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Abstract—This paper proposes a color tracking strategy de-
signed to improve the robustness against luminance and sat-
uration changes due to illumination variations. On the one
hand, color is helpful in terms of photometric invariance and
separability power. On the other hand, it is more costly in time
and resources and most color invariants are ill-defined at low
saturation. To answer these issues, the proposed method weights
the color and luminance information adaptively with respect to
the current color saturation. A particular attention is also given
to chose a color representation with low computational cost.
The method is compared to classical color tracking in terms
of accuracy, robustness and executing times. The experimental
results achieved on several image sequences confirm the good
performances of the method.

I. I NTRODUCTION

It is proved that color provides valuable information to
improve many computer vision applications, such as segmen-
tation, indexing or tracking [1]. Color feature points can be
detected by combining the gradient of Dizenzo defined for
vectorial images and the Harris operator in the same way
as for gray-scale images [2]. The color feature points are
usually complementary to the luminance points and more
discriminative, since two different colors can have the same
luminance. In applications like motion analysis for which a
large amount of points have to be tracked, these aspects can
be particularly useful.

Another advantage of color is the opportunity to use color
invariants and color constancy techniques which are robustto
illumination intensity and geometry changes [3], [4].

Despite the good performance of such features, they are
unfortunately dedicated to the well-saturated colors. Indeed,
since they do not depend on the luminance variations, their
use can lead to the lost of some useful textural information.
Another fact against their indiscriminate use is that they tend
to be noisy when luminance and/or saturation is low. In these
conditions, it is recommended to favor luminance information:
it can be more reliable, less noisy, requires less computing
power and converges faster.

Within an image sequence, it is possible to experiment
an important decrease of lighting intensity. Even worst, the
illumination change is generally not uniform in the whole
image. Therefore, it is not straightforward to identify thebest
feature for tracking, either color or luminance information.

The aim of this article is to go further with the approach
proposed in [5] where the author addresses the problem of
color relevance by defining a coefficient depending on the
saturation and intensity.

We propose a KLT-like tracking method [6], [7] which
adapts to the context depending on the color relevance. It is
known that large displacements are difficult to follow with
KLT, therefore the implementation of a multiscale tracking
pyramid formed by a stack of different resolution images
provides a partial solution to this problem. The algorithm starts
at the lower resolution level and refines its results at next level
until it gets the final locations of the points at the original
resolution level [8].

The remainder of the paper is structured as follows. Section
II gives a short explanation of the chosen color features and
explains the color relevance coefficient. The tracking method
is detailed in Section III and additional technical detailsare
provided by Section IV. The experiments are shown in Section
V. Several sequences tracking results are compared in terms
of robustness, accuracy and time costs.

II. COLOR SPACES ANDATTRIBUTES

Considering matte surfaces, each point belonging to the
surface of an object reflects the incoming light equally in all
directions, forming an hemisphere of light centred around this
point. The color of the light captured by a sensor, depends
mainly on the light spectrum arriving to the surface’s patch,
on the reflectance coefficient which characterizes that surface
point, on the geometry conditions and of course on the sensor’s
sensitivity to the captured light spectrum.

Considering the dichromatic model [9], the color vector
C = (R,G,B) for a point p in the image, which is the
projection of a physical pointP is modeled as

C (p) = mb (P )Cb (p) (1)

whereCb =
(

CR
b , CG

b , CB
b

)

is the color related to the body
(or diffuse) reflection. The termmb models the dependence
on the scene geometry (lighting angle, orientation of surface).
As an example, for the red channel,CR

b :

C
R
b (p) =

∫

λ

SR (λ) I (λ, P )Rb (λ, P ) dλ (2)



whereSR (λ) is the camera sensitivity which is a function
of the wavelengthλ, I is the illuminant spectrum andRb

the reflectance of the material. If we assume thatSR (λ)
is band limited around the red wavelengthλR then we can
approximate it with a constantSR for the band of interest. By
considering the same for all the sensors, we get the following
simplification:

C (p) = a (p) .CI (p)mb (p)) (3)

where. represents the Hadamard product. In (4),CI represents
the color of the illuminant and it depends on the gains of the
camera(SR, SG, SB). Finally,a (p)=(aR, aG, aB) depends on
the reflectance and is supposed to be constant during the time.

