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Abstract. The Cell processor is a typical example of a heterogeneous
multiprocessor-on-chip architecture that uses several levels of parallelism to
deliver high performance. Closing the gap between peak performance and sus-
tained performance is the challenge for software tool developers and the appli-
cation developers. Image processing and media applications are typical "main
stream" applications. In this paper, we use the Harris algorithm for detection of
points of interest (PoI) in an image as a benchmark to compare the performance of
several parallel schemes on a Cell processor. The impact of the DMA controlled
data transfers and the synchronizations between SPEs explains the differences be-
tween the performance of the different parallelization schemes. These results will
be used to design a tool for an efficient mapping of image processing applications
on multi-core architectures.

1 Introduction

Recent trends in designing general purpose processors have focused on increasing Thread
Level Parallelism - for example through Chip Multiprocessing architectures - rather than
improving clock frequencies of single-task scalar systems which posed computing and
energy efficiency problems. One way of facing these problems was found in SIMD ar-
chitectures, either by duplicating complete processing units (according to Flynn’s defini-
tion), or by inserting dedicated SIMD instructions inside existing CPUs (aka SWAR for
SIMD Within A Register) - like Altivec or SSE. A good example can be found in the IBM
Cell Processor[1]. However, developers are now faced with implementation problems,
such as efficiently distributing code among the processing elements and generating DMA
(Direct Memory Access) requests required by data flows. This paper is organized as fol-
lows. A presentation of the Cell Broadband Engine and applications that have already
been benchmarked on the Cell are given, followed by a description of the Harris points
of interest algorithms and its different implementation models. The influence of transfers
on performance is then discussed. Finally, effective performance results are provided and
discussed. The final part gives conclusions about our experiments and gives perspectives
for future works.

2 The Cell Processor

The Cell processor is a heterogeneous, multi-core chip consisting of one 64-bit power
processor element (PPE), eight specialized units called synergistic processors (SPE) [2],

I. Stojmenovic et al. (Eds.): ISPA 2007, LNCS 4742, pp. 104–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Parallelization Strategies for the Points of Interests Algorithm on the Cell Processor 105

other interfacing units and a high bandwidth bus called Element Interconnect Bus (EIB),
that allows communications between the different components. Assuming a clock speed
of 3.2 Ghz, the Cell processor has a theoretical peak performance of 204.8 Gflops/s in
single precision and 14.6 Gflops in double precision. The EIB supports a peak band-
width of 204.8 Gbytes/s for internal transfers (when performing 8 simultaneous non-
colliding 25GB/s transfers). The PPE unit is a traditional 64-bit PowerPC Processor
with a vector multimedia extension (VMX). This Cell’s main processor is in charge of
running the OS, and coordinating the SPEs. Each SPE consists in a synergistic proces-
sor unit (SPU) and a Memory Flow Controller (MFC). The SPE holds a local storage of
256 KB, and a 128-bit SWAR (very close to Altivec) unit dedicated to high-performance
data-intensive computation. The MFC holds a 1D DMA controller, that is in charge of
transferring data from external devices to the local store, or writing back computation
results to main memory. One of the main characteristics of the Cell processor is its
distributed memory hierarchy. The main drawback of this kind of memory, is that the
software must handle the limited size of the local storage of each SPE, by issuing DMA
transfers from or toward main storage.

3 Related Work

The different examples of implementations on the Cell processor ([3], [4], [5] and
[6]) consider a SPMD (Single Program Multiple Data) parallelization model on micro-
benchmarks (few operators with a reduced amount of transfers), and do not explore
other models. This implementation strategy is the most obvious one, and does not re-
quire any complex synchronization mechanism to work. In our paper, we present the
Harris points of interest (POI) algorithm which is representative of several image pro-
cessing algorithms, since it includes multiplication, thresholding and convolution ker-
nels. It is also an interesting case study because its data flow graph allows different map-
ping strategies on the Cell processor. By exploring different parallelization schemes, we
can show different aspects of the influence of DMA transfers on the performance, and
compare practical results with the expectations.

4 The Harris Points of Interests Algorithm

In our paper we use a common image processing algorithm known as Harris points of
interest. This application was chosen because its operator graph allows different imple-
mentation models. The Harris algorithm 4 is a mix of operators on pixels and convo-
lution kernels. It is composed of four steps of basic operators, with up to three parallel
operations, and many transfers with or without borders, in details we have:

1. a gradient computation (usually a Sobel X & Y operators),
2. three parallel multiplications, to combine first derivatives together,
3. three parallel Smoothing operations (usually a 3 × 3 Gauss Kernel),
4. a coarsity computation (Harris point operator) : K = SxxSyy − S2

xy
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Fig. 2. POI SPMD model

5 Implementation Models for the POI Algorithm

5.1 SPMD Model

In all the following figures, S stands for the Sobel operator, M for the multiplica-
tion, G for Gauss and H for Harris. The gray rectangles represents and SPE. The
SPMD programming model (Fig. 2) equally divides the image into eight regions of
processing (RoPs) blocks, mapped on the SPUs (in the figure, only 4 SPEs are drawn
to get a smaller figure, but 8 SPEs are actually used). All SPUs execute the same
program/code.The PPU lets the SPUs run one operator on the whole image before pro-
ceeding with the next operator. For example, it will not issue the command for Multi-
plication operator until all the SPUs have finished performing the Sobel operator and
the whole of the image has been transfered back into the XDR.

5.2 Conventionnal Pipeline Model

This implementation of the POI algorithm (Fig. 3) consists in mapping the graph in
pipeline fashion, where the RoP consist in the entire image. This way, we considerably
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serialize the algorithm, and maximize the amount of transfers between SPEs. Assum-
ing that most of the transfers are performed serially, the contention rate on the bus is
minimized. The transfers in this version are characterized by top and bottom borders,
added for the convolution kernels. Left and right borders where removed by performing
registers renaming.

