
HIGH LEVEL TRANFORMS TO REDUCE ENERGY CONSUMPTION OF SIGNAL AND
IMAGE PROCESSING OPERATORS

H. Ye1, L. Lacassagne2, J. Falcou2, D. Etiemble2, L. Cabaret 3 and O. Florent1

[1] ST Microelectronics, F-38019 Grenoble, France
[2] LRI: Laboratoire de Recherche en Informatique, Univ. Paris-Sud, F-91405 Orsay, France

[3] ECP/LISA: Ecole Centrale de Paris, F-92295 Châtenay-Malabry, France

ABSTRACT

High Level Synthesis for Systems on Chip is a challenging
way to cut off development time, while assuming a good le-
vel of performance. But the HLS tools are limited by the abs-
traction level of the description to perform some high level
transforms.This paper evaluates the impact of such high level
transforms for ASICs. We have evaluated recursive and non
recursive filters for signal processing an morphological filters
for image processing. We show that the impact of HLTs to
reduce energy consumption is high : from ×3.4 for one 1D
filter up to ×5.6 for cascaded 1D filters and about ×3.5 for
morphological 2D filters.

Index Terms— High Level Synthesis, High Level Trans-
forms, algorithm transforms, software optimizations, ASIC,
power consumption, energy optimization, signal processing,
image processing.

1. INTRODUCTION

High Level Synthesis (HLS) for Systems on Chip is a
challenging way to cut off development time while assuming
a good level of performance. The latest version of HLS tools
integrates software optimizations from the optimizing compi-
ler area [1] like loop-unrolling, software pipelining and using
the polyhedral model to improve loop scheduling. To further
improve current performance, tools should integrate the se-
mantic of an application domain [2] and the related algorithm
transforms [3].

This paper evaluates the impact of such algorithm trans-
forms or high level transforms (HLT) for ASIC. More and
more commercial or academic HLS tools are available like
LegUp [4] or Gaut [5]. We have chosen Catapult-C as it is the
tool used by ST Microelectronics for its synthesis farm. Finite
Impulse Response and Infinite Impulse Response filters have
been chosen as being ubiquitous in signal processing, while
morphological filters are also largely used in the image pro-
cessing area. The first section presents Catapult-C and how
to explore the design space configurations. The next sections
describe a set of optimizations and their impact on FIR filters,
IIR filters and morphological filters as well implementation

details on the code generation process based on preprocessor
meta-programming.

2. HIGH LEVEL SYNTHESIS TOOLS AND
OPTIMIZATIONS

The optimizations can be classified according to three ca-
tegories: HLT, software optimizations and hardware optimiza-
tions. HLT are algorithmic transforms based on optimizations
belonging to an application domain – like image and signal
processing – and are related to operator properties to reduce
the algorithm complexity. Examples of such transforms are
filter separation and factorization.The usual software optimi-
zations like loop unrolling, register rotation and software pi-
pelining are present in Catapult-C: it is able to unroll or pipe-
line loops. Moreover, it is able to detect a loop that perform
register rotation and transform the loop into a set of register-
to-register copy within a register file.

The typical way of using such a tool is to provide a C or
C++ source code and to set the clock frequency to be used. If
almost all parameters are automatically explored by the tool,
at least one parameter can be set by the user: the initiation
interval (ii). That is the number of clock cycles between the
start of two iterations of a loop. Let us consider the following
computation t = a+ b+ c+ d (from [6]) with usual 2-input
adders and assume that the duration of one addition is one
cycle. In the first case, one wants one output written every 3
cycles (Fig. 1, top with ii=3). In that case, there is no over-
lap between the operations and only one adder is needed. To
get one output every 2 cycles (Fig. 1, middle with ii=2, two
adders are needed as two additions occur on cycle 3: the first
one computes t3 = t2 + d from the first lane, and the second
computes t1 = a+ b from the second lane. To get one output
every cycle (Fig. 1, bottom with ii=1, three adders are needed
on cycle 3: the first one computes t3 = t2 +d, the second one
computes t2 = t1 + c and the third one computes t1 = a+ b.

Notice that is the electronic instance of software pipe-
lining, which is the most important optimization for VLIW
processors. Depending on ii and the algorithm structure, one
can have a direct impact on the size and performance of the



cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6

ii = 3

ii = 2

ii=1

cycle 7

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6

+

+

+

a
b

t1

c

d

t2

t3 dout

+

+

+

a
b

t1

c

d

t2

t3 dout

+

+

+

a
b

t1

c

d

t2

t3 dout

+

+

+

a
b

t1

c

d

t2

t3 dout

+

+

+

a
b

t1

c

d

t2

t3 dout

+

+

+

a
b

t1

c

d

t2

t3 dout

+

+

+

a
b

t1

c

d

t2

t3 dout

Fig. 1. Software pipelining and initiation interval. Top: ii=3
⇒ one adder needed, middle: ii=2⇒ two adders needed, bot-
tom: ii=1 (fully pipelined)⇒ three adders needed

circuit: with smaller ii, the circuit is faster and bigger; with
larger ii, the circuit is slower and smaller.

