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Abstract—In this work HLS is used for designing a parametric
optical flow Hierarchical algorithm in FPGAs. The algorithm that
is designed is the Hierarchical (pyramid) Horn and Schunck algo-
rithm, both a multi-rate and multi-level (multi-scale) algorithm,
which achieves larger motion displacement detection than the
mono-scale ones. With the help of HLS, we parametrize our
design in terms of the levels of the pyramid, the iteration factor
and the number of pixels computed per clock. We are reusing
the same resources in each level of the pyramid to keep the usage
of DSPs and RAM low. We perform a design space exploration
of the algorithm and we show that our fastest design achieves
a throughput of 461 Mpixel/s in a 2048 <2048 resolution pixel
image.

I. INTRODUCTION

Optical flow is used to compute the motion of the pixels
of an image sequence. These kind of algorithms have a large
number of applications ranging from object detection [1] to
video denoising [2]. They are categorized according to the
application they are used to, the accuracy that is needed and
the throughput that has to be achieved. Hierarchical optical
flow algorithms are gaining significant attendance during the
last few years due to the limited motion estimation of the
mono-scale algorithms (1 pixel). With hierarchical optical flow,
larger pixel displacements can be detected, but that comes with
a cost in the design as more hardware resources are needed
[3].

For the implementation of hierarchical optical flow al-
gorithms CPUs [2], GPUs [4]-[7] and FPGAs have been
considered. Especially for FPGAs, Barranco et al. implemented
the multi-scale (hierarchical) Lucas-Kanade (L& K) algorithm
[8], while Tomassi et al. remained on the multi-scale Phase-
based algorithm [9] and Bournias et al. in the multi-scale Horn
and Schunck optical flow algorithm [3].

However, all of the previous FPGA works, which face
throughput and RAM bottlenecks, are not parametrized designs
in terms of motion displacement (levels of the pyramid),
accuracy (iteration factor), throughput (parallelization) and
input image sizes, all of which are crucial for an optical
flow algorithm design. Moreover, existing image processing
compilers for FPGAs such as Halide-HLS [10] which does not
support multi-rate image processing applications without the
inter stage FIFO approach which highly increases the usage
of block rams and Clockwork [11], which does not support
efficiently multi-level (hierarchical) algorithms can not be used
effectively for the designing of the algorithm. Thus, in this paper
we are using HLS to design and parametrize a hierarchical

optical flow algorithm in FPGAs, Horn and Schunck, which is
both a multi-rate and multi-level (the images in different levels
have different dimensions) algorithm and which to the best of
our knowledge has never been done before.

A. Horn and Schunck algorithm

The basic scheme of Horn and Shunck (H&S) [12] is an
iterative algorithm (Fig. 1(a)) that estimates (u,v) from the
first spatio-temporel derivatives I, I, I; (of a pair of images)
and from the previous average values (1, ¥), according to (1)
and (2) where « is a smoothing parameter.
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As the derivatives are estimated with a 2 X 2 x 2 kernel, the
computed velocities should be smaller than 1 pixel / frame.
That is the reason why, multi-scale (aka hierarchical) scheme
should be considered (Fig. 1(b)).

From the computed velocities (u, v)?;‘;}al of level A\+1, a
new velocity field is initialized : (u,v)3,,, by up-scaling the
previous one with a factor 2, and multiplying it also by a factor
2: (u,v)d,; = 2 X Upscale(u,v)??;}al . These velocities are
used to compensate (warp) the motion between the two images
(I2rec), thanks to a bi-linear or bi-cubic interpolation. Then
H&S kernel iterates to provide the residual velocities (du, 6v).
After the iterations these residuals are accumulated to the initial
estimation: (u, U)?inal = (u,v)2,;;+(u,v)* to provide the final
velocity estimations at this level. Then same computations are
done for the next level: (u, v)},;; = 2x Upscale(u, v)};,,,, and
so on until level A = 0. The algorithm is explained thoroughly
in the work of [3].

