A New Methodology to Optimize DMA Data Caching:
Application towards the Real-time Execution of an MRF-based Motion Detection Algorithm on a multi-processor DSP

Frantz LOHIER1,2, Lionel LACASSAGNE1,2, Pr. Patrick GARDA2

frantz@lohier.com, lionel@lis.jussieu.fr, garda@lis.jussieu.fr

1Electronique, Informatique, Applications (EIA)
Burospace, Bat. 4, Route de Gisy, 91571 Bièvres Cedex, France

2Laboratoire des Instruments et Systèmes (LIS)
Université Pierre et Marie Curie (UPMC), 4 place Jussieu – B.C. 252, 72252 Paris Cedex 05, France

ABSTRACT

A novel approach to optimise data caching based on a multi-dimensional DMA is used to implement a robust motion detection algorithm. Qualitatively, we demonstrate the adequacy of this generic approach towards complex low-level image algorithms under real-time constraints. Quantitatively, the C80 implementation improves by 4 former published performance for this algorithm.

1. Introduction

1.1 A Novel approach to optimize 2D I/O streams

While analyzing the recent architectural evolutions, it appears that on the one hand:

- RISC and DSP cores are converging towards combined VLIW/SIMD architectures;
- DMA co-processors now stand as the only major architectural difference between the RISC and DSP world. They offer more predictability at the cost of a more difficult programming stage (they feature self-modifying parameters and multi-dimensions support as in [4]).

Current programming methodological trends, on the other hand, are still limited:

- DSP development tools are lacking whereas implementation is raising in complexity (SIMD/software pipelining, C8x’s VLIW operations, advanced DMAs);
- DSP flexible simulation/implementation platform (such as MatLab/Simulink, Ptolemy or Hyperception) are not suited for 2D processing. For these applications, the 1D synchronous data flow (SDF) representation domain seems the most mature;
- The code generated from these platforms isn’t optimal and adding new processing kernels is often lacking a flexible re-usable framework.

To tackle these issues, we recently introduced a SDF oriented programming methodology [2][3]. It seeks the enhancement of data locality by chaining the execution of processing operators (i.e nodes) hence minimising the global amount of parallel DMA transfers. This approach grounds on “templates” which set up a generic framework to expand node’s libraries and compose complex processing chains dynamically. Templates derive from the structuring element required/produced by algorithmic operators in the sense that they also gather node’s implementation constraints. These additional multiplicity constraints relate to optimization techniques such as the use of SIMD operation, loop
unrolling or software pipelining [1][3]. These techniques maximise the usage of processor’s resources through the execution of several loop iterations in parallel. In a multi-processor context, the ultimate goal of our approach is to set up all the synchronous DMA requests from a generic chain’s description, enhancing data locality while maintaining instruction caching low.

Based on this methodology we have implemented a complete low-level image processing library (more than 60 nodes) on the C80. This library features dynamic parsing of chains’ description (nodes’ template, image sizes, data cache sizes, number of processors), automatic DMA requests generation and synchronisation with processing. The design space isn’t automatically explored towards an optimal use of heterogeneous computational resources and communication channels as with platforms such as the Syndex’ generic approach [7]. Instead, partitioning on homogenous resource is user-guided but reconfigurable at run-time and since it relies on optimized 2D I/O streams (in terms of data locality enhancement combined with advanced optimizing implementation techniques), it improves the parallelization efficiency.

1.2 The motion detection algorithm

To illustrate the use of our library, we describe the implementation of the robust Markov Random Fields (MRF) based motion detection algorithm proposed in [6]. Starting from an image difference, the ICM (Iterated Conditional Mode algorithm) is used to compute the resulting binary “label” picture in an iterative manner. It acts as a low-pass motion filter to locally minimize a spatio-temporal energy model. Iterations are performed at pixel level (“site recursive”) and the suggested number of iterations is 4.

Although this algorithm is sub-optimal, it nowadays involves a challenging computational load when seeking real-time (RT) processing on large images. Also, for this algorithm, the RT performance stand as an important criterion towards a good detection efficiency (especially when fast motion constitute the sequence). A complete description of the approach is detailed in [2]. As a synopsis of it, a pre-possessing phase merges the absolute difference of 2 images, the variance of it and the binary thresholding of the absolute data (the initial labels E_{t+1}).

This phase is followed by the ICM regularizing algorithm as shown in figure 1.

2. The architectural mapping

The C8x has 1 general purpose RISC processor (MP) and 4 advanced SIMD/VLIW DSPs (or PPs for Parallel Processors) [4]. This suites the processor-farm model where the MP synchronizes the
PPs representing the bulk processing power. The pre-processing and the ICM passes require just 2 image scans. For each scan, we use an SPMD partitioning scheme. The image is split among the 4 PPs and since each sub-region doesn’t fit in the PP’s general purpose internal data memory, the data are brought using multiple DMA requests while double buffering.

2.1 Implementing the pre-processing

The pre-processing stage is done in a single pass thanks to a chain connecting several nodes through their corresponding templates. Templates’ geometry are mostly described by 4 parameters. \(w \times h \) corresponds to the minimum amount of data that must be present in internal memory.

This quantity often exceeds the surface of the operators’ structuring element because we integrate size requirements that raise while implementing generic optimization techniques towards an efficient algorithmical mapping onto hardware resources. Here, the goal is to lower the development burden and the granularity of each node by assuming we have a minimum amount of data that matches the number of parallel iterations processed in one occurrence of the nodes’ loop kernel. Following the same goals, we also impose multiplicity constraints on the number of additional data that can be present in internal memory for the horizontal and vertical direction and described thanks to parameters \(w \) and \(h \), respectively. These templates allow the composing of complex processing chains which, together with the reduced granularity of nodes, allows to enhance data locality and reduce parallel DMA transfer as well as instruction caching towards improved real-time performance. Each node has a synchronized input and output templates whose parameters are detailed on figure 2.