A. Color features

The most classical invariant colorspace is(H,S, V ) where
the hueH gives an interpretation of color which is invariant
to shadows and specular reflections [3],V is the luminance
and S the saturation. While Hue has interesting invariance
properties, its value is not so reliable when color saturation
is low. In addition, its calculation is more elaborated than
luminance and less easy to accelerate since it is based on
trigonometric functions.

A very direct way to separate chrominance and luminance
from the original(R,G,B) components is to normalize them,
obtaining the components(r, g, b) which depend only on the
albedo and therefore have no luminance information. Consid-
ering the red component and the model of (3), the equation
reductions lead finally to:

r =
R

R+G+B
=

aR

aR + aG + aB
(4)

Starting from rgb, the scalar valueL1 = max(r, g, b)
represents the more saturated channel while being easier to
manipulate compared to a three-dimensional data. As many
color invariants,L1 reduces the separability between col-
ors. Indeed, asr, g or b, all gray colors become indistinct
(

r = g = b = 1
3

)

. In addition,L1 can reduce the distinction
between two colors with same maximum value. In the context
of the paper, where some small windows of interest are con-
sidered, it is assumed that the probability that two neighbour
pixels have same maximum but different colors is low in most
real sequences.

Fig.1 shows a few images from the sequenceCardgame
from the ALOI database1. The first row displays the clas-
sical RGB images. Obviously, such features suffer from
the illumination changes. The invariant featuresL1 and H

are shown on the second and third rows respectively. As
expected, the photometric variations are no more visible in
these colorspaces.

However, this robustness is reached at the price of a lower
separability between colors, especially when their saturation is
low. This is noticeable for instance on the eyes of the character
drawn on the box of Fig.1, which become uniformly gray

1http://staff.science.uva.nl/˜aloi/

a)

b)

c)

Fig. 1. a)Original RGB images. b) L1 invariant images. c) Hueinvariant
images.

using L1. This is also true with Hue since the title of the
game can not be read. It is also obvious that the hue produces
more noise thanL1, especially when saturation is low2. In a
tracking context, this problem can lead to the detection of
outliers points and to matching instabilities. The following
subsection introduces the color relevance function, whichis
used to determine when the color invariant feature can be used
or not.

B. Relevance of color versus luminance.

Carron has proposed in [10] a method for color contour
detection in the HSV space by fusing the information from
Hue, Saturation and Value channels while keeping coherency
with the introduction of relevance measure which depends on
the saturation channel. Hue can be considered as a complement
to Value and Saturation channels and be exploited only when
it is considered relevant. We can also privilege it over Value
and Saturation and consider the latter only when Hue is not
relevant. This approach can be extended to other invariants
with similar properties.

We use for each pointp a relevance coefficientβ (p) which
results from a sigmoid function applied to the saturationS at
point p:

β(S) =
1

π

[π

2
+ atan (uβ (S − S0))

]

(5)

whereS0 is the inflection point anduβ the slope parameter.
Under S0, the luminance is privileged, otherwise the color
invariant feature is considered to be sufficiently well-defined
and can be used properly.

For anRGB image, the saturation is calculated as

S =
max (R,G,B)−min (R,G,B)

max (R,G,B)
(6)

for each pointp.

2Hue is artificially represented in range [0-255] although itis an angular
value. Therefore some of the noise is due to that representation, and some of
the noise is due to ill definition of Hue.



Coefficient β is defined at each pixel involved in the
tracking, in order to use color when it is meaningful and to
rely on luminance otherwise.

Finally, several colorspaces will be compared for tracking
purpose:

• The luminanceI.
• A color invariant:H or L1.
• The colorspacesRGB, HSV , (r, g, b).
• The mixture of a color invariant withI (with photometric

normalisation [11]), hereafter represented respectivelyas
H ,L1,HP andL1P .

Following section we explain the adaptive tracking proce-
dure which combines the two components.

III. A TRACKING PROCEDURE ADAPTIVE TO THE

SATURATION

The tracking is done considering(Dk, Ik) and (Dk′ , Ik′),
whereD is the color invariant for the colorspace in considera-
tion (H or L1) andI their corresponding luminance images at
their respective timesk andk′. A physical pointP is located
at the image inp andp′ for framesk andk′.

Each pointp andp′ has its corresponding coordinates(x, y).
For each pointp to be tracked, let be a small window of interest
W centred around it, andq a point located inW . The motion
undergone byW is modeled by a functionδ (p,A) where the
vectorA describes the deformation of the window from one
frame to another. In that manner, the pointP at time k′ is
located atp′ = δ (p,A).