B. Contributions

In this paper, we are using HLS to design the hierarchical
H&S algorithm in FPGAs, which is a multi-rate and a multi-
level algorithm. We make our design parametric concerning
the number of the levels of the pyramid, the iteration factor,
the size of the image, the parallelization and two interpolation
types (warping), in order to provide the optical flow designer
with a lot of choices. Designs with a x2-factor for the iterations
(20,10,5 and 40,20,10,5), for a 3 and a 4 level pyramid are
implemented, which achieve a motion estimation in the range of
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Fig. 1. Description of the Algorithm

(V,U) < |7] and (V,U) < |15| respectively. We are tackling
the problem of the warping [3] by re-using the same shift
registers and DSPs in every pyramid level, a technique which
we also apply to all our components to reduce the usage of
block RAMs and DSPs in our design. Following that, we
perform a design space exploration considering the number of
the H&S cores used and we compare our work with other state
of the art works proving that our biggest design outperforms
in terms of throughput all the previous optical flow algorithms
considering single precision IEEE floating point formats.

II. PROPOSED ARCHITECTURE
A. Horn and Schunck core

Algorithm 1 shows the pseudo code of the H&S. The core
is parametric in terms of the levels of the pyramid (Ivl), the size
of the image (height, width), parallelization (par) [3] iteration
factor (itf) and iteration number in level O (itg). The delay line
responsible for providing the core with the the 3x3 neighbored
velocities (uy" to uby ') (dlin_U) is implemented with shift
registers [13]-[15] and is reused in every pyramid level as
it is also done with the DSPs. All the previous multi-scale
implementations and the image processing compilers [10], [11]
use dedicated registers and DSPs in every level which increases
the usage of block RAMs ALUTs and DSPs.

In this paper, for the pipelining and parallelization of all the
H&S cores we propose two different designs to address the
problem of throughput [3]. The partial pipeline parallel (P,,,.)
and the fully pipeline parallel (Fpq,-) mode as shown in Fig.
2 and as also used by [3] depending on the number of H&S
cores of the design and the required number of iterations for
each pyramid level. Par corresponds in the parallelization of
the cores (pix/clk).

B. Warping core

Algorithm 2 shows the parametric pseudo code of the
warping core with bi-cubic interpolation. As in the case of the
H&S core the shift registers and DSPs are reused. For the
bi-cubic (resp. bi-linear) interpolation, a neighbourhood of 4x4
(resp. 2x2) pixels in the input image is required. In order to
ensure that one or more pixels are computed in every clock
cycle (continuous streaming), all the required neighboured
pixels for the interpolation have to be available [3]. This is

Algorithm 1 Pseudo code of the H&S' core

define 1lvl, height, width, par, itf,

Input: u'~!(par), v~ (par), I (par), Iarec(par)

Output: u'(par), v’ (par)

hls_reg dlin_U[width-24 3+ par]; //same for V

int [ =Wl-1;

while [ > 0 do

for (i=0; h<2lX2“f71~it0; i++) do

for (h=0; h<h7’flht; h++) do

#pragma unroll par

for (w=0; w<“2’fih; w+=par) do

#pragma unroll

for (g=0; g<width-2+2; g+=par) do
dlin_Ulq]=dlin_U[q + par] //same for V

itog;

end

dlin_U[“’lfih -2+ 2+ par]=u*—t(par)
ugal(par)zdlin_U[par];

uial (par)=dlin_U[ “’lfih + par];

..tlyy " (par)=dlin_U[ %48 . 2 + par];
ul (par):H&S(uégl(par),

w1 (par),Iarec(par)); //same for V

end

end

end
[——;

end
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(a) Partial Pipeline Parallel (Ppqr) (b) Fully Pipeline Parallel (Fpar)
Mode Mode

Fig. 2. Different Implementations Used

achieved with cub_m and cubf_m which guarantee that all
the possible neighbourhoods of pixels are available. In order
to choose the right neighbouring pixels in the two cases, the
integer parts of the velocity vectors are needed (iu, iv) and the
interpolation is done with the fraction part of the velocities
(fu, fv).