For benchmarking, the ST 65-nm CMOS library was used
with Catapult-C. The evaluation of the power consumption
and the area was done with Synopsys Design Compiler – be-
fore place and route – without activating the capabilities of
Catapult-C to reduce the total power consumption generating
local/global clock gating glue as we assume that the ASIC is
always running. In that case, the energy is the product of the
execution time by the (static + dynamic) power.

In the following, the small internal arrays are stored into
register, while big external arrays are stored into memory.
There are one memory per array, except for banked-memory
where there are 3 (or 5) memory bank to enable multiple ac-
cesses. We assume a streaming behavior: a set of data is trans-
ferred into memory before an operator is called to process it.
As operators are pipelined, the latency is equal to the value of
ii.

3. FINITE IMPULSE RESPONSE FILTER

The Finite Impulse Response (FIR) filters are very com-
mon in signal processing. If data are represented by floating-
point numbers, there are no special issue to address and the
implementation is straightforward. The only issues are ab-
sorption and cancellation when the coefficients magnitude is
very high. In our case, we consider integer data - typically -
8-bit and Q8 computations. That implies three points: 1) the
coefficients are multiplied by 28 before rounding, 2) the re-

sult of the computation is divided by 28 – shifted by 8 – and
3) in order to have rounded computations instead of truncated
ones, we must add half the value of the division, that is 27. So
considering a general 3-tap filter (Eq. 1), the associated im-
plementation is given by the algorithm 1 with the rounding
value r = 128. Notice that in all our examples, we do not
provide the prolog or the epilog of a loop, in order to have
small and compact examples (The Duff’s device [7] can be
used to remove the epilog but leads to a more tricky code).

y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2) (1)

Algorithm 1: fixed-point FIR3 filter – Reg version
for i = 2 to n− 1 do1

x0 ← X[i− 0], x1 ← X[i− 1], x2 ← X[i− 2]2
y ← (b0 × x0 + b1 × x1 + b2 × x2 + r)/2563
Y [i]← y4

3.1. FIR optimization

For FIR filters, there are two points to address. The first
one is to compare the impact of the hardware and software
optimizations on the synthesis of one filter. The second one is
the optimization of cascaded FIR filters.

The usual drawback of such a filter is its low complexity:
there is one MAC (Multiply-Accumulate) operation for every
LOAD. So the FIRs are generally memory bounded (except
on VLIW DSPs that are specially designed for signal proces-
sing [8] and are able to perform two memory accesses per
cycle). So, optimizing means reducing the LOAD duration
(the HW optimization) or the number of LOADs (the SW
one). We have evaluated four kinds of memory: 1) the Single
Port memory with 1 READ or 1 WRITE per cycle, 2) the SP
RW memory with 1 READ and 1 WRITE per cycle, 3) the
Double Port memory: two SP memories, with 2 READs per
cycle and 4) the banked memory with 3 (or 5) interleaved SP
memory banks, allowing 3 (or 5) accesses per cycle. A small
finite state machine automaton selecting the correct memory
bank during the filtering has been designed to handle circular
adressing. For the software part, we can perform Register Ro-
tation or Loop Unrolling (Algo. 2 and 3). We omit the prolog
and epilog parts to keep the algorithms as small as possible.

Algorithm 2: FIR3 filter – Rot version
x2 ← X[0], x1 ← X[1]1
for i = 2 to n− 1 do2

x0 ← X[i− 0]3
y ← (b0 × x0 + b1 × x1 + b2 × x2 + r)/2564
Y [i]← y5
x2 ← x1, x1 ← x0 [Registers Rotation]6



memory SP SR RW DP 3×SP SP SP SP RW DP
optimization Reg Reg Reg Reg Rot LU LU LU

1× FIR3
area(best A) 4237 4266 4562 4949 4458 6120 6240 7027
area(best E) 4671 4751 5957 7537 5047 10692 11038 12294

energy(best A) 11.68 12.08 12.54 13.80 11.92 28.24 28.49 26.18
energy(best E) 6.52 6.62 5.47 3.41 1.99 14.07 14.47 10.61

ii(best E) 3 3 2 1 1 3 3 2

two cascaded FIR3
area(best A) 6393 6482 6542 7498 6574 9913 10155 11155
area(best E) 8711 9206 10797 10360 7370 15828 16895 16237

