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ABSTRACT
Connected Component Analysis is vastly used as a building

block for many Computer Vision algorithms from many fields like
medical image processing, surveillance, or autonomous driving. It
extends Connected Component Labeling by computing some features
of the connected components like their bounding box or their surface.
As such, Connected Component Analysis is a voting algorithm just
like histogram computation or Hough transform. Voting algorithms
are difficult on many-core architectures like GPUs because of the
serialization of atomic memory accesses. The trend to increase the
number of cores makes this issue even more critical.

This paper explores multiple ways to reduce those conflicts for
voting algorithms and especially for Connected Component Analysis.
We show that our new algorithm is from 4 up to 10 times faster than
State-of-the-Art on average on an Nvidia A100.

Index Terms— Voting algorithm, Connected Component Analy-
sis, GPU, Cuda, Histogram

1. INTRODUCTION

Connected Component Labeling (CCL) is a crucial part of Com-
puter Vision and is as old as the field [1] [2] [3]. Many applications
using CCL require to compute some features for each connected
component like its bounding box, its surface or its centroid. This
can be used directly by the application or just used to filter out small
connected components. This evolution of CCL algorithm is called
Connected Component Analysis (CCA). CCA is used by many medi-
cal applications [4] [5] [6] [7] [8], surveillance [9] [10], autonomous
driving [11] [12] and other Computer Vision applications [13] [14].

CCL on CPUs has been heavily studied and optimized [15] [16]
[17] [18]. Early GPU CCL algorithms were iteratives [19] [20] [21].
The first direct CCL algorithm for GPUs was introduced by Komura
[22] and improved by Playne [23] by limiting the number of unions
performed.

On the other hand, parallelization of CCA is much harder as it is a
voting algorithm just like histogram computation or Hough transform.
This issue arises from the serialization of memory accesses and is
amplified by the high number of cores of the GPUs. Therefore, while
there are many hardware algorithms [24] [25] [26] [27], there is only
few algorithms for multi-core CPUs [28] [29] and GPUs [30] [31].

Our contribution is the exploration of three novel ways to reduce
serialization of voting algorithms on GPUs and their application to a
new CCA algorithm, faster than State-of-the-Art.

2. STATE-OF-THE-ART

Concurrent voting algorithms rely on atomic read-modify-write in-
structions. When multiple threads vote in the same cell (ie: same
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Fig. 1: Time per image as a function of image density. State-of-the-
Art algorithms were run on 8192×8192 random images on a A100.
Dotted line is the percolation threshold at d = 60%.

memory location), their accesses are serialized in order to keep the
atomic aspect of the access. For CCA, voting happens when the
features of a connected component are computed by multiple threads
in parallel. When a connected component is big, many threads will
update the features of this component, and thus perform atomic mem-
ory accesses at the same location. This algorithm, even if parallel,
performs in the same way as the equivalent sequential algorithm
would, and loses all benefits from the parallelism of GPUs. The HA
algorithm [31] is, to our knowledge, the only CCA algorithm that
tackles this issue. Figure 1 shows the processing time to process
random images on an Nvidia A100 depending on the foreground
pixel density for the naive CCA approach and the optimized HA algo-
rithm. We can clearly see that the processing time for the naive CCA
algorithm is very slow after the percolation threshold at d = 60%
and keeps getting worse. In fact, the maximum processing time (at
d = 100%) is 19× higher than before the percolation threshold. At
this point, the naive algorithm is fully serialized, and adding more
cores will not improve the processing time. HA partially solves this
issue, but an elongated peak remains at the percolation threshold:
the maximum processing time (at d = 65%) is still 8× higher than
before the percolation threshold.

The best solution to speed the histogram computation up is to
have a private copy of the histogram for each thread (or at least warp),
and merge them together at the end. However, this technique cannot
be used for CCA as the number of cells is much higher (one cell per
connected component).

