
Integration of flattened device trees in Adam

Author : Nicolas Pouillon
Contact : nipo@ssji.net
Date: 2010-01-26
Revision: 124

Contents

Goals 1

Hardware 1

Boot sequence 2
Bootloader: Early boot sequence 2
Coarse BIST and Network configuration . . 2
Fine BIST . 2
Running a kernel 2
Runtime monitoring 2

Need for interoperability 2

Flattened device trees 2
Origin . 2
FDT format 3
Contained data 3
APIs and example 4
Usage for our problem 5

Online remapping 5
Remapping application 5
The cost function 5

Goals

Adam aims to create a System-on-chip (SoC) platform
tolerant to defects. Defects may be caused by two dif-
ferent causes:

• Production imperfections: semiconductor tech-
nology is not perfect, and newer circuit manu-
facturing processes can't create perfect chips at
a reasonable cost any more.

• Wear: semiconductors usually heat, and most
of the time, this slowly degrades the hardware.
With time, most circuits begin to have erratic be-
haviours, and get broken.

To be able to work with those defects, chips design-
ers can make a choice: fault tolerance may either be
``offline'' or ``online''.

• On the one hand, offline fault detection and
avoidance consists in testing chips at the fac-
tory, deciding which parts are usable, at what
frequency, and guarantee different yet lifetime-
constant characteristics for each chip produced.
This is the easiest solution. Nowadays, many
chips are sold as different versions but are ac-
tually the same design. The usual example is
the Intel ``Pentium'' and ``Celeron'' which are
actually the same die, but cache is partly non-
functional in the latter. Another examples are
the IBM Cell, on which some SPUs are disabled;
or current GPUs where not all pipelines are en-
abled.

• On the other hand, online fault detection con-
sists in designing a chip that can internally enu-
merate functional hardware, self-reconfigure in
order to avoid broken parts, and still run even
if system changes in its lifetime. This solution
is harder to achieve, but it has many economi-
cal benefits. Online recovery is not mainstream
yet. Some Flash chips internally remap memory
blocks during the lifetime of the medium, but
most of the time, the logic has no self-recovery
yet.

Here we'll focus on the online fault detection and
avoidance, and more specifically on the software in-
volved; from the hardware reset to the embedded Ap-
plication execution.

Hardware

Adam is a specific hardware design, it is specific but
yet quite generic chip architecture containing:

• a global Network-on-chip (NoC), made of routers
and links,

• many clusters, consisting of Processors (CPUs),
memory banks, and other small devices, inter-
connected through a local interconnection com-
ponent. In turn, this local interconnect is at-
tached to the NoC through a Network interface
Controller (NIC).

• Moreover, each cluster contains an hardware
controller dedicated to self-testing, monitoring
and reconfiguration of the chip (COMOR).

1

mailto:nipo@ssji.net

Boot sequence

B
o
o
t seq

u
en

ce

Rom

Flash

Bootloader

Coarse BIST

Fine BIST

Kernel

Actual working hw desc

Post−coarse bist hw desc

Remapping

Application

Physical

hw desc

Behavior Database

Device Tree

Properties

Bootloader: Early boot sequence

When the chip boots, NoC is not yet tested, thus it is
not assumed configured nor usable. Each cluster has
to boot on its own, self-test, and configure its NIC.

This early boot code must be present in each clus-
ter. We saw it can fit in a small ROM, and should
not have to change with the firmware updates. The
ROM also contains an enumeration of original hard-
ware present in the cluster, this list is used to know
where to perform basic tests.

These tests are quite basic: no in-depth functional
testing is performed here.

Coarse BIST and Network configuration

Then each working cluster tries to configure its NIC,
and communicate with others. The cluster's ROM
informs about coordinates of each cluster in respect
to the NoC, thus each cluster knows addresses of its
neighbours.

Here, some clusters may not be able to communi-
cate because of broken network; they'll remain alone,
and should self-disable. Remaining clusters elect a
master.

At this stage, there is one global software system
running on the chip, with one master. This master
has to exhaustively check the chip is actually good.

Fine BIST

Now NIC is configured and network is declared avail-
able, clusters declared good so far are able to fetch
big testing applications from external memories. This
test actually determines if every piece of hardware can
safely be declared good.

This part creates a global chip map, containing the
actual running hardware subset.

Running a kernel

Now the chip is tested, we can run a classical Oper-
ating System (OS). This operating system will be the
host for the application. It needs a description of the
hardware.

Runtime monitoring

While the operating system runs, another software
application continuously runs to monitor the chip
evolution. This watches temperature, voltage, CPU
load, ... All these values are stored in Distributed Raw
Event Tables (DRET).