C. Down-sampling, Sum, Up-scaling core

In the beginning of the algorithm each image used for each
level of the pyramid is being built after the convolution from
the coarser pyramid level with a 5x5 Gaussian kernel (down-
sampling). The sum core is used to sum the velocities calculated
in the previous levels with those of the current level. Then,
results from the sum are extended (up-scaling) in order to be
used in the next pyramid level. All the three cores are designed
with HLS in the same way as the H&S with reusable shift



Algorithm 2 Pseudo code of the warping core (bi-cubic)
define 1lvl, height, width, par, itf,
Input: Ir(par), u(par), v(par)

Output: I5,..(par)

int =l —-1;

hls_reg dlin_im[width- (242 — 1)+ 22 + par];
float cub_m[2"F1] [4] [par];

float cubf_m[4] [4] [par];

int iulparl=(int)u[par]; //same for v

float fulpar]=u[par]-iu[par]; //same for v

while [ > 0 do

//same loops as in the H&S core

dlin_im[width - (21 — 1) + 21+ + parl=I(par);
#pragma unroll

for (n=0; h<2w2#; n++) do

#pragma unroll

for (m=0,; h<4; m++) do

cub_m[n][m][par]=

dlin_im[n - 240 4 4 o + % + parl;

ito;

end

end

#pragma unroll

for (n=0; h<4; n++) do
#pragma unroll
for (m=0; h<4; m++) do

cubf_m[n][m][parl=cub_m[n][m+iv+ % +par]
end

end
Isrec(par)=bi-cubic(cubf_m(par),fu(par),fv(par));
/lend of the loops as in the H&S core

==

end

registers and DSPs. In the case of the sum core, the intermediate

velocities between the levels are stored in the external memory.

In the work of [3] they are stored in the on chip memory which
becomes a bottleneck when large images are considered [3].

D. Pipeline and Parallelism in each Pyramid Level

Up-scaling, warping, H&S and sum can be performed in a
pipeline way for each pyramid level as all of them are executed
in the same loops. With this way, interpolated pixels do not
need to be written back to the external memory and then read
again, but they can be directly processed by the H&S core
in a pipeline way. The connection between the components
is done with the streaming interfaces provided by the HLS
compiler which eliminates the usage of inter stage FIFOs.

III. DESIGN SPACE EXPLORATION

A prediction model has been created for performing a design
space exploration of the algorithm according to the designer’s
requirements (Ivl, height, width, ity, itf, interpolation type and

TABLE I
CORE RESULTS FOR 3 AND 4 LEVEL PYRAMID FOR A FREQUENCY OF
250MHZ AND A 2048x2048 PIXELS IMAGE

Core pix/clk  ALUT FFs RAMs  DSPs

1 70700 49659 63 67

bi-cubic 3-1vl 2 160495 93835 51 134
4 192970 127277 31 268

1 16849 9520 68 10

bi-linear 3-1vl 2 79998 21428 46 20
4 89433 27544 24 40

1 1677 12606 38 23

H&S 3-1vl 2 2890 33044 45 46

4 5331 31832 87 92

up-sample 3-1vl - 1210 17581 2 8
down-sample 3-1vl 4 25417 17804 52 100

1 263152 157745 130 67

bi-cubic 4-1vl 2 541014 301348 97 134
4 604371 381150 59 268

1 102720 59772 135 10

bi-linear 4-1vl 2 207121 125241 102 20
4 268510 185041 71 40

1 4111 18439 71 23

H&S 4-1vl 2 7855 47721 102 46

4 12041 59104 194 92

up-sample 4-1vl - 1720 21491 4 8
down-sample 4-1vl 4 29104 32041 71 100

computation time) to see if the design is implementable. The
prediction is based on the number of the H&S cores used
by the design. Depending on the number of iterations in each
level of the pyramid, these cores are used in partial pipeline
parallel (P,g;-) or fully pipeline parallel (F,4,) mode as shown
in Fig. 2.