The tracking procedure consists in computing the parame-
tersA that minimize the following error function

ǫ (A) =
∑

q∈W

(γ (q, q′) ǫD(q,A) + (1− γ (q, q′)) ǫI(q,A))
2

(7)
with:

ǫD(q,A) = ‖Dk (q)−Dk′ (δ (q,A))‖ (8)

ǫI(q,A) = ‖Ik (q)− Ik′ (δ (q,A))‖ (9)

In addition,γ (p, p′) is the geometric mean of the relevance
coefficients for each of the points compared:

γ (p, p′) =
√

βk (p)βk′ (p′) (10)

After a Taylor expansion for Dk′ (δ (q,A)) and
Ik′ (δ (q,A)) and keeping only the first order coefficients, it
yields the following approximation:

Dk′ (δ (q,A)) = Dk′

(

δ
(

q, Â
))

+GD

(

δ
(

q, Â
))

J
Â

δ ∆A

(11)

Ik′ (δ (q,A)) = Ik′

(

δ
(

q, Â
))

+GI

(

δ
(

q, Â
))

J
Â

δ ∆A (12)

whereGD andGI are the Jacobian matrices ofDk′ andIk′

calculated for both directionsx andy. Working with equations
(11),(12) and (7), it finally results in the following linearized
system

(

∑

q∈W

VCV
T
C

)

∆A =
∑

q∈W

γ∆k
DVD + (1− γ)∆k

IVI

with:

∆k
D = Dk (q)−Dk′

(

δ
(

q, Â
))

(13)

∆k
I = Ik (q)− Ik′

(

δ
(

q, Â
))

(14)

The vectorsVD andVI are defined for an affine motion model
as

VD =
[

gDx gDy xgDx xgDy ygDx ygDy
]T

(15)

VI =
[

gIx gIy xgIx xgIy ygIx ygIy
]T

(16)

wheregDx , gDy andgIx, g
I
y are respectively the invariant chromi-

nance and the luminance image gradients. VectorVC used for
the calculation of the Hessian matrix is defined as

VC =
[

gx gy xgx xgy ygx ygy
]T

where the gradientsgx and gy are defined as a combination
of the chrominance and luminance gradients:

gx =
[

γgDx + (1− γ) gIx
]

(17)

gy =
[

γgDy + (1− γ) gIy
]

(18)

The forward-backward error [12] is employed for validating
the tracking. This method relies on the assumption that correct
tracking should be independent of the direction of time-flow.
When a feature is occluded or when the tracker fails, it outputs
a random position that almost certainly does not correspond
with the output position obtained while tracking on the reverse
sense. By measuring these discrepancies it is possible to
immediately reject unreliable features and eliminate feature
drift.

A point is lost or rejected when some of these situations
occurs: 1) the point is located outside the image; 2) its
convergence residue is greater than a threshold (we considered
a mean difference ofǫD < 15 and ǫI < 15 in (11) and (12),
thereforeǫ (A) < 15 × n in (19) wheren is the number of
points inW); 3) its forward-backward error is greater than a
threshold (we considered a maximum distance of1.5px); 4)
its Hessian matrix is not invertible and 5) it requires to much
iterations to converge.

The tracking adaptive to saturation will be compared to the
classical color tracking using the three componentsc1, c2 and
c3 (RGB, rgb or HSV ), i.e by solving the following cost
function:

ǫ (A) =
∑

q∈W

∑

i∈c1,c2,c3

(

Di
k(q)−Di

k(δ (q,A))
)2

(19)

The solving is based on the similar stages as in the previous
method.

IV. I MPLEMENTATION DETAILS

The implementation has made use of theInverse Compo-
sitional algorithm as detailed in [13], calculating the Hessian
matrix only for the first iteration. As stated at the beginning
of the paper, the procedure follows a multiple scale approach,
starting with a coarse resolution, and refining the results



ascending in the pyramid as in [8]. Three levels are considered
in the pyramid. The implementation takes advantage of the
SIMD (Single Instruction Multiple Data) instructions either
by processing multiple pixels on a single color channel or
by processing multiple color components of a single pixel
simultaneously. For this purpose it is better to have data
aligned in memory: for 32 bit wide floating point data, we can
process 4 elements at the same time in 128 bits wide registers.
Therefore, the initialRGB— images have been converted to
RGBX so each pixel occupies 128 bits in memory instead of
96 bits. Except for the simple tracking method based on the
minimization of 19 the extra memory is not a waste since it can
be used to store and additional channel relevance coefficient
required for the computation ofγ in equation 10.