3. REDUCING CONFLICTS

3.1. Full runs (FLSL)

HA [31] algorithm processes lines per bloc of 64 pixels per warp.
It groups pixels into sub-runs within those blocs in order to reduce
merge conflicts. Therefore a single warp processes exactly 64 pixels



Algorithm 1: Kernel for FLSL segment detection
1 n← 0 . Number of runs on the line y
2 mp ← 0 . Previous pixel mask
. Detect runs

3 for x← laneid() to width by warp_size do
4 p← I[y · width + x]
5 mc ← __ballot_sync(ALL, p)

. Detect edges
6 me ← mc ˆ __funnelshift_l(mp,mc, 1)
7 mp ← mc

. Count edges before current index
8 er← n+ __popc(me & lanemask_le())
9 ER[y · width + x]← er

. “Compress store”
10 if me &ml then RLC [y · width + er− 1]← x
11 n← n+ count_edges(me) . same n for the whole warp

12 if n is odd then
13 if tx = 0 then RLC [y · width + n]← w
14 n← n+ 1

15 if tx = 0 then N [y]← n
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Fig. 2: Example of a segment and its associated run-length encod-
ing with a semi-open interval [0, 3[4, 6[8, 9[ with a 4-wide warp
compress.

per iteration, even if there is a single run within this bloc. Conse-
quently, the longer the runs, the less parallelism is used. Moreover,
if a run spans multiple blocks, features for this run will be updated
multiple times (once per block).

In order to avoid those problems, it is possible to use full runs,
and assign a thread per run. If a run spans the entire row, it will still
be processed once and by only one thread. There are already CPU
algorithms implementing those ideas: the LSL [29] and derivatives.
We re-designed FLSL [18], a variant of LSL for SIMD CPU (SSE,
AVX512, Neon), to target GPUs and address their architectural con-
straints. The crucial part is to first do a segment detection that consists
in an RLE encoder and relies on “compress-store” (Figure 2). Indeed,
the run boundaries are the position of the edges (when pixels change
value). Compress-store can be implemented rather easily on GPUs
thanks to __ballot_sync and __popc (Algorithm 1). 2-pass are
required to process a single row: first detect segments (one thread
per pixel), and then label segments (one thread per segment). Those
passes are done in the same kernel. Like HA or naive, feature updates
are done once for each segment in a dedicated kernel after the image
as been labeled.

3.2. On-the-fly feature merge (OTF)

The second method to reduce contention is to take advantage of the
fact that we can start to compute the features while the connected
components are discovered. This requires a concurrent way to move
features from a location to another while two labels are merged
together.

Algorithm 2: Function for on-the-fly merge
1 operator otf_merge(l1, l2)
2 l1 ← find(l1)
3 l2 ← find(l2)
4 __threadfence()
5 while l1 6= l2 do
6 if l2 < l1 then swap l1, l2
7 l← atomicMin(L[l2], l1) . label merge
8 __threadfence()
9 s ← atomicExch(S [l2], 0) . feature extraction

10 atomicAdd(S [l1], s) . feature merge in current root
11 __threadfence()
12 if l = l2 then break
13 l2 ← l

. Ensure the features have reached an actual root
14 a← find(l1)
15 __threadfence()
16 while a 6= l1 do
17 s ← atomicExch(S [l1], 0)
18 atomicAdd(S [a], s)
19 __threadfence()
20 l1 ← a
21 a← find(l1)
22 __threadfence()
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Fig. 3: Lifelines of labels during OTF merge. Solid black lines are
lifelines of labels as root. Lifelines are dashed when label is no longer
a root. Black arrows are equivalence recording (Unions). Blue arrows
are feature movements. Chronological order is from left to right.

To do so, their instantaneous roots are retrieved, and the higher
one is made point to the lower one. The features from the higher
one are extracted with an atomicExch with 0, preventing them
from being extracted multiple times. Those extracted features are
then merged with the features of the lower root with an atomicAdd.
Similarly to Komura’s equivalence building [22], those steps need to
be repeated if the roots have been altered by another thread (Algo-
rithm 2).

Figure 3 shows an example of such an on-the-fly merge with a
representation of the lifelines of each labels, the equivalences between
labels and feature movements. On this example, the equivalence
2 ≡ 1 is recorded after 4 ≡ 2 , but before features from 4 were

merged into 2 . Therefore, the thread merging 4 into 2 needs to
merge 2 into its new root 1 , otherwise, features will remain in a
non-root node (ie: the accumulation will be incomplete).

While the number of updates required with OTF is actually higher
than without, the number of conflicts is reduced. Indeed, the updates
are done while the connected components are not yet fully discovered:
threads accumulate into provisional labels rather than final roots.