energy(best A) 12.88 13.11 13.95 12.86 8.79 24.18 25.05 19.93
energy(best E) 7.56 5.87 4.34 6.69 2.82 15.79 16.45 10.89

ii(best E) 3 3 2 3 1 3 3 2

two pipelined FIR3
area(best A) 5888 5943 6207 6543 5715 9625 10039 10400
area(best E) 7619 7547 8639 12385 9317 18329 19086 20726

energy(best A) 20.05 21.78 21.33 23.28 23.11 64.54 65.56 66.98
energy(best E) 9.98 10.03 8.11 5.55 3.65 21.31 22.08 17.42

ii(best E) 3 3 2 1 1 3 3 2

memory SP SR RW DP 5×SP SP SP SP RW DP
optimization Reg Reg Reg Reg Rot LU LU LU

two fused FIR3 = one FIR5
area(best A) 5563 5619 5683 7121 5990 17968 17563 17330
area(best E) 6056 6198 7670 12513 8189 26913 28100 30441

energy(best A) 22.11 22.72 19.89 27.23 22.01 107.03 107.13 118.48
energy(best E) 13.74 14.05 10.52 5.59 3.19 48.21 50.98 34.14

ii(best E) 5 5 3 1 1 5 5 3

Table 1. FIR average area and energy

Algorithm 3: fixed-point FIR3 filter – LU version
x2 ← X[0], x1 ← X[1]1
for i = 2 to n− 1 do2

x0 ← X[i− 0]3
y0 ← (b0 × x0 + b1 × x1 + b2 × x2 + r)/2564
Y [i+ 0]← y05
x2 ← X[i+ 1]6
y1 ← (b0 × x2 + b1 × x0 + b2 × x1 + r)/2567
Y [i+ 1]← y18
x1 ← X[i+ 2]9
y2 ← (b0 × x1 + b1 × x2 + b2 × x0 + r)/25610
Y [i+ 2]← y211

3.2. Results and analysis

Let us call best A, the configuration that minimizes the
areas and best E the configuration that minimizes the energy.

The first part of the table 1 provides the average area and
energy of all the best configurations for synthesis frequency
varying from 200 to 800 MHz by step of 200 MHz.

As area and energy figures are very close for a given ii,
they have been replaced by their average in order to provide
all the results within only one table. the table also provides
the initiation interval (ii). The best HW optimization is the
3×SP version with a banked memory. The energy is divided

by ×3.43 versus the basic SP version and the area increases
by 78 %. The best SW optimization is SP+Rot: the energy is
divided by ×5.87 with only a 19% area increase. The reason
why these two configurations are by far the most efficient is
that a computation can be launched every cycle (ii=1). No-
tice that Loop-Unrolling is not efficient with Catapult-C: the
DP+LU consumes more energy than DP+Reg. That is the
reason why we did not evaluate the 3× SP+LU version.

If we now focus on the efficiency of two cascaded filters,
there are three cases:

1. two independent filters (Algo. 4), with a temporary me-
mory T of the same size than the input,

2. two pipelined filters with a 1-point FIFO for the Rot
version and a 3-point FIFO for the Reg version (Algo.
5),

3. one single filter that is the fusion of the previous filters.
From a software point of view, the pipelined version cor-

responds to a loop-fusion but with two separates filters, while
the fused version correspond to the filter fusion.

The table 1 summarizes all the results. Notice that in the
case of the cascaded filters, the area does not consider the
temporary memory area and its power consumption. As a
matter of fact, a 65-nm 1024×8-bit SP memory has a power
consumption of 14 pJ/point with an area close to 15000
µm2. So the cascaded filters results are just provided as the



first step of the optimization process, keeping in mind that
that a designer will start with the pipelined version with a
small FIFO. Compared to SP, the RW (respectively DP) me-
mory has a surface and a power consumption that are ×1.5
and ×1.3 (respectively ×1.8 and ×1.6) bigger than SP ones.

Regarding the pipelined filter configurations, the energy
of the Rot version is ×5.49 smaller than the energy of Reg
version. The figure is even higher for the fused filters configu-
ration: 3.19 pJ , that is ×6.93 less than the SP+Reg version,
while the area is quite the same (0.45% smaller). Again, only
3×SP+Reg and SP+Rot versions lead to an initiation inter-
val of 1 cycle per point.

