Feature Points Tracking Adaptive to Saturation
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_ Abstract—This paper proposes a color tracking strategy de- The aim of this article is to go further with the approach
signed to improve the robustness against luminance and sat- proposed in [5] where the author addresses the problem of

uration changes due to illumination variations. On the one ¢qnr relevance by defining a coefficient depending on the
hand, color is helpful in terms of photometric invariance ard - - .
saturation and intensity.

separability power. On the other hand, it is more costly in time . ) )
and resources and most color invariants are ill-defined at lov We propose a KLT-like tracking method [6], [7] which
saturation. To answer these issues, the proposed method \ghts adapts to the context depending on the color relevance. It is
the color and luminance information adaptively with respet¢ to  known that large displacements are difficult to follow with

the current color saturation. A particular attention is also given KLT, therefore the implementation of a multiscale tracking
to chose a color representation with low computational cost ’

The method is compared to classical color tracking in terms pyra_mid forme_d by a stack _Of different resolutio_n images
of accuracy, robustness and executing times. The experimet  Provides a partial solution to this problem. The algorithearts
results achieved on several image sequences confirm the goodat the lower resolution level and refines its results at nexll
performances of the method. until it gets the final locations of the points at the original
resolution level [8].

The remainder of the paper is structured as follows. Section

It is proved that color provides valuable information tq| gives a short explanation of the chosen color features and
improve many computer vision applications, such as segme¥xplains the color relevance coefficient. The tracking méth
tation, indexing or tracking [1]. Color feature points cae bis detailed in Section Ill and additional technical detaite
detected by combining the gradient of Dizenzo defined f@fovided by Section IV. The experiments are shown in Section
vectorial images and the Harris operator in the same wgy Several sequences tracking results are compared in terms

as for gray-scale images [2]. The color feature points ag robustness, accuracy and time costs.
usually complementary to the luminance points and more

discriminative, since two different colors can have the sam II. COLOR SPACES ANDATTRIBUTES

luminance. In applications like motion analysis for which a ideri ‘ h point belonai h
large amount of points have to be tracked, these aspects ca&OnSI ering matte suraces, each point belonging to the

be particularly useful surface of an object reflects the incoming light equally in al

Another advantage of color is the opportunity to use Colajr_ectmns, forming an hemisphere of light centred arouisl t

invariants and color constancy techniques which are rdiwstpO'_m‘ The colo_r of the light cap_tu_red by a sensor,,depends
illumination intensity and geometry changes [3], [4]. mainly on the light spectrum arriving to the surface’s patch

Despite the good performance of such features, they o)y} the reflectance coefficient which characterizes thatsarf
unfortunately dedicated to the well-saturated coIoré.ehw paint, on the geometry conditions and of course on the snsor

since they do not depend on the luminance variations, thgﬁgsmv!':jy t(_) thehca%t.u:]ed “gh,t spec(:jtrllJmé h |
use can lead to the lost of some useful textural information, ~CMS!d€rnNg the dichromatic model [9], the color vector

Another fact against their indiscriminate use is that treydt C - (_R’ G}B) Lor a [l)om_tp n thed|r|nz(ijge, which s the
to be noisy when luminance and/or saturation is low. In theQLolection of a physical point” is modeled as

I. INTRODUCTION

nditions, it is recommen favor luminance inforioati

conditions, it is recommended to favor luminance informati C (p) = my (P) Cy (p) 1)

it can be more reliable, less noisy, requires less computing

power and converges faster. whereC;, = gC’,f?;, C¢,CP) is the color related to the body
Within an image sequence, it is possible to experimefar diffuse) reflection. The termn;, models the dependence

an important decrease of lighting intensity. Even worsg tfP" the scene geometry (lighting angle, orientation of sigffa
illumination change is generally not uniform in the wholé'S an example, for the red channél,™

image. Therefore, it is not straightforward to identify thest R

feature for tracking, either color or luminance informatio Gy (p) = /ASR (NI A P)Rs (A, P)dA @)



where Sk () is the camera sensitivity which is a function
of the wavelength\, Z is the illuminant spectrum an®;

the reflectance of the material. If we assume that()\)

is band limited around the red wavelengtly then we can
approximate it with a constaifiz for the band of interest. By
considering the same for all the sensors, we get the follgwin
simplification: b)

