
ADAM Pro ject
L IP6 – LIRMM - LETI

 1/22

Deliverable 4:

Technical report describing the
methodology used by off-line

functional/structural test

Editor: LIP6

Authors:

M. Benabdenbi

D. Refauvelet

F. Pêcheux

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 2/22
 project Deliverable Date Editor Version n° page

SUMMARY

Versions

V1.0 : 20010-03-14

1 Introduction...3
2 Reminder of the ADAM project ...3
2.1 Stage 1 : On-line Monitoring...5
2.2 Stage 2 : Diagnosis ..5
2.3 Stage 3: Application remapping, System adaptation...5

3 An Overview of the Test/Diagnosis/Reconfiguration Steps7
3.1 The main goals ..7
3.2 The assumptions ..7
3.3 The targeted MP²SoC architecture ..8
3.4 The required steps to reach the remapping phase..9

4 Booting time: Built-In Coarse Grain Test&Diagnosis..11
4.1 Distributed NoC initialization procedure ..11

4.1.1 The DSPIN NoC ...11
4.1.2 Malfunction due to a faulty channel..12
4.1.3 The distributed initialization procedure ..13
4.1.4 De-activation/activation ..14
4.1.5 Preparing the test and diagnosis phase..14

4.2 Booting the MP²SoC: Intra Cluster Test & Diagnosis......................................15
4.2.1 Embedded Software Based Self Test of the cluster15
4.2.2 Generation of a Local AIM...16

5 Accessing the External Memory Bank..16
5.1 A Leader required..16
5.2 A distributed election process ...17
5.3 The leader ‘s rôle ...18

6 Fine Grain Test & Diagnosis ..18
6.1 Fine grain NoC test & diagnosis ...18

6.1.1 Testing the NoC’s paths..19
6.1.2 NoC Diagnosis ..20

6.2 Fine grain cluster test & diagnosis ..20
7 Reconfiguration & Deactivation of faulty components ..21
8 References ...21

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 3/22
 project Deliverable Date Editor Version n° page

1 Introduction

This document “Technical report describing the methodology used by off-line
functional/structural test” is the fourth deliverable “D4” of the ADAM ANR
project.

The main objective of this fourth deliverable is to define the global methodology
required to reach Test & Diagnosis objectives in order to allow the construction
of a Hardware Architecture Instant Map (AIM). This map of functional hardware
components is then intended to be used as an entry of the functional remapping
stage. The issues related to the construction of the AIM and to the remapping
phase will not be discussed here; two dedicated deliverables are devoted to
that.
This deliverable use as a basis the results detailed in the previous deliverables.
This document refers to the current strategy of the different partners, thus ideas
and principles presented here may slightly vary within the remaining time of the
project.

This document includes 6 sections:
1) This introduction
2) A brief reminder of the ADAM project
3) An overview of the methodology for functional/structural Test & Diagnosis of
the MP²SoC. The following sections detail the methodology.
4) A description of the main steps to be done after the chip power boot. These
steps will lead to a coarse grain Test and Diagnosis of the chip subparts.
5) A description of the process leading to the election of a Master Test and
Diagnosis Controller, this master being in charge to communicate with the outer
world.
6) The software-based techniques allowing a fine detection/localization of faulty
components.
7) A brief description of the intended reconfiguration/deactivation steps required
before the remapping process.

2 Reminder of the ADAM project

ADAM is a prospective research project trying to provide solutions to the hot
topic of self-adaptability of MP²SoC chips embedding applications running in
presence of malfunctions such as loss of performances, hardware permanent
failures or sudden temperature elevation. Architectures targeted by the ADAM
project are MP²SoC containing functional homogeneous blocks (more than a
thousand of computing units concurrently working on the execution of an
application) but with heterogeneous behaviours (with different electrical and
temporal characteristics from a block to the other). Taking into account at the
same time all these aspects to allow optimized performances and high level

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 4/22
 project Deliverable Date Editor Version n° page

reliability is a key issue for the next generations of embedded multi-processors
systems.

As shown in Figure 1, the ADAM project can be seen as a “three stages rocket”:
the online monitoring, the online test and diagnostic and the online remapping
of the functional application. Actual researches address the issues related to
each of these three stages but very few works yet neither propose global
solutions nor specify the interfaces between the stages.