After color conversion when necessary, the feature points
are detected by the Harris operator dedicated to color images.
Then the color channels are loaded in the tracking pyramid.

Note that when processing multiple components at the same
time, the colorspaceHSV cannot directly take advantage of
the SIMD instructions with the original order of allocation
of its components, because the Hue component is an angular
quantity and requires modular arithmetic, obviously this has a
negative impact on the performance of the algorithm, which
will require more complex processing.

V. EXPERIMENTS

A. Experimental Setup

In order to determine which colorspace can track more
points feature lists were obtained for each of the tested
colorspaces and grouped on a single list. Each of these
feature lists is built obtaining their gradients in vertical and
horizontal directions (applying a Sobel Filter), measuring for
each point the Harris operator response, applying a threshold
that depends on the global maxima of this function. Finally,
local maxima are selected. DiZenzo gradient [2] is employed
in RGB colorspace as well as Carron2 [10] gradient for HSV.

Sequences are played forward and then in reverse order to
verify if points come back to their initial location. Feature po-
sitions on the forward trajectoryT k

f = (xt,xt+1, · · · ,xt+k),
where k is the number of frames, are compared with their
corresponding positions on the backward trajectoryT k

b =
(x̂t, x̂t+1, · · · , x̂t+k). If the calculated distances are less than
a defined distancedfb = 1.5px the features are considered as
tracked correctly.

For the pyramidal tracking we use the exactly the same
parameters (window sizes, number of levels,etc) as the ones
described in [8].

B. Experiment Results

Five image sequences were considered during experiments,
the first two sequences were captured indoors in a controlled
illumination environment, 1)Basketball[14] has stable illumi-
nation conditions, it exhibits colourful and textured matte ob-
jects that are somehow easy to follow. 2)Cardgame[4] shows
a colourful and textured box with a little bit of specular reflec-
tions in its borders, it suffers a strong illumination direction

Fig. 2. Optical flow detected withL1P at Basketballsequence second frame.
Displacement vectors in yellow are displayed magnified.

change during time. 3)Pedestrian 2[15] is a low-resolution
outdoors sequence experimenting a relatively strong camera
movement, it displays highly and low-saturated objects. 4)
Road3 is also an outdoor sequence recorded at very adverse
illumination conditions, camera moves in a random fashion
harming the stability of tracking, and finally, 5)Dtneu schnee4

is a traffic scene recorded during a snow fall, coloured objects
appear low-saturated, this sequence gives the opportunityto
test the tolerance to noise.

The optical flow detected from the first to the second
frame of Basketballsequence is represented in Fig.2 with
magnified yellow vectors, tracking was made with theL1P
model. The flow appears quite coherent specially in textured
and coloured regions. The opposite happens on the upper-left
corner, where there is no texture nor coloured regions. Those
features detected by theL1 invariant will be removed by the
Forward-Backward error because of their random behaviour.

Table I shows the number of features successfully tracked
in each sequence and colorspace, the time required to track
each feature is also shown. Indeed, the executing times are
different from one method to the other because of the color
conversion but also on the number of iterations required to
converge.

In well-saturated sequences (Basketball and
Pedestrian2), the luminanceI fails to track many of
the features that other techniques are able to track employing
color information. For example, in theCardgamesequence
which suffers an important change of illumination, Luminance
is able to track many of the features applying the photometric
normalisation, while RGB and HSV drastically fail to handle
this, while they behave pretty well in many of the sequences.