Need for interoperability

As the successive software codes running in the boot
sequence may be developed by different teams, may
use different supporting OS kernels, and may be up-
dated, the hardware description passed from stage
to stage cant be a simple runtime pointer-based in-
memory structure. We have to choose a representa-
tion at each stage, or if possible, a global represen-
tation format for architecture definition: this allows
reusing of basic software blocks, and factors-out some
tedious code.

An unique format, not tied to a particular memory
layout, has to be translated from a runtime easy-to-
use from code version. This is called serialization;
the other operation, translating the common format
to a runtime structure is deserialization.

If algorithms are able to use the commot format
without deserialization, this is called working in-
place. Working in-place is important as early software
stages do not implement a memory allocator, forbid-
ding use of complex pointer-based data structures.

From the hardware description present in the ROM
of each cluster, to the hardware description produced
by the exhaustive testing; we had better be able to
serialize and deserialize interoperable hardware de-
scriptions. We could have developed a new hardware
representation from scratch, but as we end-up boot-
ing an existing operating system, we tried to look if
this kind of problem had been solved before. It had.
We saw the Flattened Device Tree as a good candidate
for hardware description serialization.

Flattened device trees

Origin

Flattened Device Tree (FDT) is a subset of the Open-
Firmware standard, also known as IEEE 1275, devel-
oped by IBM, Sun and Apple to address the problem
of BIOS equivalent for Sparc and PowerPC architec-
tures.

This specification defines a clean set of services
provided by a compliant firmware, and an inter-
face for the guest OS to query the Firmware. The
firmware passes hardware description to the guest OS
through the FDT.

Altogether with the FDTs, IEEE 1275 also defines
usage of a Forth interpreter, but this is not needed for
our tasks, and will be omitted.

Nowadays, OpenFirmware is not present is many
machines any more, but the FDTs are becoming the

2

http://www.openfirmware.info/
http://www.openfirmware.info/
http://www.forth.com/

de-facto standard for hardware platform definition.
Embedded platforms (DSL routers, network equip-
ments, PDAs, phones, ...) usually run common ker-
nels like Linux. These platforms use a bootloader like
U-boot, which acts as a firmware, and passes the ker-
nels a FDT definition of the platform.

FDT support in Linux and support in NetBSD is
mainline.

FDT format
The Device Tree can be represented in a textual form
for human edition, but is preferred as a binary equiv-
alent (Device Tree ``Blob'') when manipulated from
software code. Existing tools and libraries are avail-
able and provide parsing routines, and a compiler
from textual representation to binary form.

FDT blobs are self-conained, position indepen-
dant. They can be moved around in memory without
any need for processing. The blob format allows in-
place walk-through at no cost, and in-place random-
access at a minimal cost.

FDT access code is tiny; a typical bootstrap code
retrieving memory layout from a blob can fit under
2KiB for a PowerPC.

FDTs are a tree of records (nodes), containing key-
value pairs (properties), value being a string, a num-
ber, an address, or a reference to another node.
Base type is a 32-bit integer called ``a cell''. One
or more cells can be used to describe an address or
a size. Properties are named, and have an optional
value. Some property names are defined by the stan-
dard (they usually are prefixed by ``#''), but all non-
reserved names are available for implementation-
dependant use. This makes this format easy exten-
sible.

Here is such an example tree:
/ dts−v1 / ;

/ {
model = "Basic With Topology" ;
#address−c e l l s = <1>;
s i ze−c e l l s = <1>;

cpus {
#address−c e l l s = <1>;
s i ze−c e l l s = <0>;
Arm, v6k@0 {

name = "Arm,v6k" ;
device_type = "cpu" ;
reg = <0>;
icudev_type = "cpu:arm" ;
i p i = <&{/ xicu@0xd0200000 } 0 >;

} ;

Arm, v6k@1 {
name = "Arm,v6k" ;
device_type = "cpu" ;
reg = <1>;
icudev_type = "cpu:arm" ;
i p i = <&{/ xicu@0xd0200000 } 1 >;

} ;

Arm, v6k@2 {
name = "Arm,v6k" ;
device_type = "cpu" ;
reg = <2>;

icudev_type = "cpu:arm" ;
i p i = <&{/ xicu@0xd0200000 } 2 >;

} ;

Arm, v6k@3 {
name = "Arm,v6k" ;
device_type = "cpu" ;
reg = <3>;
icudev_type = "cpu:arm" ;
i p i = <&{/ xicu@0xd0200000 } 3 >;

} ;

} ;

tty@0xd0200000 {
device_type = "uart" ;
reg = <0xd0200000 0x10 >;
i rq = <&{/ xicu@0xd0200000 } 0 >;