Figure 1: the three stages of the ADAM project.

Knowing that the hardware architectures of the three partners are basically
different, the uniformity of the ADAM project comes from the willing of each
partner to propose common standardized interfaces between the three stages
(see figure 1). The two major results expected by the partners, that should
interest the MP²SoC community, are then the data structures called DRET and
AIM and their programming interface. The DRET (Distributed Raw Event Table)
gives a level of abstraction allowing to manage in the same way events
triggered in the system whatever the origin is, hardware or software. All the
events are then processed in a software way in order to take the appropriate
decision (modifying the system behaviour or even stopping the application
execution).
The AIM (Architecture Instant Map) corresponds, after the diagnosis process, to
the cartography of the system related to a given criteria (temperature map, map

Online
Non - intrusive

Monitoring

Test
& Diagnosis

Application
Remapping

Performance Fault
detection

Power &
thermal

management

Functional
& Structural

Test
Statistical

analys

Architecture Instant Maps

remapping

DRET

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 5/22
 project Deliverable Date Editor Version n° page

of functional/defective hardware components, map of data volume exchanged
between the embedded IPs…).

The two programming interfaces should be simple and efficient enough to let, in
the last stage, the remapping application accesses easily these databases.

Several types of scenarios using these programming interfaces have already
been clearly identified in the ADAM project, as shown in the deliverable 2.

2.1 Stage 1 : On-line Monitoring

The online monitoring consists in adding to the system hardware and software
sensors (architecture + embedded functional application), in order to detect and
collect events related to the appearance of phenomenon within the MP²SoC
(unexpected temperature rise, power consumption or load of a processor over a
certain threshold…). This monitoring must be non-intrusive and dedicated to
reading and storing sensor values in the local memories, in order to take the
appropriate decision for the system adaptation. The monitoring application can
be an independent application or it can be directly embedded in the micro-
kernel allowing the functional application to be executed.

2.2 Stage 2 : Diagnosis

Online diagnosis is the stage responsible for making thorough analysis, once
events corresponding to alteration/malfunction have been detected in the
previous stage. This stage interprets and formats the raw results, logs them into
efficient data structures like databases and manages their history. Diagnosis
also performs intrusive tests, like functional or structural tests on IPs, computes
an annotated representation of the running architecture, and finally builds a
database of audited architecture views. These views, or maps, represent an
instant picture of the architecture showing the exact physical locations of the
analyzed phenomenon occurrences. The diagnosis stage, according to the level
of reactivity needed, may or may no stop the running application. For
performance issues, it is not required to stop the application but in the case of
the structural test of a component, the running application must be stopped and
totally replaced by the test application. In other words, an event map actually
represents the audited architecture with respect to the monitored event.

2.3 Stage 3: Application remapping, System adaptation

Online constrained application remapping exploits the database of event maps,
and possibly its history, to determine how and under what conditions the

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 6/22
 project Deliverable Date Editor Version n° page

application graph can be remapped on the architecture. The instant map is used
to constrain the placement of the monitored application graph. Different
placement strategies for the application graph are possible, from a centralized
scheme that statically assigns threads to processors once for all to a distributed
and dynamic placement algorithm that allows task migration/replication and
local optimization.

The ADAM project addresses a major part of the issues related to MP2SoC self-
adaptability and aims at determining the common hardware and software
mechanisms needed for the three stages. As a proof of concept, and to validate
the whole work, 3 distinct applications will be mapped onto the three hardware
architectures maintained by each partner: a telecom application 3GPP-LTE, a
H264 decoder, and a mp3 decoder.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 7/22
 project Deliverable Date Editor Version n° page

3 An Overview of the Test/Diagnosis/Reconfiguration Steps

3.1 The main goals

As stated in section 2.2, the main objective of the diagnosis stage is to build a
cartography of faulty/functional hardware components.