C(p) =a(p).Cr(p)ms(p)) (3)

where. represents the Hadamard product. In (4),represents

the color of the illuminant and it depends on the gains of the
camera Sg, Sg, Sp). Finally, a (p)=(ag, ag,ap) depends on c)
the reflectance and is supposed to be constant during the time

a)

A. Color features
. . . Fig. 1. a)Original RGB images. b) L1 invariant images. ¢) Hoariant
The most classical invariant colorspaceg(i$, S, V') where images.

the hueH gives an interpretation of color which is invariant
to shadows and specular reflections [8],is the luminance
and S the saturation. While Hue has interesting invarianagsing L1. This is also true with Hue since the title of the
properties, its value is not so reliable when color satamatigame can not be read. It is also obvious that the hue produces
is low. In addition, its calculation is more elaborated thamore noise tharl.1, especially when saturation is 16win a
luminance and less easy to accelerate since it is basedtmatking context, this problem can lead to the detection of
trigonometric functions. outliers points and to matching instabilities. The follogi

A very direct way to separate chrominance and luminaneabsection introduces the color relevance function, wisch
from the original(R, G, B) components is to normalize them,used to determine when the color invariant feature can be use
obtaining the components;, g, b) which depend only on the or not.
albedo and therefore have no luminance information. Cens

ering the red component and the model of (3), the equati
reductions lead finally to: Carron has proposed in [10] a method for color contour

detection in the HSV space by fusing the information from

gn Relevance of color versus luminance.

r= R = ar (4) Hue, Saturation and Value channels while keeping coherency
R+G+B  artacg+ap with the introduction of relevance measure which depends on
Starting from rgb, the scalar valueLl = max(r,g,b) the saturation channel. Hue can be considered as a comglemen

represents the more saturated channel while being easietad/alue and Saturation channels and be exploited only when

manipulate compared to a three-dimensional data. As mahys considered relevant. We can also privilege it over ¥alu

color invariants, L1 reduces the separability between coland Saturation and consider the latter only when Hue is not

ors. Indeed, as, g or b, all gray colors become indistinctrelevant. This approach can be extended to other invariants

(r=g=>b=1). In addition, L1 can reduce the distinctionwith similar properties.

between two colors with same maximum value. In the contextWe use for each point a relevance coefficient (p) which

of the paper, where some small windows of interest are coiesults from a sigmoid function applied to the saturatioat

sidered, it is assumed that the probability that two neiginbopoint p:

pixels have same maximum but different colors is low in most 1

real sequences. B(S) = — | = + atan (ug (S — Sp)) (5)
Fig.1 shows a few images from the sequerl@ardgame i 7 2_ .

from the ALOI database The first row displays the clas- WhereSy is the inflection point ands the slope parameter.

sical RGB images. Obviously, such features suffer fronWnder So, the luminance is privileged, otherwise the color

the illumination changes. The invariant feature$ and H invariant feature is considered to be sufficiently well-dedl

are shown on the second and third rows respectively. A8d can be usgd properly. o

expected, the photometric variations are no more visible inFOr a1 RG B image, the saturation is calculated as

these colorspaces. g _ maz (R, G, B) — min (R, G, B) 5
However, this robustness is reached at the price of a lower - maz (R, G, B) (6)

separability between colors, especially when their séituras

low. This is noticeable for instance on the eyes of the charac

drawn on the box of Fig.1, which become un'formly gray 2pue is artificially represented in range [0-255] althouglisin angular

value. Therefore some of the noise is due to that repregamtand some of
Ihttp://staff.science.uva.nl/aloi/ the noise is due to ill definition of Hue.

for each pointp.



Coefficient 8 is defined at each pixel involved in the with:

tracking, in order to use color when it is meaningful and to & N

rely on luminance otherwise. Ap = Di(e) - Dw (5 (q’ A)) (13)
Finally, several colorspaces will be compared for tracking AY = I(q) — I (5 (q,A)) (14)

purpose:
« The luminancdl. The vectorsV p andV are defined for an affine motion model
o A color invariant: H or L1. as

« The colorspace®GB, HSV, (r,g,b). D D D D D p 1T
; » OV, A9, 0) . Vp =gt gz L 15
« The mixture of a color invariant witi (with photometric p=l9 9 = Iy Y9 ygyT ] (15)
normalisation [11]), hereafter represented respectiasly Vi=[gl g zgl xg) wygl ygl] (16)
D

