

Benchmark: YACCLAB [13] Hardware: Xeon Gold 6126

> density $=\frac{\text { foreground pixels }}{\text { image size }}$ granularity $=$ cube size

——EB_3D
- RBTS_3D
- SAUFpp_3D
- PREDpp_3D
—EPDT_3D_22c

Random datasets: LSL3D

Benchmark: YACCLAB [13] Hardware: Xeon Gold 6126
\[\begin{aligned} \& density=\frac{foreground pixels}{image size}
\& granularity=cube size \end{aligned} \]
- LEB_3D
- SAUFpp_3D
- PREDpp_3D
— LSL_ER

Medical datasets

Medical datasets: State of the Art

$\int \begin{gathered}\text { OASIS } \\ \text { (complex) }\end{gathered}$

Medical datasets: LSL3D

Medical datasets: LSL3D

Medical datasets: LSL3D (steps)

Step 2: Finite-State Machine-based unification

Step 2: Finite-State Machine-based unification

Step 2: Finite-State Machine-based unification

Random datasets: LSL+FSM

Benchmark: YACCLAB
Hardware: Xeon Gold 6126

```
LEB_3D
- RBTS_3D
EPPDT_3D_19c
- EPDT_3D_22c
LSL_ER
LSL_FSM
```


Medical datasets: LSL+FSM

Medical datasets: LSL+FSM

LSL_FSM faster than LSL_ER by $\times 1.1$ LSL_FSM slower than LSL_ER by $\times 0.95$

Medical datasets: LSL+FSM

LSL_FSM faster than LSL_ER by $\times 1.1$ LSL_FSM slower than LSL_ER by $\times 0.95$
FSM issues \Rightarrow FSM is large (27 states, 55 transitions)
\Rightarrow decreased branch predictor accuracy, especially on complex images

Step 3: Double-Line mechanism

Unification: 3 lines re-processed during next iteration

Step 3: Double-Line mechanism

Unification: 3 lines re-processed during next iteration Idea: Computational re-use by caching partial results (double-line):

Step 3: Double-Line mechanism

Unification: 3 lines re-processed during next iteration Idea: Computational re-use by caching partial results (double-line):

Step 3: Double-Line mechanism

Unification: 3 lines re-processed during next iteration Idea: Computational re-use by caching partial results (double-line):

Step 3: Double-Line mechanism

Unification: 3 lines re-processed during next iteration Idea: Computational re-use by caching partial results (double-line):

Step 3: Double-Line mechanism

Unification: 3 lines re-processed during next iteration Idea: Computational re-use by caching partial results (double-line):

\Rightarrow fewer operations
\Rightarrow simpler FSM (9 states, 18 transitions)

Random datasets: LSL+FSM+DOUBLE

Benchmark: YACCLAB
Hardware: Xeon Gold 6126

```
LEB_3D
RBTS 3D
- EPDT_3D_19c
- EPDT_3D_22c
LSL_ER
LSL_FSM
- LSL_FSM_DOUBLE
```


Medical images: LSL+FSM

Medical images: LSL+FSM+DOUBLE

LSL3D with Hardware acceleration

Performance evaluation: RLE, Unification, Transitive Closure, Relabeling

LSL3D with Hardware acceleration

Performance evaluation: RLE, Unification, Transitive Closure, Relabeling $\Rightarrow 70-90 \%$ of execution time

LSL3D with Hardware acceleration

Performance evaluation: RLE, Unification, Transitive Closure, Relabeling $\Rightarrow 70-90 \%$ of execution time

Fortunately: RLE and Relabeling benefit from instruction level parallelism [14] Single Instruction Multiple Data (SIMD): SSE4, AVX2 and AVX512

Random datasets: LSL3D with SIMD

Medical datasets: LSL3D with SIMD

Medical datasets: Individual images

LSL3D vs best results of State-of-the-Art algorithms (1 point $=1$ image)

- LSL3D_ER
- LSL3D_FSM
- LSL3D_DOUBLE

$\int \begin{gathered}\text { OASIS } \\ \text { (complex) }\end{gathered}$

Medical datasets: Individual images

LSL3D vs best results of State-of-the-Art algorithms (1 point $=1$ image)