3.2 The assumptions

The ADAM project focuses on the detection and diagnosis of hardware
permanent faults. We do not intend to manage failures due to transient faults
such as single event upsets (SEUs) which require some different
detection/correction techniques out of the scope of the project.
Detecting and locating permanent faults require thorough onchip analysis and
thus cannot be done online. The test and diagnosis (T&D) process is then
intrusive and cannot be executed while the chip runs the functional application.
That’s why in this study we propose an off-line methodology, which execution
follows the online monitoring phase responsible for the stopping of the
functional application after malfunction detection.
The T&D phase starts with the power boot of the MP2SoC. This process can be
not only run at fabrication testing time but also all along the chip’s life when
embedded in its functional environment. This T&D process can be considered
as a periodic in the field test/diagnosis/repair technique providing a kind of fault
tolerance.
Two questions coming with the T&D phase are “what do we test ? and
consequently what kind of faults do we target ?” This raises the problem of the
granularity of the T&D objectives.
Another issue is that the chip embeds a limited amount of memory and is
generally connected to an external memory with much more capacity.
To answer the both two last issues (granularity and limited embedded memory)
we propose to split the T&D process in two successive steps: the coarse grain
and the fine grain T&D phases.
The first one starting with the chip power boot will target the detection of a
malfunction of a component as a whole (microprocessor, memory bank,
peripheral, NoC router, …). Testing functionalities will come from the on-chip
resources and are consequently limited. Details of this step are given in the next
section.
The second one will start with the access to the external memory. As more
complex and bigger test data/programs are available, the T&D process can be
more accurate allowing localizing the faulty subparts of a component (a
segment of a memory bank for example). What we propose to implement this
step is detailed in section 6.
To reach the chip fault tolerance relying on the here described T&D phase, we
choose to build our methodology on Software-Based-Self-Test techniques

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 8/22
 project Deliverable Date Editor Version n° page

(SBST). This mainly consists in executing, through the reuse of the embedded
computing resources, software programs targeting the detection/localization of
hardware faults. The main benefits, compared to dedicated hardware
techniques, are the following:

o Avoidance of a costly area overhead
o Full scalability with the growth of the chip size
o Fast test development
o Adjustable fault coverage and accuracy
o Requirement of a minimal test equipment (interesting since we intend to

provide in the field testing)
- …

As we have two different goals, coarse grain and fine grain T&D objectives, we
define two sets of SBST programs. The first set of programs must be very small
since the embedded memory required to store them is expensive (mainly ROM
and flash memory). These programs include all the testing steps from the chip
booting to the moment when a microprocessor accesses the outer world.
The second set of programs is not size limited since it is stored in the external
memory.
We assume also in this T&D phase that the Operating System, the boot loader
and the functional application are not embedded in the chip but located in the
external memory, and this for two main reasons: first because of their size, too
big to be embedded, and second because of the potential degradation of the
chip hardware through its lifetime. Indeed, in our approach the functional
application remains the same while the chip hardware gracefully degrades.
Thus, the functional application, must be, at each T&D execution, remapped on
the functional hardware.
Moreover, as the T&D process can be executed many times, the chip must
register, from one boot to the other, the previous functional hardware
cartography, in order to skip the test and diagnosis of known faulty parts. In
addition to the initial one, the current Architecture Instant Map (AIM) must then
be stored in a flash memory each time it is computed.

Another issue guiding our thoughts is that as the T&D phase begins with the
power boot, no assumption on what is functional and what is faulty can be done.
For that reason, we propose for the coarse grain T&D step, an incremental and
distributed approach (detailed also in the next section).
Finally, in this work, we do not make assumptions concerning the duration of
T&D phase since this one is executed off line and depends on the test accuracy
and quality targeted. However, the shorter, the better.

3.3 The targeted MP²SoC architecture

The target platform is a MPSoC (Multi-Processor Sytem on Chip). It is
composed of clusters interconnected together thanks to a 2D mesh

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 9/22
 project Deliverable Date Editor Version n° page

interconnection network (see figure 1). We implement here shared memory and
NUMA schemes.

Figure 1. Targeted MPSoC architecture

Each cluster contains up to four processors, with their associated caches, one
ram bank, one flash ram, containing data that are not erased in case of reset of
the system. It also contains a Network Interface Controller (NIC), which is in
charge of transferring request from/to the cluster.

Each cluster also contains a specific component, called configuration/monitor
(COMOR), which is in charge of collecting data from the monitored hardware
and modifying the configuration of the hardware. The software for both
monitoring and configuration of the platform drives this component. Its purpose
is not only to provide an interface between the monitoring application and the
monitored hardware but also to allow the reconfiguration of the cluster
component (including the router).