H’L_l’HP ar_ldLlP. _ _ _ whereg?, g andg], g, are respectively the invariant chromi-
Following section we explain the adaptive tracking procgance and the luminance image gradients. Vekterused for
dure which combines the two components. the calculation of the Hessian matrix is defined as

I1l. A TRACKING PROCEDURE ADAPTIVE TO THE

SATURATION A A i 4 defined binat
- L where the gradients, and g, are defined as a combination
The tracking is done consideringy, Iy) and (Di, i), ot the chrominance and luminance gradients:
whereD is the color invariant for the colorspace in considera-

tion (H or L1) and! their corresponding luminance images at

their respective times andk’. A physical pointP is located Gz [vg2 + (1 =) gl] (17)

at the image irp andp’ for framesk and &’. _ D (]_ I 18
Each poinp andp’ has its corresponding coordinatesy). v [Wy ( _7) gy] (_ )_

For each poinp to be tracked, let be a small window of interest The forward-backward error [12] is employed for validating

W centred around it, ang a point located in/. The motion the tracking. This method relies on the assumption thaecorr

undergone by/V is modeled by a functiod (p, A) where the tracking should be independent of the direction of time-flow

vector A describes the deformation of the window from on¥Vhen a feature is occluded or when the tracker fails, it cistpu

frame to another. In that manner, the poiftat time k¥’ is @ random position that almost certainly does not correspond

T
Ve=1[9s 9y 292 29y Y9x Y9y |

located atp’ = § (p, A). with the output position obtained while tracking on the rmeee
The tracking procedure consists in computing the paranfense. By measuring these discrepancies it is possible to
ters A that minimize the following error function immediately reject unreliable features and eliminate ueat
drift.
2
c(A) =Y (1(0,4)en(e, A) + (1 —v(q.0)) er(q, A)) A point is lost or rejected when some of these situations
qeEW @ occurs: 1) the point is located outside the image; 2) its

convergence residue is greater than a threshold (we coedide

with: a mean difference ofp < 15 ande; < 15 in (11) and (12),
ep(¢,A) = ||Dy(q) — Dw (6(q,A))|| (8) thereforee (A) < 15 x n in (19) wheren is the number of
_ points inW); 3) its forward-backward error is greater than a
(@A) = lla) =T (0 (g, A))l © threshold (we considered a maximum distancel 6px); 4)
In addition,~ (p,p’) is the geometric mean of the relevancés Hessian matrix is not invertible and 5) it requires to imuc
coefficients for each of the points compared: iterations to converge.
N - The tracking adaptive to saturation will be compared to the
7 (7)) = VB (p) B () (10)  classical color tracking using the three componenis:; and

After a Taylor expansion for Dy (6(q,A)) and c¢3 (RGB, rgb or HSV), i.e by solving the following cost
I (6 (¢, A)) and keeping only the first order coefficients, ifunction:

yields the following approximation: ) 5 9
) A) = Di.(q) — D; JA 19
Dy (5(q,A) = Dy (5 (a,A)) + Gp (5 (a,A)) A ™ qezwelzzs (PL@) = Dilo (g, A7) 4

A A ) D The solving is based on the similar stages as in the previous
I (6(a,A) = Iv (6 (0,A)) +Gr (6 (0,A) ) JAA (12)  method.

whereG p and G; are the Jacobian matrices Df,, and I, IV. IMPLEMENTATION DETAILS
calculated for both directions andy. Working with equations

(11),(12) and (7), it finally results in the following lindzed ~_1he implementation has made use of theerse Compo-

system sitional algorithm as detailed in [13], calculating the Hessian
matrix only for the first iteration. As stated at the begirmmnin

(Z VCV£> AA =" AAL VD + (1 -7 AV, of the paper, the procedure follows a multiple scale apgroac

aow s starting with a coarse resolution, and refining the results



ascending in the pyramid as in [8]. Three levels are consiler
in the pyramid. The implementation takes advantage of the
SIMD (Single Instruction Multiple Data) instructions egth
by processing multiple pixels on a single color channel or
by processing multiple color components of a single pixel
simultaneously. For this purpose it is better to have data
aligned in memory: for 32 bit wide floating point data, we can &
process 4 elements at the same time in 128 bits wide registersjigs
Therefore, the initialRGB— images have been converted to ==
RGBX so each pixel occupies 128 bits in memory instead of
96 bits. Except for the simple tracking method based on the
minimization of 19 the extra memory is not a waste since it can
be used to store and additional channel relevance coefficien
required for the computation of in equation 10.