Algorithm 4: 2 FIR3 filters, with temporary memory T
for i = 0 to n− 1 do1

x← X[i], y1 ← F1(x), T [i]← y12

for i = 0 to n− 1 do3
x← T [i], y2 ← F2(x), Y [i]← y24

Algorithm 5: two pipelined FIR3 filters
for i = 0 to n− 1 do1

x← X[i], y1 ← F1(x), y2 ← F2(y1), Y [i]← y22

Algorithm 6: two fused FIR3 filters
for i = 0 to n− 1 do1

x← X[i], y ← F2(F1(x)), Y [i]← y2

3.3. Meta-programming

In order to provide a high level interface for these trans-
forms, we implemented an IDL (Interface Description Lan-
guage) like interface for the FIR function definitions using
preprocessor meta-programming. Meta-programming is a set
of software techniques that bring the benefits of automation
to software developments. Those techniques rely on various
languages specific features that enable developers to mani-
pulate programs fragments as data at various stage of the
compilation process. If the most famous meta-programming
technique is template meta-programming (as defined in [9]),
preprocessor or macro-based meta-programming fills a very
important niche. Based on the seminal work [10], prepro-
cessor meta-programming allows the developers to manipu-
late so-called preprocessor data structure and preprocessor
control flows to generates arbitrarily complex codes for func-
tion interfaces or repetitive, token based iterations. Such
structures include arrays, tuples and sequences. Control flows
can be defined as preprocessor loops or iterations over struc-
tures. The advantages of such techniques over handwritten,

Rot3Reg3

Fig. 2. producer-consummer model of FIR3 Reg & Rot ver-
sions

X Rot3 T Rot3 Y

X Rot3 Rot3 Y

X YRot5

fifo

Fig. 3. three versions of two cascaded FIR3: independent fil-
ters with temporary T memory (top), pipelined filters with a
1-point FIFO (middle), fused filters (bottom)

direct macro expansion is the higher level of abstractions
and the facility to compose macro generators. Libraries like
Boost.ConceptCheck [11] or Boost.Local use such fa-
cilities to emulates languages features with a high degree of
interface compliance.

In our case, preprocessor meta-programming was used to
be able to comply with Catapult-C support of current C and
C++ standards. As conformance to the C preprocessor stan-
dard is fairly common among existing tools, this strategy is
portable across various tools outside of Catapult-C. Template
meta-programming has been checked but was not completely
supported by the Catapult-C compiler. In the following lis-
tings (Lst. 1 & 2), ac channel is a Catapult-C C++ class for
the stream I/O and array stands for a C99 variable length
array.

Listing 1. FIR3 with C99 array
FIR(((array(sint8,N),X),(array(sint8,M),H),

(array(sint8,N),Y)))

Listing 2. FIR3 with ac channel I/O
FIR(((ac_channel(uint8),X),(array(sint8,M),H),

(ac_channel(uint8),Y)))

The macros expand in the following stages: a declaration
of variables and a static array RF, a loop containing the load of
a point (from an C99 array of from a stream ac channel),
then a register-rotation RF with the memorization of the last
input inside, the convolution and the output. We have obser-
ved that Catapult-C exactly generates a Register File with a
rotation for the first loop.



Listing 3. macro expansion of listing 1
void fir(sint8 X[256], sint8 H[3], sint8 Y

[256]) {
int i;
for(i=0; i<256; i++) {

sint8 x; sint8 y; sint8 r=1<<7;static
sint8 RF[3];

x = X[i];
{int k; for(k=0;k<3-1;k++) RF[k] = RF[k+1];

RF[3-1]= x;};
{int k; sint16 y16; y16=r; for(k=0;k<3;k++)

{y16+=RF[k+i]*H[k];} y=(uint8)(y16>>8)
;}; Y[i]=y;}

}

Listing 4. macro expansion of listing 2
void fir(ac_channel<uint8>& X, sint8 H[3],

ac_channel<uint8>& Y) {
{uint8 x; uint8 y; sint8 r=1<<7; static sint8

RF[3];
x = X.load();
{int k; for(k=0;k<3-1;k++) RF[k]=RF[k+1]; RF

[3-1]= x;}
{int k; sint16 y16; y16=r; for(k=0;k<3;k++) {

y16+=RF[k]*H[k];} y=(uint8)(y16>>8);} Y.
write(y);}

}

4. INFINITE IMPULSE RESPONSE FILTER

The recursive filters (Eq. 2) are difficult to optimize by a
compiler. The reason is the dependency between the current
output y(n) and the previous outputs that are also the current
inputs y(n − 1) and y(n − 2). Let us focus on the IIR12 fil-
ters that are used for edge detection. This filter (Eq. 2) is a
smoother filter obtained after a simplification [12, 8] of the
well-known Canny-Deriche filter [13, 14]

y(n) = (1− γ)2x(n) + 2γy(n− 1)− γ2y(n− 2) (2)

Algorithm 7: IIR12 filter – Normal form
for i = 2 to n− 1 do1

x0 ← X[i− 0], y1 ← Y [i− 1], y2 ← Y [i− 2]2
y0 ← (b0 × x0 + a1 × y1 + a2 × y2 + r)/2563
Y [i]← y04