3.4 The required steps to reach the remapping phase
Our objective is to detect a hardware failure, localize the faulty component and
then deactivate this one through an efficient configuration of the platform. When
all these steps are correctly processed the functional application can be
remapped on the known good remaining components.
The starting point of our methodology is the power boot of the platform and the
ending point is the reconfiguration of the required components.
Here follows the required steps to fulfil the objectives:

o Power boot: quick incremental rough testing of the main components.
At power boot we assume that we have no confidence on the reliability of
the different clusters and of the NoC. Thus, concurrently and in a distributed
way, starts the self-test of the clusters and the NoC. The first one is

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 10/22
 project Deliverable Date Editor Version n° page

processed thanks to embedded software while the second is implemented
through hardware techniques (BIST).
o Election of a master Test/Diagnosis/Reconfiguration controller
Once the clusters and the NoC have ended their distributed self tests, a
synchronization mechanism must be implemented in order to allow the
starting of the fine grain test, the diagnosis and the fitting reconfiguration.
For that, the external memory must be accessed by one and only known
good processor to execute the corresponding codes. A voting algorithm is
implemented and executed within the chip, leading to the election of the
master controller responsible for the processing of the remaining steps up to
the AIM generation.
o The Fine Grain Test and Diagnosis
The Master controller initiates a distributed fine grain test/diagnosis of the
main clusters through the forwarding of the corresponding codes from the
external memory bank to the main clusters. The diagnosis of the NoC
components is also run leading to the detection and localization of faulty
communication channels and/or routers.
o The reconfiguration of the platform.
Once locating the faulty components the corresponding action must be
taken. For the faulty cores, they must be deactivated. For the NoC, not only
the faulty routers must be deactivated but the surrounding routers must be
reconfigured to avoid sending packets to the malfunctioning router.
Once the reconfiguration of the hardware is complete, the master controller
can generate the cartography of functional hardware.
This AIM is finally used as an input of the remapping phase.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 11/22
 project Deliverable Date Editor Version n° page

4 Booting time: Built-In Coarse Grain Test&Diagnosi s

After booting the platform, two concurrent processes are run: the initialization
procedure of the NoC and the concurrent self test of all clusters.

4.1 Distributed NoC initialization procedure
In a previous work [1], we proposed, a reconfigurable routing algorithm for a 2D-
Mesh NoC. This reconfiguration procedure can be used as long as the faulty
components (routers or point to point communication channels) have been
identified. To support fault tolerance, we need to solve three main problems:
A The faulty router(s) and channels must be detected & de-activated by an
appropriate built-in mechanism.
B A fault-tolerant, distributed, reconfigurable routing algorithm must be
implemented in all routers in the NoC (proposed in [1]).
C A robust configuration bus must be implemented in the hardware to distribute
the configuration information to the remaining (good) routers.

We believe that problem C can be solved by using the NoC itself: the remaining
routers can be used as a test and configuration bus, through “flooding”
broadcast algorithms.
However, these broadcast mechanisms can be disturbed by the destructive
NoC malfunctions caused by the faulty routers, such as self-generating fake
packets. Thus, we propose to address problem A thanks to a fully distributed
initialization procedure, including detection and de-activation of both the faulty
routers and the faulty communication channels. This procedure relies on a
distributed, scalable, at-speed, built-in self test (BIST) hardware support, and is
sytematically executed at power-on. This initialization procedure can be
executed off-line when the chip is embedded in its functional environment. The
fault coverage of this BIST has been evaluated using the Stuck-at fault model
(SAF).