} ;

block@0xd1200000 {
device_type = "block_device" ;
reg = <0xd1200000 0x20 >;
i rq = <&{/ xicu@0xd0200000 } 1 >;

} ;

xicu@0xd2200000 {
device_type = "interrupt_controller" ;
input_ l ines = <2>;
output_ l ines = <4>;
i p i s = <4>;
t imers = <1>;
reg = <0xd2200000 0x1000 >;

} ;

memory@0x7f400000 {
device_type = "memory" ;
cached ;
reg = <0x7f400000 0x00100000 >;

} ;

memory@0x9f400000 {
device_type = "memory" ;
cached ;
reg = <0x9f400000 0x00100000 >;

} ;

chosen {
console = &{/ tty@0 } ;

} ;
} ;

Contained data
Device Trees (DT) address the problems of variable
bus widths, IRQ routing, mix of auto-enumerated
buses (like PCI or USB) and fixed address buses (like
AMBA or NoCs). DTs are a processor-centric (thus
software-centric) view of the hardware. They define:

• Available devices, their addresses, model, ver-
sion, ...

• IRQ routing between devices

• Physical memory regions, with their attributes
(address, size, latency, coherence model, ...)

• Processors, with their cache attributes, sup-
ported extensions

• Memory regions that are already used by
firmware or OS bootstrapping code

3

http://www.kernel.org/
http://www.denx.de/
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob_plain;f=Documentation/powerpc/booting-without-of.txt;hb=HEAD
http://wiki.freebsd.org/FlattenedDeviceTree
http://git.jdl.com/

This basic information is enough to get an OS boot-
ing. It will be able to initialize hardware, allocate
memory, find mass-storage devices, ...

Moreover, being trees, DTs can contain informa-
tion specific to NUMA architectures: as an extension
to this standard dataset, we can add subtrees and
properties to describe the topology of the platform,
even if it should not be visible from a software-centric
point-of-view.

For instance, the following hypothetical example
contains a subtree of the previously seen device tree
containing the topology of the system:

topology {
interconnect_type = "MyNoC" ;
hop_latency = 2 ;
layout = "mesh" ;

c luster@0 {
coordinates = <0 0 >;
interconnect_type = "crossbar" ;
hop_latency = 1 ;

devices = <&{/ xicu@0xd2200000 }
&{/ block@0xd1200000 }
&{/memory&0x9f400000 } > ;

processors = <&{/cpus /Arm, v6k@0 }
&{/ cpus /Arm, v6k@1} >;

} ;

cluster@1 {
coordinates = <0 1 >;
interconnect_type = "crossbar" ;
hop_latency = 1 ;

devices = <&{/ tty@0xd0200000 }
&{/memory&0x7f400000 } > ;

processors = <&{/cpus /Arm, v6k@2 }
&{/ cpus /Arm, v6k@3} >;

} ;
} ;

APIs and example
DT blobs are formatted binary data, designed to be
easily walked-through by a software library. Here
we'll describe the accessing API.

Let's comment the API through an example based
on real code. We'll implement a simple device-tree
copier. The example will be spread accross the API
definiton.

A simple serialization library may be specified as an
constructive 4-calls API:

Each call adds data to the tree:

• create a new context, which writes a blob
e r ro r_ t f d t _ w r i t e r _ i n i t (

s t ruc t f d t _ w r i t e r _ s * wri ter ,
void * blob ,
s i z e _ t a v a i l a b l e _ s i z e) ;

• enter in a node, with a node name
void fdt_wri ter_node_entry (

s t ruc t f d t _ w r i t e r _ s * wri ter ,
const char *name)

• add a property on current node, with a name and
value

void fdt_writer_node_prop (
s t ruc t f d t _ w r i t e r _ s * wri ter ,
const char *name ,
void * data ,
s i z e _ t len) ;

• leave current node
void fd t_wr i ter_node_leave (s t ruc t f d t _ w r i t e r _ s * wr i t e r) ;

• add a memory reservation, which is a specificity
of DTs we don't explain here
void fdt_writer_add_rsvmap (

s t ruc t f d t _ w r i t e r _ s * wri ter ,
u int64_t addr ,
u int64_t s i z e) ;

• finalize the context
e r ro r_ t f d t _ w r i t e r _ f i n a l i z e (

s t ruc t f d t _ w r i t e r _ s * wri ter ,
s i z e _ t * r e a l _ s i z e) ;

On the other hand, a simple consumer program
may implement the following protocol, symmetrical
to the other:

User provides 4 functions, to be called by library
code on different events when walking through the
device tree, let's provide sample codes that imple-
ment a blob copier:

• on node entry, it will receive the node name

bool_t copy_node_entry (
void * pr iva te ,
s t ruc t fd t _wa lke r_ s t a t e_ s * s t a t e ,
const char * path)