4.1. IIR optimization

Thanks to the coefficient expression, the Factor form (Eq.
3) is the factorization of the previous filter with powers of γ.
It replaces one multiplication by two additions. Depending on
their respective size / power consumption and latency, it could
lead to smaller / lower power or faster designs.

y(n) = x(n)+2γ [y(n− 1)− x(n)]−γ2 [y(n− 2)− x(n)] (3)

Algorithm 8: IIR12 filter – Factor form
for i = 2 to n− 1 do1

x0 ← X[i− 0], y1 ← Y [i− 1], y2 ← Y [i− 2]2
y0 ←

`
256×x0 +a1(y1−x0)+a2(y2−x0)+ r

´
/2563

Y [i]← y04

Concerning the dependency problem, the shortest and
strongest dependency y(n − 1) can be removed by replacing
the expression of y(n − 1) into y(n − 2) (Eq. 4). This form
is called Delay as the dependency is delayed to y(n− 2) and
y(n− 3).

y(n) = (1−γ)2x(n)+2γ(1−γ)2x(n−1)+3γ2y(n−2)−2γ3y(n−3)
(4)

As for FIR filters, some software optimizations like
Register-rotation and Loop-Unrolling can be applied to the
three forms. We have chosen to only apply the Register-
rotation as it produces more efficient designs. The complexity
of these three versions is given in table 2. We assume that the
multiplication and division by 256 are replaced by left and
right logical shifts.

Algorithm 9: IIR23 filter – Delay form
for i = 2 to n− 1 do1

x0 ← X[i− 0], x1 ← X[i− 1]2
y2 ← Y [i− 2], y3 ← Y [i− 3]3
y0 ← (b0×x0 + b1×x1 + a2× y2 + a3× y3 + r)/2564
Y [i]← y05

version MUL ADD SHIFT LOAD STORE

Normal form 3 2+1 1 3 1
Factor form 2 4+1 2 3 1
Delay form 4 3+1 1 4 1

Table 2. IIR filters complexity

4.2. IIR Results and analysis

Table 3 presents the results of the three forms in term of
area, power and energy. We can observe that energy consump-
tion increases with ii, while area and power decrease. The
reason is that Catapult-C optimizes for area and power, so the
smallest area (best A configuration) and lowest power is ob-
tained when ii is not constrained (noted auto ii). In that case,
Catapult-C chooses ii ∈ {5, 6, 7}.

The smallest energy consumption is again obtained for
ii = 1. If we compare Normal and Factor forms, ii = 1
and/or Factor provide energy reductions of 753/179 = ×4.2
at 200 MHz and 1171/211 = ×5.6 at 400 MHz. If we



Normal form Factor form Delay form
Freq (MHz) 200 400 200 400 200 400 600 800
Area (µm2)
auto ii 3780 3762 3635 3931 4469 4830 5517 9963
ii = 1 5274 5227 3984 4789 6769 7817 8239 9872
ii = 2 4746 4739 3555 4048 5425 6012 6285 8024
ii = 3 4163 4557 3492 3824 5204 5585 6496 10354
ii = 4 4019 3944 3475 3924 4925 5211 5648 10750
best E / best A ×1.40 ×1.39 ×1.10 ×1.22 ×1.51 ×1.62 ×1.49 ×1.00

Power (µW )
auto ii 352 613 325 583 443 798 1248 2027
ii = 1 445 692 320 710 551 1186 1668 2432
ii = 2 469 797 348 707 539 1085 1571 2516
ii = 3 433 698 329 612 488 939 1511 2274
ii = 4 405 686 317 634 518 927 1383 2374
best E / best A ×1.26 ×1.13 ×1.00 ×1.22 ×1.24 ×1.49 ×1.34 ×1.20

Energy (pJ/point)
auto ii 5.88 9.20 5.66 7.34 9.73 16.02 14.63 20.43
ii = 1 2.12 1.65 1.40 1.77 2.02 2.97 2.73 3.02
ii = 2 3.15 3.98 3.18 3.53 3.54 5.17 5.28 6.29
ii = 3 4.88 5.23 4.50 4.49 5.41 6.97 7.55 8.53
ii = 4 5.82 6.86 5.74 6.20 7.41 9.27 9.19 11.87
best A / best E ×2.78 ×5.58 ×4.05 ×4.14 ×4.81 ×5.40 ×5.35 ×6.77

Table 3. IIR area, power and energy for synthesis frequency in [200..800] with 200 MHz step

compare Normal and Delay, the energy consumption of De-
lay+ii=1 is also smaller than for Normal+ii = 0. If we
compare with Factor and Normal forms for ii = 1, Delay has
a higher energy consumption, but it allows synthesis at twice
the max frequency of the other forms.