4.1.1 The DSPIN NoC

The DSPIN (NoC) [2], [3], (Distributed Scalable Predictable Interconnect
Network) was designed by the LIP6 laboratory and was physically implemented
by ST Microelectronics to support MPSoC architecture. As shown in Figure
1.A, the DSPIN router is composed of 5 modules (North, East, South, West &
Local) interlinked as a full crossbar to adapt to the reconfigurable routing
algorithm [1]. In order to support the GALS approach, the adjacent borders of
two neighboring routers are connected by two FIFOs: one synchronous FIFO-
out, one bi-synchronous [4] FIFO-in. These two FIFOs constitute a point to point
communication channel (called a channel), as shown in Figure 1.B.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 12/22
 project Deliverable Date Editor Version n° page

Figure 2 A generic DSPIN router and a generic communication channel

As most NoC designed for shared memory multi-processors architectures,
DSPIN is a packet-switching network. There is actually two types of packets
(command and response), and a packet is divided into smallest flow control
units called flits. The first flit is the header flit that includes the destination
address defined in absolute coordinates Y and X. The second and third flits
contain the payload protocol informations. The remaining flits are payload
dataflits. The trailer flit contains theendof packet (EOP) mark.
Besides thecrossbar itself, a router contains two types of hardware
components:

o Each input port implements a Routing Function (RF: combinational logic);
o Each output port implements a Round-Robin Allocator (RRA: sequential

logic).
The header flit of a packet is analyzed by the RF logic, and an output port is
selected. Then the RRA builds a path from the input port to the selected output
port, and the whole packet is transmitted to the target.

4.1.2 Malfunction due to a faulty channel
The DSPIN malfunctions caused by a faulty channel are analyzed. The Stuck at
Fault (the fault model chosen here to mimic a permanent failure) can be injected
on the flow-control signals (W, WOK, R, ROK) as well as on the data signals
(DI, DO) as shown in Figure 2.{B}.
In this analysis, the point-to-point channel is modeled as a “Black Box”,
comprising both the output FIFO(-out) in domain (y,x) and the input FIFO(-in) in
domain (y,x+1).
From this analysis, not detailed here, we can conclude that most malfunctions in
a single communication channel will prevent the reuse of the NoC itself for test
and reconfiguration purpose. For example, in cases W/SA1, the self-generating
fake packets will transmit a wrong configuration information to the
good/remaining routers, or in the worst case, they will block the whole NoC.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 13/22
 project Deliverable Date Editor Version n° page

In order to avoid this destructive behavior, faulty routers and faulty
communication channels must be de-activated as soon as they have been
detected as faulty. This test and deactivation mechanism must be totally
distributed, because it must be done locally, for each router and each
communication channel, when the NoC is not yet running.

4.1.3 The distributed initialization procedure

The proposed initialization procedure is fully decentralized, and is implemented
by a set of dedicated FSMs (Finite State Machine) located in each router. These
FSMs are activated by the global RESET signal. There is two level of
parallelism in this distributed algorithm:

• There is one set of FSMs in each router, and the boot procedure is
executed in parallel in all routers.

• In each router, there is a master FSM (to test and boot the router itself),
and several slave FSMs (to test and boot the communication channels).

As a communication channel is connecting two neighbor routers A & B, the
slave FSM in router A must cooperate with the slave FSM in router B to test the
channel (A-B).

Figure 3 The initilization procedure implementation

The router (Routing Functions, Round-Robin Allocators, and the crossbar itself)
is tested first, without any interaction with the neighbor routers. Then the
communication channels associated to a router are tested in parallel. If the test
of a router is KO, the router is considered as faulty, and all input and output
channels are de-activated. If the test of a given channel is KO this channel is
de-activated.
The master FSM is called ATC (Auto Test Center). The slave FSMs are called
ATG (Auto Test Generator) and ATA (Auto Test Analyzer): one ATG FSM per
output channel, one ATA FSM per input channel.
The ATC FSM works as a test pattern generator, and as a test pattern analyzer
for the test of the router (internal crossbar and associated logic).

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 14/22
 project Deliverable Date Editor Version n° page

Each ATG FSM cooperates with the corresponding ATA FSM in the neighboring
router to test the bi-synchronous channel. As these two FSMs belong to
different clock domains, they communicate asynchronously through a limited
number of handshaking signals, thanks to re-synchronization flip-flops.