Algorithm 3: Function for feature update with conflict
detection
1 operator feature_update_cd(mask , l, s)
2 peers ← __match_any_sync(mask , l)
3 rank ← __popc(peers & lanemask_lt())
4 leader ← rank = 0
5 peers ← peers & lanemask_gt()

. Reduce features among peers
6 while __any_sync(mask , peers) do
7 next ← __ffs(peers)
8 s′ ← __shuffle_sync(mask , s,next)
9 if next 6= 0 then s ← s + s′

10 peers ← peers & __ballot_sync(mask , rank is even)
11 rank ← rank » 1

12 if leader then atomicAdd(S [l], s)
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Fig. 4: Parallel masked reduction for conflict detection during surface
computation.

3.3. Conflict detection (CD)

To reduce the number of collisions during feature updates, we pro-
pose the conflict detection (CD) variant, that transparently replaces
the naive way of voting for computing features. Before merging
the features in memory, each thread will check which thread of
the warp is processing the same component. This is done with
__match_any_sync primitive introduced in Volta GPUs. Threads
will elect a leader per component, and accumulate into the leader
their features with __shfl_sync (Figure 4). Then, only the leader
actually accumulates the features for the component in memory. This
way, only a single thread per warp accumulates features for a com-
ponent, but multiple components can still be processed in parallel by
the warp. The whole process is detailed in Algorithm 3.

This method is classified as “Opportunistic Warp-level Program-
ming” [32] and is made possible by the __match_any_sync in-
struction. The other crucial part of this algorithm is the reduction of
features into the leader. A warp can process multiple components
and thus it is necessary to perform multiple reductions on distinct
partitions of the warp in parallel. Few resources are available to
perform such a “masked reduction” and the only mention we found
is from an Nvidia blog post [33].

4. RESULTS

In order to characterize how algorithms perform, we ran all the vari-
ants proposed as well as the State-of-the-Art algorithm HA [31] on
random images. For reproducible results, MT19937 [34] was used to
generate images of varying density (d ∈ [0%− 100%]) and granular-
ity (g ∈ {1 − 16}) like in [17]. A smaller granularity means more
complex images with finer details.
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Fig. 5: Number of atomic updates and conflicts for all versions
on 8192×8192 random images at g = 1 as a function of density.
Number of conflicts is estimated from a very simple probabilistic
model. Logarithmic scale is used to accommodate the wide range of
values.

We also chose a representative set of features to benchmark.
The most commonly used features are the number of pixels (ie: the
surface) of the connected component (S ) and the bounding box
(BB ), which gives the extents (minx, miny , maxx, maxy) of the
component in the x and y directions. Those features are encoded as
32-bit integers which is enough for images smaller than 232 pixels
(65 536×65 536 images). Another feature of interest is the centroid
that can be computed from the surface S and the first statistical raw
moments Sx and Sy (respectively the sum of x and y coordinates of
the pixels). Those extra features require 64-bit integers in order to
handle images larger than 2048×2048 without overflows. We chose
to compute all those 7 features (five 32-bit integers and two 64-bit
integers) as it represents a useful set of features for many applications.
Moreover, the function connectedComponentsWithStats
from OpenCV [35] computes exactly those features which is unfortu-
nately unavailable for GPU.

4.1. Number of updates and conflicts

We present here how the different schemes affect the number of
atomic updates and more importantly the number of conflicting up-
dates. The number of atomic updates has been precisely measured
for each connected component. The number of conflicts is estimated
from the number of atomic updates as the probability that two feature
updates picked at random are to the same label (ie: the same memory
location) multiplied by the total number of updates. If Ul is the num-
ber of updates of a label l, then the estimated number of conflicts is(∑

l Ul
2
)
/
(∑

l Ul
)
.

Figure 5 shows the number of atomic updates of the features as
well as the estimation of the number of conflicting updates. HA and
HA+OTF have been omitted from Figure 5 as they are almost identical
to FLSL and FLSL+OTF respectively. The number of atomic updates
of the naive version is linear with the number of foreground pixels,
and all other versions reduce the number of updates. Full runs (FLSL)
decreases the number of updates slightly more than HA, but this
effect is mainly visible for high density images. On-the-fly merges
(OTF) actually increase the number of updates, especially around
the percolation threshold (at d = 60%). Conflict detection (CD)
highly reduces the number of updates, especially after the percolation
threshold. Figure 6 is a visual example of the reduction of the update
number (OTF is excluded from this example because of its parallel
nature).