- LSL3D ER
- LSL3D_FSM
- LSL3D_DOUBLE

\Rightarrow always faster than best State-of-the-Art

Medical datasets: Individual images

LSL3D vs best results of State-of-the-Art algorithms (1 point $=1$ image)

\Rightarrow always faster than best State-of-the-Art
\Rightarrow at least $\times 1.5$ faster than best State-of-the-Art on worst-cases

Medical datasets: Individual images

LSL3D vs best results of State-of-the-Art algorithms (1 point $=1$ image)

\Rightarrow always faster than best State-of-the-Art
\Rightarrow at least $\times 1.5$ faster than best State-of-the-Art on worst-cases
\Rightarrow less sensitive to image variations

Conclusion

We propose a new CCL algorithm for 3D images that is based upon

1. a segment-based approach
2. an optimized FSM for merging segments with cache re-use mechanism (double-line)
3. an efficient SIMD implementation

Goals accomplished \Rightarrow faster than State-of-the-Art (or equivalent)
\Rightarrow lower sensivity to image characteristics
Future work: parallelization on multi-core CPU and GPU

References I

國 A．Rosenfeld and J．L．Pfaltz，＂Sequential Operations in Digital Picture Processing，＂Journal of the ACM，vol．13，pp．471－494，Oct． 1966.

國 K．Wu，E．Otoo，and K．Suzuki，＂Optimizing two－pass connected－component labeling algorithms，＂Pattern Analysis and Applications，vol．12，pp．117－135，June 2009.

國 L．He，Y．Chao，and K．Suzuki，＂A Linear－Time Two－Scan Labeling Algorithm，＂in 2007 IEEE International Conference on Image Processing，（San Antonio，TX，USA），pp．V－241－V－ 244，IEEE， 2007.

國 C．Grana，L．Baraldi，and F．Bolelli，＂Optimized Connected Components Labeling with Pixel Prediction，＂in Advanced Concepts for Intelligent Vision Systems（J．Blanc－Talon， C．Distante，W．Philips，D．Popescu，and P．Scheunders，eds．），vol．10016，pp．431－440， Cham：Springer International Publishing， 2016.

References II

F. Bolelli, S. Allegretti, and C. Grana, "One DAG to rule them all," IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 2021.

國 Lifeng He, Yuyan Chao, and K. Suzuki, "Two Efficient Label-Equivalence-Based Connected-Component Labeling Algorithms for 3-D Binary Images," IEEE Transactions on Image Processing, vol. 20, pp. 2122-2134, Aug. 2011.
C. Grana, D. Borghesani, and R. Cucchiara, "Optimized Block-Based Connected Components Labeling With Decision Trees," Transactions on Image Processing, vol. 19, pp. 1596-1609, June 2010.

Fin Bolelli, S. Allegretti, L. Baraldi, and C. Grana, "Spaghetti Labeling: Directed Acyclic Graphs for Block-Based Connected Components Labeling," IEEE Transactions on Image Processing, vol. 29, pp. 1999-2012, 2020.

References III

- M. Sochting, S. Allegretti, F. Bolelli, and C. Grana, "A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes," in International Conference on Pattern Recognition, p. 8, 2021.

R Lifeng He, Yuyan Chao, and K. Suzuki, "A Run-Based Two-Scan Labeling Algorithm," IEEE Transactions on Image Processing, vol. 17, pp. 749-756, May 2008.

L. Lacassagne and A. B. Zavidovique, "Light speed labeling for RISC architectures," in IEEE International Conference on Image Analysis and Processing (ICIP), 2009.

L. Lacassagne and B. Zavidovique, "Light speed labeling: Efficient connected component labeling on RISC architectures," Journal of Real-Time Image Processing, vol. 6, pp. 117-135, June 2011.

显
C. Grana, "Yacclab https://github.com/prittt/YACCLAB," 2016.

References IV

居 F. Lemaitre, A. Hennequin, and L. Lacassagne, "How to speed Connected Component Labeling up with SIMD RLE algorithms," in Proceedings of the 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing, (San Diego CA USA), pp. 1-8, ACM, Feb. 2020.