Next and since the processed images do not fit in internal memory, we need to estimate and minimise the number of all input and output parallel DMA requests between each synchronized execution of the chain. This is based on the exact surface of data we can process and depends on the overall size constraints that are propagated along each path of the chain that connects to an external buffer. Propagation is based on template parameters and the solving of simple and independent diophantine equations (for the vert. and horz. direction). These equations appear as we try to synchronize the amount of data produced by a node with the number of data consumed by the next node in the chain. This synchronization mechanism is depicted with figure 3. Recursively, the gained synchronization constants (which appear has 2 congruences: \(\beta \equiv \phi (\Phi) \) et \(\gamma \equiv \tau (\Gamma) \)) are propagated between the output and input of each node until the leading node of each path is reached. This procedure enables the merging of the called “virtual-template” which features new parameters

![Fig. 2: The pre-processing chain](image)
gathering all the size constraints \((w',x',w',h',x',h')\). Then, according to the original buffer size, we estimate the combined number of horizontal \((\beta)\) and vertical \((\gamma)\) virtual templates we can cache in an internal memory space of \(S-w'h't\) bytes. A complete description of this procedure can be found in [2]. As a synopsis of our approach, table 1 shows \((\beta,\gamma)\) couples we gain while applying this procedure on the first step of the motion detection algorithm with \(W=H=256\) and \(S=2048\) for all the input and output buffers. Min\((\beta)\) and Min\((\gamma)\) are then used to synchronize all the nodes as well as to partition data among all the processors (in a SPMD fashion). The subsequent transparent and dynamic programming of DMA requests allows to synchronize all input and output transfers (for all the processors) towards software managed data caches.

Table 1: Generating & synchronizing DMA requests

<table>
<thead>
<tr>
<th>Paths</th>
<th>Virtual template ((w',w',h',h'))</th>
<th>(\beta)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ﾗ AbsDiff ﾗ BinThres</td>
<td>16,8,2,1</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>1 ﾗ AbsDiff ﾗ (\Sigma x)</td>
<td>16,8,1,1</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>1 ﾗ AbsDiff ﾗ (\Sigma x^2)</td>
<td>16,8,1,1</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>1 ﾗ BinThres ﾗ AbsDiff</td>
<td>2,1,2,1</td>
<td>254</td>
<td>7</td>
</tr>
</tbody>
</table>

Multidimensional support allows the DMA to address any region of interest and its arithmetic capabilities permits to implement the double buffering scheme with minimum processors’ involvement. This greatly favors instruction cache coherency and hence, performance. With the combined use of our methodology and well known generic optimization techniques to implement the nodes in assembly language (software pipelining, SIMD operations), the pre-processing phase achieves 6 ms for a 256^2 image with 4 PPs working in parallel at 40 Mhz.

2.2 Implementing the ICM node

Thanks to the dynamic infrastructure of our C80 library implementing our generic DMA caching methodology, the system is reconfigured at runtime to run the ICM. This step is implemented as a single-node chain. The same I/O generating/optimizing algorithm we described is used but not detailed here. Instead, the various involved templates are shown in Figure 4. To lower the number of DMA requests required, some external buffer’s data are organized sequentially. This allows to define the ICM node as diadic (featuring just 2 input physical buffers). Also, there is no synchronization regarding the processed data that are shared between 2 processors and despite the existing data dependency introduced by the “site recursive” updates. This simplification has very little impact on the motion detection efficiency and permits SPMD partitioning with maximum performance.

The ICM node is written in VLIW algebraic assembly language. We took advantage of

FIG 3. Getting the virtual template
the new code compactor (ppca) detailed in [5] to automatically gather assembly operations into 64 bits VLIW instructions. Register allocation was also done by ppca that efficiently compacted 313 operations into 199 VLIW instructions. Since the core of the node requires more register resources than available (each PP features 8 data registers and 2 sets of 5 address and 3 index registers), we manually inserted register spilling operations based on ppca feedback logs. We introduced the use of 3 LUTs (initialised by the MP) to fasten calculation whereas the site recursive version of the ICM algorithm prevented us from using the SIMD capabilities of the ALU (but this version of the ICM demonstrates faster converging).

The core of the kernel requires 40 VLIW instructions per pixel which is 4 times faster than what PP’s optimising compiler produces on a C version of the same algorithm. On 256×256 images, at 40 Mhz, we measured 74 ms for the 4 ICM passes which is very close to the optimistic optimum: 256×256×40×4(num. pass)/(40Mhz×4(num. PP))= 65 ms.

3. Conclusions

This paper introduces two important results. Qualitatively, we demonstrate that our methodology is generic enough to cope with a complex low-level image algorithm. It is also flexible enough to be dynamic and independent of the image size and number of processors. Most importantly, with respect to generic optimization techniques, it optimises 2D I/O streams and allows good speed-up towards RT performance. Quantitatively and thanks to the framework of our general c80 image processing library, we gain a speed factor of 4 with respect to previously published processing duration for the same algorithm [6]. When considering the 60 Mhz version of the device, we can increase the processing rate up to 18 images per second (i/s) for 256² images. The use of more efficient memory, like synchronous dynamic RAM (we used DRAM), would even further increase that rate.

<table>
<thead>
<tr>
<th>Pre-prop.& ICM</th>
<th>LIS-UPMC/EIA</th>
<th>LIS-INPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>128x128</td>
<td>-</td>
<td>DSP 96002: 15 i/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cnaps 256 PEs: 10 i/s</td>
</tr>
<tr>
<td>256x256</td>
<td>40 Mhz C80: 12 i/s</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

[3] Articles [1]&[2] are online at www.lohier.com