Figure 4 The router and/or channel de-activation/activation

4.1.4 De-activation/activation

The multiplexers controlled by ATG and ATA offer 2 functions: first, the
multiplexers can isolate router test and channel test so as to avoid failures
propagation; second, the multiplexers are used to de-activate the faulty
channel.
A de-activated channel is configured to behave as a “Black Hole”. It discards
any incoming data, and produces no outcoming data.
As shown in Figure 5, the channel A is de-activated or activated by the
corresponding ATG/ATA couple, and the ATC FSM.
To de-activate a channel, ATG enforces W=0, RST=1, WOK=1, while ATA
enforces R=1, RST’=1, ROK=0.
To activate the channel, ATG sets RST=0, selects the W, DI multiplexers with 0
and selects the WOK multiplexer with 1. ATA sets RST’=0, selects the R
multiplexer with 0 and selects the ROK, DO multiplexers with 1.

4.1.5 Preparing the test and diagnosis phase

Once the free of faults routers and channels are activated, the NoC can be used
since it is clean of malfunctions. As a black hole is set up to replace each faulty
channel, sending packets through this channel will trigger a time out for the
packet sender. This way we have a solution to inform the software that the path
used for the packet transportation is not safe. The diagnosis process will be
briefly discussed in section 6.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 15/22
 project Deliverable Date Editor Version n° page

The whole initialization procedure (test and activation/de-activation) lasts about
300 cycles. When it ends, the clusters are just beginning their self-tests. When
those finish their duty, the NoC is ready to be used.

4.2 Booting the MP²SoC: Intra Cluster Test & Diagnosis
The main objective of this step is for each cluster to briefly test its components
and generate a local AIM. Let us describe the process for one cluster, assuming
that it is replicated and executed concurrently within all the clusters.

4.2.1 Embedded Software Based Self Test of the cluster

Figure 5 Testing the cluster

At booting time we consider that the NIC (Network Interface Controller) forbids
the transmission of any packets. This is implemented in order to not
disturb/false the T&D phase of other clusters by sending fake packets.
As the embedded memory is quite expensive, we plan to use a small sized
code for this T&D step. Thus what we intend as “test” is a quick functional test
compact enough to be stored in few Ko in a ROM memory. The more accurate
test is stored in the external memory and will be executed later on.
First each processor loads and executes its own SBST test program located in
the ROM.
Once done, the results are stored in a flash memory and we can proceed now
to the SBST test of the remaining components. But for that, we need to elect a
master processor, as the testing must be incremental and thus sequential.
The elected master processor is the one who passed the previous test and has
the lower ID.
The remaining processors put themselves in an idle state and wait to be
awakened, typically in the fine grain T&D phase.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 16/22
 project Deliverable Date Editor Version n° page

4.2.2 Generation of a Local AIM

Figure 6 Generation of a Local Architecture Instant Map (LAIM)

After testing all the components with the appropriate software/algorithm test, for
example a quick March Test for embedded RAMs, a table describing the status
of the main components is saved in the flash memory. This table constitutes a
Local AIM to be read in the next reboot of the platform, in order to skip the test
of known failing components.
Once the LAIM is stored, the NIC is activated and the local master processor
can candidate to the election of the Master T&D controller for the whole chip.

5 Accessing the External Memory Bank

As previously mentioned, the main objective of this step is to define a master
test/diagnosis/reconfiguration controller able to access the external memory
bank using a safe path through the NoC.
When beginning this step the NoC is free of failures that could lead to disturb
the process. At the same time, the clusters ends or are about to end their self
tests since we are in the GALS paradigm and the clusters don’t run at the same
frequency.

5.1 A Leader required
Here follows the requirements to fulfil the objectives:

• As the self-testing of the cluster is distributed we have to define a
synchronization mechanism to continue the process.

• We need to compute at the end a unique map of what fails or not.
• As we have not hard time constraints, we do not need complex

distributed algorithms to ensure the synchronization. We relaxed the
timing constraints in favor to a small code size.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 17/22
 project Deliverable Date Editor Version n° page

For that reasons, instead of implementing complex consensus based decision,
we choose to proceed to the election of a processor responsible for the
execution of the following steps.

5.2 A distributed election process
When a master processor of a cluster has stored its local AIM, it tries to access
the external memory. If it succeeds, he is a candidate to the leadership of the
whole MPSoC.
Then it tries to connect to the neighboring clusters to ensure the goodness of
the links, waiting a certain amount of time if those ones have not finished yet
their self-test.
Here begins the election process resulting at the end to the construction of a
spanning tree over the network, a tree where the root is elected as the leader.
In fact, as depicted in picture 7, many trees begin to spread over the network
since we have many candidates that can access the chip I/Os.