{
s t ruc t f d t _ w r i t e r _ s * wr i t e r = p r i v a t e ;

fdt_wri ter_node_entry (wri ter , name) ;
return 1 ;

}

• on property, it will receive the property name and
its raw value
void copy_node_prop (

void * pr iva te ,
s t ruc t fd t _wa lke r_ s t a t e_ s * s t a t e ,
const char *name ,
const void * data ,
s i z e _ t data len)

{
s t ruc t f d t _ w r i t e r _ s * wr i t e r = p r i v a t e ;

fdt_writer_node_prop (wri ter , name ,
data , data len) ;

}

• on node leave
void copy_node_leave (void * p r i v a t e)
{

s t ruc t f d t _ w r i t e r _ s * wr i t e r = p r i v a t e ;

fd t_wr i ter_node_leave (wr i t e r) ;
}

• on memory reservation, which is a specificity of
DTs we don't explain here

4

void copy_mem_reserve (
void * pr iva te ,
u int64_t addr ,
u int64_t s i z e)

{
s t ruc t f d t _ w r i t e r _ s * wr i t e r = p r i v a t e ;

fdt_writer_add_mem_reservation (wri ter , addr ,
s i z e) ;

}

Both these APIs may be implemented without need
for dynamic memory allocation, thus easing their use
in a highly-constrained environment, like a boot-
loader.

An example context using all the defined functions
above, and illustrating on-stack only memory usage
is:

void copy_blob (
void * out ,
s i z e _ t out_s ize ,
void * in)

{
/ * Prepare con t e x t f o r l i b r a r y f u n c t i o n s
* /

s t ruc t f d t _ w r i t e r _ s wr i t e r ;
s t ruc t fd t_walker_s copier = {

. p r i v a t e = &wri ter ,

. on_node_entry = copy_node_entry ,

. on_node_leave = copy_node_leave ,

. on_node_prop = copy_node_prop ,

. on_mem_reserve = copy_mem_reserve ,
} ;

/ * I n i t i a l i z e c o n s t r u c t i v e DT c r e a t o r
API * /

f d t _ w r i t e r _ i n i t (& wri ter , out , ou t_s i ze) ;

/ * Te l l the consumer API to walk through
blob po in t ed by " in " , us ing con t e x t
and f un c t i o n s po in t ed in " cop i e r "

* /
fdt_walk_blob (in , &copier) ;

/ * Te l l the c o n s t r u c t i v e API to f i n a l i z e
the produced blob * /

f d t _ w r i t e r _ f i n a l i z e (& wri ter , &r e a l _ s i z e) ;
}

Usage for our problem
There are four consecutive usages of FDTs in Adam:

• In the ROM of each cluster, we must have a de-
tailed description of the cluster's hardware, and
a global description of the chip:

• position of the cluster in the whole
chip,

• global chip's connections to the exter-
nal memory and devices.

• Between the early boot sequence and the exhaus-
tive test application, early boot sequence must
pass validated hardware subset to the next layer.

• Between the exhaustive test application and the
OS, we need the actual usable hardware descrip-
tion.

• In the application remapping phase, when the
OS loads the final application on the SoC, the
OS needs the enumeration of available proces-
sors, memories and global topology of the chip
(the final FDT).

Online remapping
Once the OS booted, the SoC is not in its final state
yet. The main purpose of our SoC is probably to
implement a given functionality. In order to get the
most of the chip, the application needs to be smartly
mapped on the hardware.

This smart mapping basically involves assigning
software threads to processors and assigning software
objects to memory banks in a manner to minimize
NoC usage and latencies.

Remapping application
Mapping is done by a dedicated piece of software. It
may implement any mapping algorithm, like genetic
algorithms, or simulated annealing. This class of al-
gorithms needs:

• A description of a parallel application

• A description of the mapping target (here is is the
final DT)

• A cost function

The cost function
In order to efficiently map the application on the us-
able hardware, application description must contain:

• explicit communication paths between tasks,
thus creating a task graph;

• memory usage of any software resource;

• memory size of any communication channels
(dedicated message-passing channels, shared
memory, ...);

• normalized relative load of each task in the
graph.

Having a task graph makes cost function an easier
problem, as we can statically tell whether the NoC,
the CPUs, and the memory banks will be loaded or
not.

5

	Contents
	Goals
	Hardware
	Boot sequence
	Bootloader: Early boot sequence
	Coarse BIST and Network configuration
	Fine BIST
	Running a kernel
	Runtime monitoring

	Need for interoperability
	Flattened device trees
	Origin
	FDT format
	Contained data
	APIs and example
	Usage for our problem

	Online remapping
	Remapping application
	The cost function

