source: trunk/boot/tsar_mips32/boot.c @ 534

Last change on this file since 534 was 534, checked in by nicolas.van.phan@…, 3 years ago

Add mtty driver.

File size: 39.6 KB
Line 
1/*
2 * boot.c - TSAR bootloader implementation.
3 *
4 * Authors :   Alain Greiner / Vu Son  (2016)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/****************************************************************************
25 * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. *
26 *                                                                          *
27 * It supports clusterised shared memory multi-processor architectures,     *
28 * where each processor core is identified by a composite index [cxy,lid]   *
29 * with one physical memory bank per cluster.                               *
30 *                                                                          *
31 * The 'boot.elf' file (containing the boot-loader binary code) is stored   *
32 * on disk and is loaded into memory by core[0,0] (cxy = 0 / lid = 0),      *
33 * and is copied in each other cluter by the local CP0 (lid = 0].           *
34 *                                                                          *
35 * 1) The boot-loader first phase is executed by core[0,0], while           *
36 *    all other cores are waiting in the preloader.                         *
37 *    It does the following tasks:                                          *
38 *      - load into the memory bank of cluster 0 the 'arch_info.bin'        *
39 *        file (containing the hardware architecture description) and the   *
40 *        'kernel.elf' file, at temporary locations,                        *   
41 *      - initializes the 'boot_info_t' structure in cluster(0,0)           *
42 *        (there is 1 'boot_info_t' per cluster), which contains both       *
43 *        global and cluster specific information that will be used for     *
44 *        kernel initialisation.                                            *
45 *      - activate CP0s in all other clusters, using IPIs.                  *
46 *      - wait completion reports from CP0s on a global barrier.            *
47 *                                                                          *
48 * 2) The boot-loader second phase is then executed in parallel by all      *
49 *    CP0s (other than core[0,0]). Each CP0 performs the following tasks:   *
50 *      - copies into the memory bank of the local cluster the 'boot.elf',  *
51 *        the 'arch_info.bin' (at the same addresses as the 'boot.elf' and  *
52 *        the 'arch_info.bin' in the memory bank of the cluster(0,0), and   *
53 *        the kernel image (at address 0x0),                                *
54 *      - initializes the 'boot_info_t' structure of the local cluster,     *
55 *      - activate all other cores in the same cluster (CPi).               *
56 *      - wait local CPi completion reports on a local barrier.             *
57 *      - report completion to bscpu on the global barrier.                 *
58 *                                                                          *
59 * 3) The boot-loader third phase is executed in parallel by all cores.     *
60 *    After passing the global barrier the bscpu:                           *
61 *      - activates the CPi of cluster(0),                                  *
62 *      - blocks on the local barrier waiting for all local CPi to report   *
63 *        completion on the local barrier,                                  *
64 *      - moves the local kernel image from the temporary location to the   *
65 *        address 0x0, (erasing the preloader code).                        *
66 *                                                                          *
67 * 4) All cores have finished the boot phase, they jump to the kern_init()  *
68 *    function (maybe not at the same time).                                *
69 ****************************************************************************/
70
71#include <elf-types.h>
72#include <hal_kernel_types.h>
73
74#include <kernel_config.h>
75#include <boot_config.h>
76
77#include <arch_info.h>
78#include <boot_info.h>
79
80#include <boot_utils.h>
81#include <boot_fat32.h>
82#include <boot_bdv_driver.h>
83#include <boot_hba_driver.h>
84#include <boot_tty_driver.h>
85
86/*****************************************************************************
87 *                                 Macros.                             
88 ****************************************************************************/
89
90#define PAGE_ROUND_DOWN(x)  ((x) & (~PPM_PAGE_SIZE -1))
91#define PAGE_ROUND_UP(x)    (((x) + PPM_PAGE_SIZE-1) &   \
92                            (~(PPM_PAGE_SIZE-1)))
93
94/*****************************************************************************
95 *                             Global variables.                           
96 ****************************************************************************/
97
98// synchronization variables.
99
100volatile boot_remote_spinlock_t tty0_lock;       // protect TTY0 access
101volatile boot_remote_barrier_t  global_barrier;  // synchronize CP0 cores
102volatile boot_remote_barrier_t  local_barrier;   // synchronize cores in one cluster
103uint32_t                        active_cp0s_nr;  // number of expected CP0s
104 
105// kernel segments layout variables
106
