LSL3D: a run-based CCL algorithm for 3D volumes COMPAS 2022

Nathan Maurice, Florian Lemaitre, Julien Sopena, Lionel Lacassagne

July 6, 2022

Applications: autonomous driving, biology, pre-processing for AI

Goals: \Rightarrow Performance: for real-time applications \Rightarrow Regularity: reduce sensitivity to image type

Naive approach: test all neighbouring pixels

N. Maurice, F. Lemaitre, J. Sopena. L. Lacassagne

3D algorithms: usually extensions of 2D algorithms

State of the Art: Pixel-based 2D \rightarrow 3D

. Maurice, F. Lemaitre, J. Sopena. L. Lacassagne

<u>N. Maurice</u>, F. Lemaitre, J. Sopena. L. Lacassagne

Segment-based: $RBTS [10] \Rightarrow RBTS 3D [6]$ $LSL [11][12] \Rightarrow LSL3D$ is missing

<u>N. Maurice</u>, F. Lemaitre, J. Sopena. L. Lacassagne

LSL3D: run-based CCL for 3D volumes

4 / 20

Segment-based: $RBTS [10] \Rightarrow RBTS 3D [6]$ $LSL [11][12] \Rightarrow LSL3D$ is missing

This contribution: LSL3D, a new segment-based algorithm

- **Step 1:** Extension of *LSL* to 3D images
- Step 2: Segment overlap detection with Finite State Machine (FSM)
- **Step 3:** Computational re-use & simplification of FSM

Algorithm structure: Direct algorithms

Algorithm structure: LSL3D

Run-Length Encoding (RLE) algorithm: pixels \rightarrow segments

Unification: segments \rightarrow provisional labels

Transitive Closure: provisional labels \rightarrow final labels **Relabeling**: write final labels

Algorithm structure: LSL3D

Run-Length Encoding (RLE) algorithm: pixels \rightarrow segments

 \Rightarrow store segments (start & end) into RLC table & ER table (pixel pos. \rightarrow segment id)

Unification: segments \rightarrow provisional labels

 \Rightarrow detect segments overlaps between lines, store provisional labels into ERA table

Transitive Closure: provisional labels \rightarrow final labels

Relabeling: write final labels

RLE algorithm: Same as in 2D Unification 3D: between 5 lines (vs 2 in 2D)

RLE algorithm: Same as in 2D Unification 3D: between 5 lines (vs 2 in 2D)

RLE algorithm: Same as in 2D Unification 3D: between 5 lines (vs 2 in 2D)

RLE algorithm: Same as in 2D Unification 3D: between 5 lines (vs 2 in 2D)

Random datasets: State of the Art

Random datasets: LSL3D

N. Maurice, F. Lemaitre, J. Sopena. L. Lacassagne

LSL3D: run-based CCL for 3D volumes

7 / 20

Medical datasets

Mitochondria (3 \times 3D images) 1024 \times 768 \times 165

density = 5.8%run/MPxls = 1500CCs/MPxls = 0.31 \Rightarrow simple images

OASIS (373 \times 3D images) 256 \times 256 \times 128

density = 19.8%run/MPxls = 28000CCs/MPxls = 380 \Rightarrow complex images

Medical datasets: State of the Art

N. Maurice, F. Lemaitre, J. Sopena. L. Lacassagne

LSL3D: run-based CCL for 3D volumes

9 / 20

Medical datasets: LSL3D

Medical datasets: LSL3D

Medical datasets: LSL3D (steps)

<u>N. Maurice</u>, F. Lemaitre, J. Sopena. L. Lacassagne

Step 2: Finite-State Machine-based unification

Step 2: Finite-State Machine-based unification

Step 2: Finite-State Machine-based unification

Random datasets: LSL+FSM

Benchmark: *YACCLAB* Hardware: Xeon Gold 6126

LEB_3D RBTS_3D EPDT_3D_19c EPDT_3D_22c LSL_ER LSL_FSM

<u>N. Maurice</u>, F. Lemaitre, J. Sopena. L. Lacassagne

LSL3D: run-based CCL for 3D volumes

11 / 20

Medical datasets: LSL+FSM

Medical datasets: LSL+FSM

LSL_FSM faster than LSL_ER by \times 1.1 LSL_FSM slower than LSL_ER by \times 0.95

LSL3D: run-based CCL for 3D volumes

Medical datasets: LSL+FSM

N. Maurice, F. Lemaitre, J. Sopena. L. Lacassagne	LSL3D: run-based CCL for 3D volumes	July 6, 2022	12 / 20
---	-------------------------------------	--------------	---------

Unification: 3 lines re-processed during next iteration

Unification: 3 lines re-processed during next iteration **Idea:** Computational re-use by caching partial results (*double-line*):

Unification: 3 lines re-processed during next iteration **Idea:** Computational re-use by caching partial results (*double-line*):

Unification: 3 lines re-processed during next iteration **Idea:** Computational re-use by caching partial results (*double-line*):

LSL3D: run-based CCL for 3D volumes

Unification: 3 lines re-processed during next iteration **Idea:** Computational re-use by caching partial results (*double-line*):

Unification: 3 lines re-processed during next iteration **Idea:** Computational re-use by caching partial results (*double-line*):

- \Rightarrow fewer operations
- \Rightarrow simpler FSM (9 states, 18 transitions)