The relatively high number of features successfully tracked
with L1 in many sequences prove its tracking capability. As
expected, this invariant fails in sequences where color satu-
ration is weak. Tracking withL1P (mixture of max(r, g, b)

3available on http://vasc.ri.cmu.edu/idb/html/jisct/index.html
4available on http://i21www.ira.uka.de/imagesequences/#taxi



Seq Features I RGB (r, g, b) HSV H HP L1 L1P

Basketball 07-14 2843 1147 1946 1598 1364 667 470 1814 1778
101 l6c 1-3 3179 1642 210 1266 54 696 130 1765 1400

Pedestrian 2 1-10 1061 251 301 386 358 100 336 320 324
Road 16-54 2825 0 37 0 59 0 0 0 14

dtneu schnee 1-50 2772 2192 2033 63 1521 0 1624 31 2026
Tracking time/feature[s] 0.000571 0.001331 0.001557 0.001353 0.000517 0.001342 0.000511 0.001307

TABLE I
TRACKING RESULTS

and I) we are able to handle this situation thanks to the
adaptive capability of this technique.L1P maintains the
tracking performance of theL1 invariant in high-saturated
sequences and significantly improves the results for the low-
saturated ones. Tracking with(r, g, b) does not improve at all
the results obtained withL1 while incrementing significantly
the calculations.
L1 and L1P behave better than their equivalents for the

Hue invariant, being able to track more points for all the
tested sequences (except the peculiar case of thePedestrian
2 sequence), that is probably due to the noisy character of the
Hue component, mentioned in II-A.

A qualitative analysis of the experimental results can be
done with the help of colormaps as those built for theBas-
ketball sequence and displayed in Fig.4. Points are assigned
a color from a scale that goes from red to green denoting
the frame where features were lost. Red for features that were
lost on the first frames and green for features correctly tracked
during the whole sequence.L1P keeps the good response of
L1 including areas that neitherI nor L1 were able to track
(like the ear of the man on the right).

Fig.5 display the colormaps built for thePedestrian 2
sequence, LuminanceI succeeds to track the features over
the car on the left corner, mostly because this is the most
textured region of the sequence. On the other side, it fails to
track the people walking at the center of the image that can be
regarded as color blobs. Almost any colorspace (except Hue)
succeeds to track correctly both the car (luminance region)
and the people walking at the center.

It is also noticeable in Fig.5 thatL1P tracked less color
features thanL1 for this sequence. The influence of the
Luminance component, the same that improves the robustness
to track low-saturated regions, reduces at some proportionthe
ability to track color features. It is possible to reduce this
phenomenon by finding more appropriate sigmoid function
parameters:S0 anduβ.

Execution times scale-up proportionally to the number
of components exploited during tracking. Single component
tracking techniques likeI, Hue and L1 require less time
than multiple component techniques. Despite its simplicity in
terms of calculations, LuminanceI requires almost the same
execution time asHue and L1, because of the photometric
normalisation. Multiple component techniques require more
execution time, a price to pay for the robustness and capability
to track complementary features.

Fig.3 displays the mean forward-backward euclidean dis-
tancesdE (xt, x̂t) computed from all the correctly tracked
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Fig. 3. Mean forward-backward euclidean distancesdE (xt, x̂t)

points in each frame of thePedestrian 2sequence. The error
increases with the number of frames betweenxt and x̂t in
the forward and backward trajectories, but remains lower than
one pixel for each method. Note that the use of a single color
component (L1, H or L1) instead of the whole colorspace
(RGB, HSV or rgb) usually leads to a lower accuracy.
Indeed the separability between colors can be lower due to
the reduction of components. However, as written in Table
I the computational costs are reduced with one component
and the number of points correctly tracked higher in some
difficult sequences, when illuminations changes occur. Mixed
approachesL1P andHP provide a better accuracy compared
to L1 and H respectively while maintaining the invariance
properties needed for challenging tracking situations.

VI. CONCLUSION

This article has exposed a feature points tracking procedure
which combines luminance and color invariants for matte
surfaces with the help of a relevance coefficient. The use of
the color invariantL1 = max (r, g, b) has been proposed.
It requires less calculations, it is easier to parallelize and
it provides better tracking results in terms of robustness.
Experimental results have shown that this combination helps
to distinguish more features and makes also possible to track
them better even if feature patches change in orientation,
expanding the regions and conditions suitable for tracking.

The proposed method is somehow dependent on the sig-
moid parameters, this is a subject to be explored on future



Luminance L1 L1P

Fig. 4. Tracking colormaps with LuminanceI, L1 (max(r, g, b)) andL1P (mixed I andL1) for theBasketballsequence. Points are painted in a color-scale
that goes from red to green representing the time the featurewas lost

Luminance RGB

HSV rgb Hue

HP L1 L1P

Fig. 5. Tracking colormaps for the Pedestrian 2 sequence forall the tested colorspaces.

works, an on-line estimation of these parameters could benefit
significantly the speed of the algorithm.
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