After color conversion when necessary, the feature points
are detected by the Harris operator dedicated to color imag ig. 2. Optical flow detected witlh 1P at Basketballsequence second frame.

. . “Displacement vectors in yellow are displayed magnified.

Then the color channels are loaded in the tracking pyramid.

Note that when processing multiple components at the same

time, the colorspacél/ SV cannot directly take advantage Ofchange during time. 3Pedestrian 2[15] is a low-resolution
the_ SIMD instructions with the original order of_allocatiorlou,[dOorS sequence experimenting a relatively strong camer
of its components, because the Hue component is an angyiafyement, it displays highly and low-saturated objects. 4)
quantity and requires modular arithmetic, obviously this B road is also an outdoor sequence recorded at very adverse
negative impact on the performance of the algorithm, whigfy,mination conditions, camera moves in a random fashion
will require more complex processing. harming the stability of tracking, and finally, Btneu schneé

V. EXPERIMENTS is a traffic scene recorded during a snow fall, coloured dbjec
appear low-saturated, this sequence gives the opporttmity
test the tolerance to noise.

In order to determine which colorspace can track more The optical flow detected from the first to the second
points feature lists were obtained for each of the testg&me of Basketballsequence is represented in Fig.2 with
colorspaces and grouped on a single list. Each of thegggnified yellow vectors, tracking was made with theP
feature lists is built Obtaining their gradients in vertieand model. The flow appears quite coherent Specia”y in textured
horizontal directions (applying a Sobel Filter), measgrfor  and coloured regions. The opposite happens on the upper-lef
each point the Harris operator response, applying a thi@shgorner, where there is no texture nor coloured regions. &hos
that depends on the global maxima of this function. Finallfeatures detected by thl invariant will be removed by the
local maxima are selected. DiZenzo gradient [2] is employgGrward-Backward error because of their random behaviour.
in RGB colorspace as well as Carron2 [10] gradient for HSV. Taple | shows the number of features successfully tracked

Sequences are played forward and then in reverse ordejfQach sequence and colorspace, the time required to track
verify if points come back to their initial location. Feaéupo- each feature is also shown. Indeed, the executing times are
sitions on the forward trajectory’ = (x;,%:+1,---,Xt+%), different from one method to the other because of the color
where k is the number of frames, are compared with thegonversion but also on the number of iterations required to
corresponding positions on the backward traject@fy = converge.

(%¢, Req1, - -+, Xtk ). If the calculated distances are less than |y \well-saturated sequences Bdsketball — and
a defined distancés, = 1.5px the features are considered aPedestrian2), the luminancel fails to track many of
tracked correctly. the features that other techniques are able to track enmgoyi

For the pyramidal tracking we use the exactly the sam@|or information. For example, in th€ardgamesequence
parameters (window sizes, number of levels,etc) as the oR@fich suffers an important change of illumination, Luminan
described in [8]. is able to track many of the features applying the photometri
normalisation, while RGB and HSV drastically fail to handle

this, while they behave pretty well in many of the sequences.

Five image sequences were considered during experimentsyy,q relatively high number of features successfully tracke

the first two sequences were captured indoors in a controliggl, 71 in many sequences prove its tracking capability. As
illumination environment, 1Basketbal[14] has stable illumi- expected, this invariant fails in sequences where colas-sat
nation conditions, it exhibits colourful and textured reabb- i1 is weak Tracking withL1P (mixture of maz(r, g, b)

jects that are somehow easy to followC2aydgame4] shows
a colourful and textured box with a little bit of specular eefl 3available on http:/ivasc.ri.cmu.edufidb/htm/jisotfex. html
tions in its borders, it suffers a strong illumination ditiea 4available on http://i21www.ira.uka.defimaggequences/#taxi

A. Experimental Setup

B. Experiment Results



| Seq | Features] I | RGB [ (r,g,b) [ HSV ] H [ HP [ L1 [ LIP ]

Basketball 07-14 2843 1147 1946 1598 1364 667 470 1814 1778
101 I6c 1-3 3179 1642 210 1266 54 696 130 1765 1400
Pedestrian 2 1-10] 1061 251 301 386 358 100 336 320 324
Road 16-54 2825 0 37 0 59 0 0 0 14
dtneu schnee 1-50| 2772 2192 2033 63 1521 0 1624 31 2026
Tracking time/featurgs] 0.000571| 0.001331| 0.001557| 0.001353| 0.000517| 0.001342| 0.000511| 0.001307
TABLE

TRACKING RESULTS

and I) we are able to handle this situation thanks to the
adaptive capability of this technique.l1P maintains the
tracking performance of thé 1 invariant in high-saturated
sequences and significantly improves the results for the low
saturated ones. Tracking with, g, b) does not improve at all
the results obtained witl.1 while incrementing significantly
the calculations.