One conclusion can be derived: if the peak power consump-
tion is not too high, setting the initiation interval to the smal-
lest possible value always leads to the best configuration for
energy consumption, that is the key for longer embedded sys-
tem autonomy. Moreover, the Delay transformation allow the
use of higher frequencies, postponing the need to switch to
a more recent and more expensive CMOS technology to get
higher frequencies.

5. MORPHOLOGICAL FILTERING

The morphological operators [15] exist in two flavors: the
binary ones and the grey level ones. In the following, we as-
sume binary ones with a 3 × 3 structuring element. The fil-
tering operators like opening, closing and alternate sequential
filters are all based on two basic operators: the erosion and the
dilation. These two morphological operators rely on the use of
min and max computations over the structuring element for
gray images. These operators are respectively replaced by the
boolean operators AND and OR for binary images. As they
are all idempotent, let us define the ⊕ operator that is one of
the four basic operators. The basic implementation of such an
operator is given in algorithm 10.

The usual problem to process the array edges is addres-
sed by the use of Iliffe arrays [16] based on offset addressing
that allows the programmer to allocate images with negative
indexes like[0− r : (n− 1) + r]× [0− r : (n− 1) + r], with

Algorithm 10: 3 × 3 morphological filter (Eq.5) - Reg
version

for i = 1 to n− 1 do1
for j = 1 to n− 1 do2

a0 ← X[i-1][j-1], b0 ← X[i-1][j], c0 ← X[i-1][j+1],3
a1 ← X[i][j-1], b1 ← X[i][j], c1 ← X[i][j+1],
a2 ← X[i+1][j-1], b2 ← X[i+1][j], c2 ← X[i+1][j+1]
r ← a0 ⊕ b0 ⊕ c0 ⊕ a1 ⊕ b1 ⊕ c1 ⊕ a2 ⊕ b2 ⊕ c24
Y [i][j]← r5

r the radius of the kernel: for a k × k kernel, k = 2r + 1.

5.1. 2D Morphological operator optimization

As previously observed for FIR, Loop-Unrolling is not
very efficient for HLS. So we prefer the Register-Rotation
combined with scalarization (to put temporary results into
registers). In algorithm 11, the pixel of the left and central
column are loaded into registers before the loop (lines 4-6).
After the computation,the registers are rotated (lines 14-16).
Compared to the initial algorithm using 9 LOADs, that ver-
sion has only 3 LOADs. The arithmetic complexity remains
the same: 8 operations (named OP in the following). Register-
Rotation leads to the Rot version (Algo. 11).

As the morphological operators are idempotent, the 2D
structuring element SE3×3 can be decomposed into two 1D
elements (Eq. 5).

SE3×3 =

24 1 1 1
1 1 1
1 1 1

35 =

24 1
1
1

35 ∗ ˆ 1 1 1
˜

(5)



Algorithm 11: 1-pass implementation of the 3×3 mor-
phological filter with Register Rotation, Rot version

for i = 1 to n− 1 do1
j ← 1 [preload the first two columns of each line]2
a0 ← X(i− 1, j − 1), b0 ← X(i− 1, j)3
a1 ← X(i, j − 1), b1 ← X(i, j)4
a2 ← X(i+ 1, j − 1), b2 ← X(i+ 1, j)5
for j = 1 to n− 1 step 3 do6

c0 ← X(i− 1, j + 1)7
c1 ← X(i, j + 1)8
c2 ← X(i+ 1, j + 1)9
r ← a0 ⊕ b0 ⊕ c0 ⊕ a1 ⊕ b1 ⊕ c1 ⊕ a2 ⊕ b2 ⊕ c210
Y (i, j)← r11
a0 ← b0, b0 ← c0 [RR of the first line]12
a1 ← b1, b1 ← c1 [RR of the second line]13
a2 ← b2, b2 ← c2 [RR of the third line]14

By introducing another optimization, we can both facto-
rize the computations and reduce the number of memory ac-
cesses. The two passes of the 1D-filter on the image can be
combined within a single pass. First, the result of the first 1D-
filter is stored in a register. This transformation is called a
reduction. In our case, it is a column-wise reduction: instead
of memorizing 6 pixels (Algo. 11, lines 4-6), we compute the
reduced value by column (Algo. 12, lines 5 & 6). Then the se-
cond operator is directly applied to the reduced values (Algo.
12, line 12). In that version, there are only 3 LOADs and 4
OPs. All the complexity figures are summarized in table 4
where MV stands for a move (to copy one register to another
one) and AI represents the arithmetic intensity (ratio between
arithmetic operators and memory accesses).