Figure 7. Two processors building their own spanning tree

The roots of the trees (candidates) send packets to their neighbors and if these
ones do not belong to a tree, they are enrolled.
As shown in figure 8 the trees grow in a way depending on their priority (not
detailed here).
Finally only one tree is built, whose nodes correspond to valid clusters, and
whose edges refer to valid NoC links.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 18/22
 project Deliverable Date Editor Version n° page

Figure 8. Concurrent spanning trees converging to one

5.3 The leader ‘s rôle

Once the tree is built, the leader will retrieve from the external memory the
codes required to process the fine grain tests, the chip diagnosis and the
reconfiguration. The leader then forwards/stores these codes within the main
clusters. The leader is responsible for the scheduling and the synchronization of
the different distributed tests and diagnosis. It centralizes the different diagnosis
results to compute the expected AIM. It drives the reconfiguration step and
finishes by executing the code initiating the remapping phase.

6 Fine Grain Test & Diagnosis

As said before, the fine grain test and diagnosis phase is controlled by the
leader processor. This step consists in a more or less distributed way, to
execute thorough testing of the chip and locate the component or a subpart of
the component that has failed.
As done previously in section 4, we can split this phase in two: the T&D of the
network on chip and the T&D of the clusters.

6.1 Fine grain NoC test & diagnosis
At this step, the NoC has been cleaned up by the initialization procedure, and
has partially been tested during the spanning tree building. In order to ensure
the correctness of the whole NoC components we have to test more accurately
the NoC.
The NoC used, DSPIN, is in fact made of two separate subnetworks as a VCI-
OCP protocol is implemented in the MPSoC: a command packets subnetwork
and a response packets subnetwork. These dual networks are required to avoid
deadlocks.
A NoC can be represented as a CDG (Channel Dependency Graph). Figure 9
describes what are the graph nodes and edges.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 19/22
 project Deliverable Date Editor Version n° page

EW
N

S

EW

L

SN
WN

EW
N

S

EW

L

SN
WN

Figure 9. Representation of a router

As we can see, a node (Ew or Sn) corresponds to a communication channel
and an edge (WN), a possible connection between two channels. Depending on
the routing algorithm implemented, this edge is sets up or not. In our case the
routing algorithm is a XY routing with X first, thus all the transition are not
allowed. More details can be found in [1]

6.1.1 Testing the NoC’s paths

For the DSPIN network, we can have for example the CDG depicted in figure
10.

Figure 10. An example of a Channel Dependency Graph (CDG)

Testing the NoC corresponds to testing the whole CDG. Thus all CDG paths
must be validated. The solution we propose is to send test packets in a
distributed way to validate all the paths. In figure 10 we describe a 4X2 NoC. To
is a processor injecting a packet in the NoC, T1 is a target RAM in another

NoC Cmd

NoC Rsp T0

T1

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 20/22
 project Deliverable Date Editor Version n° page

cluster receiving the packet. The memory acknowledges the transfert by
sending a response packet to the sender through the response NoC.
In case of a permanent failure within the paths, as we have replaced faulty
channels by “Black Holes”, the sender will never receive a response and a time
out information will be set up. This way, one path is tested for the two
subnetworks. When all N clusters send packets to other N-1 clusters the test
ends and then we can identify if a failure has occurred. The main advantage of
this method is that no dedicated hardware is needed, except the one introduced
for the initialization procedure.
Testing the NoC is thus a distributed software based process.

6.1.2 NoC Diagnosis

A path includes a set of nodes and edges. For a given cluster, each time the
test of a path is done and the acknowledge is received by the sender, the
associated nodes and edges are marked as fault free. At the end of the paths
test, each cluster contains a database where all fault free nodes and edges are
marked. Finally by crossing the databases of all the clusters, remains the faulty
nodes and channels. We consider as a first approach, that if a node or a
channel is faulty, the associated router must be deactivated. Thus, we can
define a set of faulty routers. This corresponds to an AIM of the NoC. This
information can be then reused as an entry to the reconfiguration step.