5.3 Half Pipeline Model
In this version (Fig. 4), we rely on the TLP offered by the Cell processor by merging
two successive operators in pairs, the Sobel with the Multiplication, and Gauss with
Harris. Thus, we divide the graph into two threads, that can be duplicated four times to
fill in the entire set of SPEs. Unlike the previous version, and considering that there are
four threads running concurrently in each step, the EIB bandwidth can be considerably
affected because of the important amount of concurrent transfers.

MS HG

MS HG

MS HG

MS HG

Fig. 4. Half Pipeline model
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5.4 Models Comparison

The SPMD model is the easiest one to implement. Since every SPE performs the same
computations on different input data, a single piece of code is developed and sent to each
processing element. However, doing so implies storing the intermediate results either
in the processor local memory (thus drastically restraining the size of the processed
tile), or in the central memory, which leads to many transfers and thus communication
bus contentions. However, if the simple pipeline model fully benefits from inter-SPEs
communication facilities, it implies many transfers per computation and does not take
advantage from the TLP offered by the Cell processor. The half pipeline model which
can be considered as a compromise between the two precedent versions, exploits the
fast communications between SPEs and the TLP. In the next section, we will verify if
implementation results agree with our expectations.

5.5 Considerations on the DMA Transfers

DMA transfers are the main issue when developing image processing applications on
the Cell processor. The size of computation tiles is the first parameter to consider. On
the one hand, these pieces of data must be as large as possible (up to the LS). Trans-
ferring large tiles, reduces the amount of reloads when performing convolution kernels.
On the other hand DMA requests must be performed in 16 KB chunks. Otherwise EIB
bandwidth is seriously affected [7]. The internal bus bandwidth is also related to the
number of concurrent transfers, as that the EIB can handle up to 12 non-colliding par-
allel transfers (3 per node). The last constraint on DMA requests concerns inter-SPE
transfers, that needs a synchronization mechanism (Fig. 5). This process aims to ensure
data coherence, but can causes SPE stalls when signaling is quite slow.

5.6 Benchmark Results

In this part of the paper, we present some preliminary results of our different models.
In our experiments, we considered different image sizes. Pixels are coded in single
precision floats format in order to have a simplified transfer management, and also
because of the limitations of the SPU instruction set. We measured the execution time
(CPP) with 4KB, 8KB and 16KB tiles to evaluate the impact of the tile size on it. The
metric used is cpp, which is the number of clock cycles per pixel.

cpp =
cpu cycles

N2
(1)

Image size is N × N pixels.The cpp is more representative than cpi (cycles per in-
struction) to compare the complexity per pixel of different algorithms. It also shows the
influence of memory transfers on computation and allows a fair comparison between
the architectures,as this measure is independent from the clock frequency. According
to the curves in Fig. 6, Fig. 7 and Fig. 8, one can note that cpp decreases when tile size
increases for all versions. This is due to the difference in the amount of transferred data.
One can also note that 16KB is the optimal value of DMA message, that guarantees a
maximum bandwidth on the EIB [7]. This is why we obtain an optimal cpp with a 16KB
tile. Although it is theoretically the best one, the half pipeline does not reach satisfying
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Fig. 6. Cycles per pixel for the SPMD Implementation

performances. This comes from the big contention on the bus caused by the collision
of the numerous transfers running concurrently, and the effect of synchronizations that
causes SPE stalls. The comparison between different implementations (Fig. 9) shows
that the SPMD version has the best cpp.

Comparison with a single core Implementation. To get a better idea of the gain
provided by the Cell processor, we compare the SPMD version with an equivalent
implementation on a mono-core PowerPC G5 using the Altivec ISA (Instruction Set
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Fig. 7. Cycles per pixel for the Pipeline Implementation
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Fig. 8. Cycles per pixel for the Half Pipeline Implementation

Architecture), knowing that both of the Altivec and SPU units are in-order processors,
and all of the instructions used to code the POI algorithm on the SPU have their cor-
responding instructions on the Altivec extension. The main characteristic of the G5,
is that performance is limited by the cache size, which is used to minimize the bot-
tleneck due to memory transfers : the cpp increases dramatically when the processed
data do not fit in the cache. This handover is amplified by the cache misses, and can
not be avoided but just deferred by increasing the cache size. Unlike the G5 processor,
the SPU does not use the cache mechanism to improve memory transfers. The size of
processed data (tile) is fixed by the user with taking into account the size of the local
storage. The cpp decreases while the data size increases and reaches a constant value
for large image sizes. With the SPMD version using 8 SPUs and large image sizes, the
speed-up is approximately x7, which is close to the x8 maximum speed-up.
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Fig. 9. Comparison between implementations for 16KB Tiles
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Fig. 10. Comparison Between G5 and Cell SPMD version

6 Conclusion and Future Work

We introduced different distribution models for the Harris POI algorithm on the Cell
processor. This application was chosen for its variant schemes of parallelization and also
because it includes different kinds of computation kernels. The influence of the size of
memory transfers and the number of concurrent ones on the performance decrease is
noted. The performances reached by pipeline versions do not match our expectations.
This is due to costly synchronizations between SPEs that increases the number of stalls
in the threads and numerous concurrent transfers that causes contention on the EIB. Better
handling of synchronizations is one of the projected improvements. The obtained results
will be exploited to design a tool for efficient image processing code distribution on the
Cell processor and other multi-core platforms. Examples of parallelization methods can
be found in [5], [8] and [9]. Tiling is the better strategy for distributing code on such ar-
chitectures, since memory transfers are the bottleneck that limits performance.
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