Algorithm 12: 1-pass implementation of the two sepe-
rated 1D operators with reduction, Red version

for i = 1 to n− 1 do1
a0 ← X(i− 1, j − 1), b0 ← X(i− 1, j)2
a1 ← X(i, j − 1), b1 ← X(i, j)3
a2 ← X(i+ 1, j − 1), b2 ← X(i+ 1, j)4
ra ← a0 ⊕ a1 ⊕ a2 [reduction of the first column]5
rb ← b0 ⊕ b1 ⊕ b2 [reduction of the second column]6
for j = 1 to n− 1 do7

c0 ← X(i− 1, j + 1)8
c1 ← X(i, j + 1)9
c2 ← X(i+ 1, j + 1)10
rc ← c0 ⊕ c1 ⊕ c2 [reduction of the third column]11
r ← ra⊕ rb⊕ rc [applying the horizontal operator]12
Y (i, j + 0)← r13
ra ← rb [rotation of the reduced registers]14
rb ← rc15

version OP LD + ST MV AI

Reg (1-pass of 2D-op) 8 9+1=10 0 0.8
Rot (1-pass of 2D-op) 8 3+1=4 6 2.0
Red (1-pass of 1D-op) 4 3+1=4 2 1.0

Table 4. Morphological operator complexity and arithmetic
intensity

5.2. Results and analysis

For the morphological operators, HLTs have a major im-
pact on the efficiency. Let us call “bestE” and “bestA” the
configurations associated to the smallest energy consumption,
and the smallest area (Tab. 5 & 6). Let us also call auto ii the
combinatory version. As the basic version (Reg) requires 9
LOADs (Tab. 5,) we need 9 cycles to perform all the LOADs
with a single-port RAM and d9/2e = 5 cycles with a dual-
port RAM. For the same reason, the minimum number of
cycles for Rot and Red versions (3 LOADs) is 2 cycles. That
is very important, as for all the explored configurations, the
bestE was reached for the smallest ii. The gain due to HLTs
ranges from ×2.85 to ×3.05 . Moreover, with a single-port
RAM, the gap between Reg and Red versions would be even
greater, as the energy increases with the ii. Finally, if we com-
pare the configuration of the smallest area without HLT to the
best Red, the gain ranges from ×3.3 to ×3.8.

freq (MHz) 200 400 600 800

bestA Reg (auto ii) 6.45 6.67 7.44 7.79

bestE Reg (ii=5) 5.49 5.76 6.44 5.87
bestE Rot (ii=2) 2.47 2.78 3.14 2.95
bestE Red (ii=2) 1.80 2.02 2.25 2.05

bestE Reg / bestE Red ×3.05 ×2.85 ×2.86 ×2.86
bestS Reg / bestE Red ×3.58 ×3.30 ×3.31 ×3.80

Table 5. Energy (pJ/pixel) of the morphological operator on
a 65-nm ASIC with best ii for Reg, Rot and Red versions

freq (MHz) 200 400 600 800

bestA Reg (auto ii) 2893 2893 2893 2986
bestE Reg (ii=5) 3206 3208 3206 3030
ratio bestE / bestA 1.11 1.11 1.11 1.01

bestA Rot1 (ii=4) 2905 2908 2923 2847
bestE Rot (ii=2) 3534 3534 3563 3443

ratio bestE / bestA 1.22 1.22 1.22 1.21

bestA Red (ii=4) 2374 2378 2400 2408
bestE Red (ii=2) 2685 2685 2714 2616
ratio bestE / bestA 1.13 1.13 1.13 1.09

bestA Reg / bestE Red 1.08 1.08 1.07 1.14

Table 6. Area (µm2) of the morphological operator on 65 nm
ASIC with best ii for Reg, Rot and Red versions: the smal-
lest area and the area associated to the smallest energy



We can perform the same analysis for the area (Tab. 6).
For each level of HLT optimization (Reg, Rot and Red),
there is an area increase close to 11%, 22% and 13%. But
if we compare the smallest area without HLT to the area as-
sociated of the smallest Red energy version, we can see that
smallestRed energy version has a smaller area than the confi-
guration without optimization (smallest Reg area). The im-
pact of HLTs on chip area is limited.

6. CONCLUSION AND FUTURE WORKS

We have shown that we can enhance the performance of
a HLS tool like Catapult-C by performing a software opti-
mization like register rotation (by hand or by macro meta-
programming). Moreover this software optimization is more
efficient than hardware optimizations such as switching to
dual-port or interleaved memories for filtering.

We have shown that high level transforms (HLT) are very
efficient. The principle is to transform the code – and the as-
sociated hardware – in order to get the lowest possible latency
represented by the value of the initiation interval ii. Smaller
ii lead to reduced power and energy consumptions and faster
execution times.