6.2 Fine grain cluster test & diagnosis
The fine grain Test & Diagnosis application is stored in the external memory.
This application includes a set of programs which size and effectiveness
depends on the targeted test quality. That is to say, if we want to achieve a high
fault coverage, time and size consuming programs must be executed.
In our approach we distinguish two kinds of programs to be used, both based
on software:

• Programs targeting functional testing of the cluster’s components.
• Programs targeting structural testing of the cluster’s components.

Among these we can find the ones allowing the self-tests of
microprocessors as described in [5]. More or less accurate software
based March tests can be used to test the embedded memories.
If the embedded cores are equipped with IEEE 1500 wrappers or IEEE
1149.1 JTAG interfaces, we can execute the software and the technique
described in [6]

These programs can detect and localize failures at different level of accuracy:
from a stuck at fault at a gate IOs up to a whole component. This provides great
flexibility since if a failure occurs on a memory cell, it is not required to
deactivate the whole memory, the corresponding segment can only be avoided
when remapping the functional application on the hardware platform.
As stated previously, the Master T&D controller will forward the programs to all
the clusters, and the master processor of the cluster will launch the testings.

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 21/22
 project Deliverable Date Editor Version n° page

At the end the chip controller will synthesize the diagnosis results coming from
all the clusters and will compute the global AIM.

7 Reconfiguration & Deactivation of faulty componen ts

Once having the AIM we have to reconfigure the hardware platform in order to
make it usable for the remapping application.
Depending on the failing components, two types of operations must be
processed:

• NoC failure
To prevent packets to be lost, the faulty routers must be deactivated and the
surrounding routers must be reconfigured to avoid sending packets on the
wrong way.
The deactivation of the faulty router is done thanks to the initialization
procedure, by creating black holes on all the communication channels tied to
the router.
Concerning the surrounding neighbors, a reconfigurable routing algorithm has
been defined and implemented as described in [1]. Each router contains a four
bits register to be filled with the appropriate value. The hardware/software
technique to fill the routers reconfiguration registers is still under study.

• Core failure
Failing cluster’s components must be deactivated in order not to generate traffic
pollution on the networks that may lead to an application crash.
To prevent a core (processor, memories, coprocessors, …) from sending fake
packets, we add a simple programmable component interfacing on one side the
core and on the other side the local crossbar. This added component is simple
since it is roughly a basic register. This component can be configured, through
the use of an IJTAG port [7], by the COMOR (Configuration and Monitoring)
coprocessor present in each cluster. The COMOR component is described in
the first deliverable related to the online monitoring.
The validations of the reconfiguration and deactivation steps are on going
works.

8 References

[1] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm
for a fault-tolerant 2D-Mesh Network-on-Chip,” in Proc. of DAC’08, the
45th Design Automation Conference, 2008, pp. 441–446.
[2] LIP6. DSPIN. [Online]. Available: http://www.lip6.fr/Direction/
2005- 05- 13- DSPIN.pdf
[3] I. Miro-Panades, F. Clermidy, P. Vivet, and A. Greiner, “Physical
implementation of the dspin network-on-chip in the faust architecture,”
in Proc. of NoCS’08, the 2nd ACM/IEEE International Symposium on
Networks-on-Chip, 2008, pp. 139–148.
[4] I. Miro Panades and A. Greiner, “Bi-synchronous fifo for synchronous
circuit communication well suited for network-on-chip in gals ar-

Test/Diagnosis Methodology

 ADAM 4 2010-03-14 LIP6 1.0 22/22
 project Deliverable Date Editor Version n° page

chitectures,” in Proc. of NOCS ’07,the 1st ACM/IEEE International
Symposium on Networks-on-Chip, 2007, pp. 83–94.
[5] N. Kranitis, A. Paschalis, D. Gizopoulos et G. Xenoulis. Software-Based Self-
Testing of Embedded Processors. IEEE Transactions on Computers, 54(4) :
pages 461–475, 2005.
[6] M. Tuna, M. Benabdenbi, and A. Greiner. At-Speed Testing of Core-Based System-
On-Chip Using an Embedded Micro-Tester. In 25th IEEE VLSI Test Symposium
(VTS’07), page 447-454, May 2007.
[7] IJTAG IEEE P1687. [Online]. Available: http://grouper.ieee.org/groups/1687/