L1 and L1P behave better than their equivalents for the
Hue invariant, being able to track more points for all the
tested sequences (except the peculiar case oPduestrian
2 sequence), that is probably due to the noisy character of the
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Hue component, mentioned in II-A. 01r
A qualitative analysis of the experimental results can be o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
. . 0 1 2 3 4 5 6 7 8 9
done with the help of colormaps as those built for Bes- Distance from the last frame

ketball sequence and displayed in Fig.4. Points are assigned
a color from a scale that goes from red to green denoting Fig. 3. Mean forward-backward euclidean distandgs(z:, 2+)
the frame where features were lost. Red for features thag wer
lost on the first frames and green for features correcthkadc
during the whole sequencél P keeps the good response ohoints in each frame of thBedestrian 2sequence. The error
L1 including areas that neithdr nor L1 were able to track ijncreases with the number of frames betwegnand #; in
(like the ear of the man on the right). the forward and backward trajectories, but remains lowan th
Fig.5 display the colormaps built for thPedestrian 2 one pixel for each method. Note that the use of a single color
sequence, Luminancé succeeds to track the features ovegomponent {1, H or L1) instead of the whole colorspace
the car on the left corner, mostly because this is the mq$tGB, HSV or rgb) usually leads to a lower accuracy.
textured region of the sequence. On the other side, it fails fhdeed the separability between colors can be lower due to
track the people walking at the center of the image that can @ reduction of components. However, as written in Table
regarded as color blobs. Almost any colorspace (except Hyethe computational costs are reduced with one component
succeeds to track correctly both the car (luminance regiosd the number of points correctly tracked higher in some
and the people walking at the center. difficult sequences, when illuminations changes occur.edix
It is also noticeable in Fig.5 that1P tracked less color gpproached,1P and H P provide a better accuracy compared
features thanL1 for this sequence. The influence of theg 1,1 and H respectively while maintaining the invariance

Luminance component, the same that improves the robustnggsperties needed for challenging tracking situations.
to track low-saturated regions, reduces at some propattien

ability to track coI.or _features. It is po§sible.to rt_aducesthi VI]. CONCLUSION
phenomenon by finding more appropriate sigmoid function
parametersS, andug. This article has exposed a feature points tracking proeedur

Execution times scale-up proportionally to the numbevhich combines luminance and color invariants for matte
of components exploited during tracking. Single componestrfaces with the help of a relevance coefficient. The use of
tracking techniques likel, Hue and L1 require less time the color invariantL1 = max (r,¢,b) has been proposed.
than multiple component techniques. Despite its simplizit It requires less calculations, it is easier to parallelizel a
terms of calculations, Luminancerequires almost the sameit provides better tracking results in terms of robustness.
execution time agfue and L1, because of the photometricExperimental results have shown that this combinationshelp
normalisation. Multiple component techniques require enoto distinguish more features and makes also possible t& trac
execution time, a price to pay for the robustness and capabithem better even if feature patches change in orientation,
to track complementary features. expanding the regions and conditions suitable for tracking

Fig.3 displays the mean forward-backward euclidean dis-The proposed method is somehow dependent on the sig-
tancesdg (z,#;) computed from all the correctly trackedmoid parameters, this is a subject to be explored on future



Luminance

L1P

Fig. 4. Tracking colormaps with Luminande L1 (max(r, g, b)) and L1 P (mixed I and L1) for the Basketballsequence. Points are painted in a color-scale
that goes from red to green representing the time the feataselost

Fig. 5. Tracking colormaps for the Pedestrian 2 sequencealfdhe tested colorspaces.

works, an on-line estimation of these parameters couldflienef6] T. Kanade and B. Lucas, “An Iterative Image Registratitechnique
significantly the speed of the algorithm.
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