Looking at the number of conflicts, the picture is drastically dif-
ferent. First, the number of conflicts before the percolation threshold
is tiny for all versions, even the naive one. Then, despite the higher
number of updates, OTF actually has the lowest conflict count af-



algorithm updates count pixels generating feature updates
naive 229
HA 119
FLSL 101
HA+CD 80
FLSL+CD 48
lower-bound 10

Fig. 6: Example showing the difference in feature updates of the
algorithms. For the sake of demonstration, 8-connectivity is used and
warps are 8-pixel wide and their vertical boundaries are represented
with yellow lines (relevant only for HA algorithms).

ter the percolation threshold. Indeed, the updates are performed on
different labels, hence the probability that 2 threads are conflicting
decreases. The behavior of the other versions is similar to the number
of atomic updates.

According to these numbers, CD and OTF are effective to reduce
the number of conflicts. CD is also great at reducing the total number
of updates, especially when combined with FLSL.

4.2. Processing time

We ran all versions on an Nvidia Tesla A100 GPU for 8192×8192
random images at several granularities (g ∈ {1, 4, 16}). For each
image, the algorithm was run 20 times and the minimum processing
time was taken. Throughputs are averaged over the density range
[0%− 100%].

If we look at the processing time of all the variants as a func-
tion of the density (Figure 7, left column), we can see the peak at
the percolation threshold for HA and FLSL, like expected from the
estimated number of conflicts. OTF is efficient after the percolation
threshold (d > 60%) where most conflicts are expected, but seems to
suffer from having more updates before as it is slower than without.
CD is efficient both before the percolation where it basically does
not change the processing time, and after the percolation where the
conflict reduction is useful. Looking at higher granularities (less
detailed images), it appears that HA+CD is not much different from
HA alone, and suffers from processing sub-runs instead of full runs.
FLSL+CD appears to be the most effective because the conflict de-
tection is applied on more updates than with HA+CD. The picture is
mostly the same for all sizes (Figure 7, right column). In particular,
FLSL+CD remains the fastest for all sizes and granularities.

In Table 1, we summarized the average throughput of various
algorithms and different configurations. The naive and HA algo-
rithms, discussed in section 2, are shown as a reference point. We
first showed the impact of the OTF and CD transformations to the HA
algorithm and three versions of our proposed new algorithm. The con-
figurations have varying granularity to represent images containing
different component sizes. The full image configuration represent an
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Fig. 7: Time per image for g = {1, 4, 16} on Nvidia A100. Time
versus density for 8192×8192 images (left). Average throughput
versus size from 256×256 to 16 384×16 384 (right).

Algorithm g = 1 g = 4 g = 16 full image
naive 0.966 0.994 0.985 0.337
HA 4.22 13.2 25.8 16.6
HA+OTF* 14.6 28.7 59.3 66.2
HA+CD* 13.8 23.9 27.4 16.6
FLSL* 4.85 19.1 61.9 244
FLSL+OTF* 20.8 65.1 160 238
FLSL+CD* 24.5 83.2 170 244
* : our contributions

Table 1: Average CCA throughput (Gpix/s) for 8192×8192 on an
Nvidia A100

image with only one big component, filling the whole space: it is the
worst case for the naive CCA algorithm as it maximize the number
of memory conflicts. Indeed, both naive and HA struggle on full im-
ages, while OTF and FLSL variants achieve best throughput for full
images. FLSL+CD appears to be the fastest for all the benchmarked
configurations and is from 4 to 10 times faster than HA on average.

5. CONCLUSION

This article explored three new ways to overcome serialization issues
of voting algorithms on GPUs. Applied to Connected Component
Analysis (CCA), the combination of full runs (FLSL) and conflict de-
tection (CD) achieves the most effective conflict reduction. Memory
conflict issues are crucial to solve as the number of cores increases
at each hardware generation. As a matter of facts, our new CCA
algorithm (FLSL+CD) is from 4 up to 10 times faster on average than
State-of-the-Art algorithm HA on an Nvidia A100.
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