For FIR with fusion of cascaded filters, the energy
consumption is divided by ×5.87. For IIR, the Delay form
allows to reach higher frequencies for synthesizing ASICs
without needing the more recent technology. For 2D morpho-
logical filters, reduction is the key to reduce complexity and
memory accesses, and thus decrease ii. We get a faster and
smaller design with an energy consumption divided by ×3.5

Usually one must choose between speed and low power
consumption. With the combination of HLT and HLS, no
choice is needed: the ASIC is both faster and greener!

In future works, we will implement the high level trans-
forms through algorithmic skeletons [17, 18, 19] and C++
Meta-programming [9] to make the whole process (algorithm
transformation, operator fusion and synthesis) fully automa-
tic within th reach of the underlying tools as it will require a
strict conformance to C++ standard. We will target color algo-
rithms as they are more computation intensive [20] than usual
black & white algorithms.

7. REFERENCES

[1] R. Allen and K. Kennedy, Eds., Optimizing compilers for
modern architectures: a dependence-based approach, chapter
8,9,11, Morgan Kaufmann, 2002.

[2] S. Le Beux, L. Moss, P. Marquet, and J.L. Dekeyser, “A
high level synthesis flow using model driven engineering,” in
Algorithm-Architecture Matching for Signal and Image Pro-
cessing. Springer, 2012, pp. 253–274.

[3] M. Pueschel, J.M.F. Moura, J. Johnson, D. Padua, M. Veloso,
B.W. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R.W. Johnson, and N. Rizzolo, “Spiral: Code ge-
neration for dsp transforms,” Proceedings of the IEEE: special

issue on program generation, optimization and adaptation, vol.
93,2, pp. 232–275, 2005.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “Legup: high-level
synthesis for fpga-based processor/accelerator systems,” in
FPGA11: international symposium on Field Programmable
Gate Arrays. ACM, 2011, pp. 33–36.

[5] B. Le Gal, E. Casseau, P. Bomel, C. Jego, N. Le Heno, and
E. Martin, “High-level synthesis assisted rapid prototyping for
digital signal processing,” in International Conference on Mi-
croelectronics, 2004, pp. 746–749.

[6] M. Fingeroff and T. Bollaert, Eds., High-Level Synthesis - Blue
Book, chapter 4, pp. 41–44, Mentor Graphic, 2010.

[7] T. Duff, “http://en.wikipedia.org/wiki/Duff’
s_device,” .

[8] L. Lacassagne, F. Lohier, and P. Garda, “Real time execution of
optimal edge detectors on risc and dsp processors,” in ICASSP.
IEEE, 1998.

[9] D. Abrahams and A. Gurtovoy, Eds., C++ Template Meta-
programming: concepts, tools and techniques from Boost and
Beyond, chapter 5, Addison-Wesley, 2005.

[10] P. Mensonides, “The chaos preprocessor library https://
github.com/ldionne/chaos-pp,” 2005.

[11] A. Lumsdaine J. Siek, “Concept checking: Binding parametric
polymorphism in c++,” in Workshop on C++ Template Pro-
gramming, 2000, pp. 1–12.

[12] F. Garcia Lorca, L. Kessal, and D. demigny, “Efficient asic and
fpga implementations of iir filters for real time edge detection,”
in International Conference on Image Processing. IEEE, 1997,
pp. 406–409.

[13] J. F. Canny, “A computationa approach to edge detection,”
Pattern Analysis Machine Intelligence, vol. 8,6, pp. 679–698,
1986.

[14] R. Deriche, “Fast algorithms for low-level vision,” Transaction
on Pattern Analysis, vol. 12,1, pp. 78–87, 1990.

[15] P. Soille, Morphological Image Analysis Principles and appli-
cations, Springer, ISBN 3-540-42988-3, 1999.

[16] J.K. Iliffe, “The use of the genie system in numerical calcula-
tion,” Annual Review in Automatic Programming, vol. 2, pp. 1
– 28, 1961.

[17] T. Saidani, J. Falcou, C. Tadonki, L. Lacassagne, and Daniel
Etiemble, “Algorithmic skeletons within an embedded domain
specific language for the cell processor,” in PACT, 2009, pp.
67–76.

[18] J. Serot and . Falcou, “Functional meta-programming for pa-
rallel skeletons,” in Computational Science–ICCS 2008, pp.
154–163. Springer Berlin Heidelberg, 2008.

[19] K. Hammond and G. Michaelson, Eds., Algorithmic skeletons:
structured management of parallel computation, chapter 13,
pp. 289–303, Springer, 1999.

[20] M. Gouiffès and B. Zavidovique, “Body color sets: A compact
and reliable representation of images,” Journal of Visual Com-
munication and Image Representation, vol. 22,1, pp. 48–60,
2011.