Random datasets: LSL+FSM+DOUBLE

g = 16g = 1(simple) (complex) Benchmark: YACCLAB Hardware: Xeon Gold 6126 Execution Time [ms] 005 007 007 LEB 3D Execution Time [ms] RBTS 3D • EPDT_3D_19c • EPDT_3D_22c LSL ER LSL_FSM 0 50 100 LSL_FSM_DOUBLE 50 100 Density [%] Density [%]

N. Maurice, F. Lemaitre, J. Sopena. L. Lacassagne

LSL3D: run-based CCL for 3D volumes

Medical images: LSL+FSM

LSL_FSM faster than LSL_ER by \times LSL_FSM slower than LSL_ER by \times 1.1 0.95

Medical images: LSL+FSM+DOUBLE

LSL_DOUBLE faster than LSL_ER by LSL_DOUBLE as fast as LSL_ER \times 1.1 \Rightarrow Faster & Regular

N. Maurice, F. Lemaitre, J. Sopena. L. Lacassagne

LSL3D: run-based CCL for 3D volumes

15 / 20

LSL3D with Hardware acceleration

Performance evaluation: RLE, Unification, Transitive Closure, Relabeling

LSL3D with Hardware acceleration

Performance evaluation: RLE, Unification, Transitive Closure, Relabeling \Rightarrow 70-90% of execution time

16 / 20

LSL3D with Hardware acceleration

Performance evaluation: RLE, Unification, Transitive Closure, Relabeling \Rightarrow 70-90% of execution time

Fortunately: RLE and Relabeling benefit from instruction level parallelism [14] Single Instruction Multiple Data (SIMD): *SSE4*, *AVX2* and *AVX512*

16 / 20

Random datasets: LSL3D with SIMD

Medical datasets: LSL3D with SIMD

 $\texttt{SSE} \Rightarrow \texttt{faster}$ than State-of-the-Art

AVX & AVX512: no significant speedup compared to SSE

<u>N. Maurice</u>, F. Lemaitre, J. Sopena. L. Lacassagne

LSL3D: run-based CCL for 3D volumes

19/20

Conclusion

We propose a new CCL algorithm for 3D images that is based upon

- 1. a segment-based approach
- 2. an optimized FSM for merging segments with cache re-use mechanism (double-line)
- 3. an efficient SIMD implementation
- **Goals accomplished** \Rightarrow faster than State-of-the-Art (or equivalent) \Rightarrow lower sensivity to image characteristics

Future work: parallelization on multi-core CPU and GPU

References I

- A. Rosenfeld and J. L. Pfaltz, "Sequential Operations in Digital Picture Processing," *Journal of the ACM*, vol. 13, pp. 471–494, Oct. 1966.
- K. Wu, E. Otoo, and K. Suzuki, "Optimizing two-pass connected-component labeling algorithms," *Pattern Analysis and Applications*, vol. 12, pp. 117–135, June 2009.
- L. He, Y. Chao, and K. Suzuki, "A Linear-Time Two-Scan Labeling Algorithm," in 2007 IEEE International Conference on Image Processing, (San Antonio, TX, USA), pp. V 241–V 244, IEEE, 2007.
- C. Grana, L. Baraldi, and F. Bolelli, "Optimized Connected Components Labeling with Pixel Prediction," in Advanced Concepts for Intelligent Vision Systems (J. Blanc-Talon, C. Distante, W. Philips, D. Popescu, and P. Scheunders, eds.), vol. 10016, pp. 431–440, Cham: Springer International Publishing, 2016.

References II

- F. Bolelli, S. Allegretti, and C. Grana, "One DAG to rule them all," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Jan. 2021.
- Lifeng He, Yuyan Chao, and K. Suzuki, "Two Efficient Label-Equivalence-Based Connected-Component Labeling Algorithms for 3-D Binary Images," *IEEE Transactions on Image Processing*, vol. 20, pp. 2122–2134, Aug. 2011.
- C. Grana, D. Borghesani, and R. Cucchiara, "Optimized Block-Based Connected Components Labeling With Decision Trees," *Transactions on Image Processing*, vol. 19, pp. 1596–1609, June 2010.
- F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, "Spaghetti Labeling: Directed Acyclic Graphs for Block-Based Connected Components Labeling," *IEEE Transactions on Image Processing*, vol. 29, pp. 1999–2012, 2020.

References III

- M. Sochting, S. Allegretti, F. Bolelli, and C. Grana, "A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes," in *International Conference on Pattern Recognition*, p. 8, 2021.
- Lifeng He, Yuyan Chao, and K. Suzuki, "A Run-Based Two-Scan Labeling Algorithm," *IEEE Transactions on Image Processing*, vol. 17, pp. 749–756, May 2008.
- L. Lacassagne and A. B. Zavidovique, "Light speed labeling for RISC architectures," in *IEEE International Conference on Image Analysis and Processing (ICIP)*, 2009.
- L. Lacassagne and B. Zavidovique, "Light speed labeling: Efficient connected component labeling on RISC architectures," *Journal of Real-Time Image Processing*, vol. 6, pp. 117–135, June 2011.
- C. Grana, "Yacclab https://github.com/prittt/YACCLAB," 2016.

References IV

F. Lemaitre, A. Hennequin, and L. Lacassagne, "How to speed Connected Component Labeling up with SIMD RLE algorithms," in *Proceedings of the 2020 Sixth Workshop on Programming Models for SIMD/Vector Processing*, (San Diego CA USA), pp. 1–8, ACM, Feb. 2020.