Depending on the number of cores (II) used (we count 1
core with a parallelization of par pix/clk as par cores and
not 1) and the working frequency (f), the total time 7" for
the multi-scale algorithm calculation of the image, without the
down-sampling (which takes less than 15% of the total time),
can be estimated by eq. (3).

. . lvl—1 it0.21'2“f71
Helght - Width - (Z’IL*O T)
T= = 3)
f-u
Given the level of parallelism (par), the total number of
DSPs (V) can be estimated by eq. (4).

11
N = — " Nuysg,

par + Nwarppa,,. + Nsum + Nup + Ndo (4)
par
where Ny s,,,.» Nwarppa,s Nsum» Nup and Ny, are respectively
the numbers of DSPs of H&S, interpolation, sum, up-scaling
and down-sampling cores.

The bandwidth rate of the external memory required is given
by eq. (5) where the two images are read and u,v are both read
and written back to the external memory. WL is the bitwidth

of the words used.
EMBR=f -par-(2+2-2)-WL 5)
The Ram usage M in blocks is estimated by eq. (6).

II
M= — " Mgg

par + Mwarpp,” + Msum + Mup + Mdo

(6)

par



TABLE 11
DESIGN SPACE EXPLORATION RESULTS FOR A FREQUENCY OF 250MHZ AND A 2048X2048 PIXELS IMAGE

Implem. 3-level v1 3-level vo 3-level v3 3-level vy 3-level vs 3-level vg 4-level vy 4-level vg 4-level vg 4-level vig
iter. 20,10,5 20,10,5 20,10,5 20,10,5 20,10,5 20,10,5 40,20,10,5 40,20,10,5 40,20,10,5 40,20,10,5
HS cores(II) 5 10 20 5 10 20 5 5 10 20
pix/clk(par) 1 2 4 1 2 4 1 1 2 4
interp. bi-cubic bi-cubic bi-cubic bi-linear bi-linear bi-linear bi-cubic bi-linear bi-linear bi-linear
Mode pPipP?F | PLPF | PLPEF | PLPEF | PLPF | PLP?F | PEPLP F | PSPLP2F | PSPLP°F | PSP P’ F
ALUT 110k(26%) | 208k(49%) | 263k(62%) 65k(16%) 137k(32%) 163k(38%) 329k(77%) 173k(41%) 307k(72%) 392k(92%)
RAM(BL.) 322(12%) 341(13%) 533(20%) 326(12%) 346(13%) 546(20%) 578(21%) 581(22%) 719(27%) 1151(43%)
DPSs 296(19%) 478(31%) 842(55%) 239(16%) 364(24%) 614(40%) 296(19%) 239(16%) 364(24%) 614(40%)
EMB(GB/s) 9.3(27%) 15.2(44%) 27.4(80%) 9.1(26%) 14.9(43%) 26.8(78%) 9.3(27%) 9.1(26%) 15.4(45%) 27.1(79%)
fps 31 59 105 31 60 110 25 26 45 72
thr.(Mpixel/s) 130 247 440 130 251 461 104 109 188 301
TABLE III
COMPARISON TO STATE-OF-THE-ART IMPLEMENTATION ON FPGA (SORTED ON THE THROUGHPUT)
Implementation Algorithm size format II | frame rate | Throughput (Mpixel/s) Architecture
This work vig Multi-scale H&S 4-level 2048 x 2048 F3o 20 72 301 Arria 10 250Mhz
This work vg Multi-scale H&S 3-level 2048 x 2048 F3o 20 110 461 Arria 10 250Mhz
9] Multi-scale Phase-based 640 x 480 Q8.0-58.4 31.5 9.6 Virtex-4 45MHz
[8] Multi-scale L&K 640 x 480 Q9.0-529.8 32.0 9.8 Virtex-4 83 MHz
[16] Phase-based 512 x 512 Q812 40.0 10.4 Virtex-4 42MHz
[17] HBM + Refinement 640 x 480 - - 39.0 12.0 Virtex-7 200MHz
[18] Mono-scale H&S 1920 x 1080 F3o 32 96.5 200 Virtex-7 200MHz
[3] Multi-scale H&S 3-level 1024 x 1024 F3o 10 202 211 Stratix V 208MHz
[19] Mono-scale H&S 4096 x 2304 Q 20 30.0 283.1 Stratix IV -
[3] Multi-scale H&S 3-level 1024 x 1024 Fig 20 484 507 Stratix V 278MHz
[20] Mono-scale L&K 1024 x 1024 Q1032 - 1000.0 1048 Virtex-2 90 MHz

where Mps, Myarp, Moym, Myp and My, are respectively
the blocks used to store values of H&S, warp, sum, up-scaling
and down-sampling cores.

Given the desired requirements by the designer and the
FPGA device’s constraints, by solving eq. (3), (4), (5) and
(6) our prediction model estimates the number of H&S' cores,
par, DSPs, block RAMs and external memory bandwidth rate
usage. If the design is implementable in the specific device
then the designer’s requirements are inserted in the HLS tool
to provide the final implementation.

IV. RESULTS OF IMPLEMENTATION

For the implementation of the algorithm, the FPGA Intel
Arria 10 GX 1150 was used and the intel HLS compiler
(version 20.2). The Arria 10 is equipped with 1518 DSPs
and a peak external memory bandwidth rate of 34.4 GB/sec.
The computation is done in single precision floating point IEEE
format.

In Table I we can see the information about all the key
components used in our design and which are used for
our prediction model. It can be seen that the interpolation
components request a lot of ALUTs because of the many
multiplexers that have to be implemented to ensure the
continuous streaming. The bi-cubic interpolation, which should
be chosen when accuracy is important, with a par of 2 pix/clk
and 4 pix/clk (maximum vectorization [13] we consider in
this paper) for a 4 level pyramid is not implementable in the
Arria 10 FPGA due to the high demand for ALUTs. The
same happens with interpolations with a par of 8 pix/clk (we

do not include them in table I). In Table II the results of
the designs (we chose very standard configurations [2], [3],
[21]) we implemented are presented. Our fastest 3-level and
4-level designs achieves a throughput of 461 Mpixel/s and 301
Mpixel/s respectively.

In Table IIT we make a comparison of our works with the
state of the art Optical flow algorithms implemented in FPGA.
We can see from this table that our designs outperform in
terms of throughput all the other designs even the mono-scale
ones, except of those of Bournias [3] and Ishii [20]. Bournias
uses a Fig format (IEEE half precision) with limited accuracy.
However, his F35 design is slower than ours, all of his designs
does not support different parameters like ours and they also
face a bottleneck of on chip RAM when images larger than
1024x1024 pixels are considered. Ishii is implementing a Mono-
scale L& K algorithm with pseudo-variable frame rate by using
two FPGAs and a PC to make the computation of the algorithm.

V. CONCLUSION

We used HLS to design a parametric hierarchical optical
flow algorithm (both a multi-rate and multi-level algorithm),
H&S, which to the best of our knowledge has never been
done before. Our designs are parametric in terms of the levels
of the pyramid, the sizes of the image, parallelization, iteration
factor and two interpolation types. Our biggest designs achieve
comparable and better throughput compared to the other state
of the art designs and at the same time they detect wider
motion displacements. In the future we plan to explore different
arithmetic formats in order to include them in our designs.
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