107uint32_t                        seg_kcode_base;   // kcode segment base address
108uint32_t                        seg_kcode_size;   // kcode segment size (bytes)
109uint32_t                        seg_kdata_base;   // kdata segment base address
110uint32_t                        seg_kdata_size;   // kdata segment size (bytes)
111uint32_t                        seg_kentry_base;  // kcode segment base address
112uint32_t                        seg_kentry_size;  // kcode segment size (bytes)
113
114uint32_t                        kernel_entry;    // kernel entry point
115
116// address used by the WTI to activate remote CP0s
117
118// Functions called by boot_entry.S must be externs.
119extern void boot_entry( void );    // boot_loader entry point
120extern void boot_loader( lid_t lid, cxy_t cxy );
121
122/*********************************************************************************
123 * This function returns the printable string for each device type
124 ********************************************************************************/
125static const char * device_type_str( boot_device_types_t dev_type ) {
126    switch (dev_type) {
127        case DEV_TYPE_RAM_SCL: return "RAM_SCL";
128        case DEV_TYPE_ROM_SCL: return "ROM_SCL";
129        case DEV_TYPE_FBF_SCL: return "FBF_SCL";
130        case DEV_TYPE_IOB_TSR: return "IOB_TSR";
131        case DEV_TYPE_IOC_BDV: return "IOC_BDV";
132        case DEV_TYPE_IOC_HBA: return "IOC_HBA";
133        case DEV_TYPE_IOC_SDC: return "IOC_SDC";
134        case DEV_TYPE_IOC_SPI: return "IOC_SPI";
135        case DEV_TYPE_IOC_RDK: return "IOC_RDK";
136        case DEV_TYPE_MMC_TSR: return "MMC_TSR";
137        case DEV_TYPE_DMA_SCL: return "DMA_SCL";
138        case DEV_TYPE_NIC_CBF: return "NIC_CBF";
139        case DEV_TYPE_TIM_SCL: return "TIM_SCL";
140        case DEV_TYPE_TXT_TTY: return "TXT_TTY";
141        case DEV_TYPE_ICU_XCU: return "ICU_XCU";
142        case DEV_TYPE_PIC_TSR: return "PIC_TSR";
143        default:               return "undefined";
144    }
145}
146
147/************************************************************************************
148 * This function loads the arch_info.bin file into the boot cluster memory.
149 ***********************************************************************************/
150static void boot_archinfo_load( void )
151{
152    archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; 
153   
154    // Load file into memory
155    if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE))
156    {
157        boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): "
158                    "<%s> file not found\n",
159                    ARCHINFO_PATHNAME);
160        boot_exit();
161    }
162
163    if (header->signature != ARCHINFO_SIGNATURE)
164    {
165        boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): "
166                    "<%s> file signature should be %x\n",
167                    ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE);
168        boot_exit();
169    }
170
171#if DEBUG_BOOT_INFO
172boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n",
173            __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE );
174#endif
175
176} // boot_archinfo_load()
177
178/**************************************************************************************
179 * This function loads the 'kernel.elf' file into the boot cluster memory buffer,
180 * analyzes it, and places the three kcode, kentry, kdata segments at their final
181 * physical adresses (defined the .elf file).       
182 * It set the global variables defining the kernel layout.
183 *************************************************************************************/
184static void boot_kernel_load( void )
185{
186    Elf32_Ehdr * elf_header;      // pointer on kernel.elf header. 
187    Elf32_Phdr * program_header;  // pointer on kernel.elf program header.
188    uint32_t     phdr_offset;     // program header offset in kernel.elf file.
189    uint32_t     segments_nb;     // number of segments in kernel.elf file.
190    uint32_t     seg_src_addr;    // segment address in kernel.elf file (source).
191    uint32_t     seg_paddr;       // segment local physical address of segment
192    uint32_t     seg_offset;      // segment offset in kernel.elf file
193    uint32_t     seg_filesz;      // segment size (bytes) in kernel.elf file
194    uint32_t     seg_memsz;       // segment size (bytes) in memory image.
195    bool_t       kcode_found;     // kcode segment found.
196    bool_t       kdata_found;     // kdata segment found.
197    bool_t       kentry_found;    // kentry segment found.
198    uint32_t     seg_id;          // iterator for segments loop.
199
200#if DEBUG_BOOT_ELF
201boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n",
202            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
203#endif
204
205    // Load kernel.elf file into memory buffer
206    if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) )
207    {
208        boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n",
209                    KERNEL_PATHNAME);
210        boot_exit();
211    }
212
213    // get pointer to kernel.elf header 
214    elf_header = (Elf32_Ehdr*)KERN_BASE;
215
216    // check signature
217    if ((elf_header->e_ident[EI_MAG0] != ELFMAG0)   ||
218        (elf_header->e_ident[EI_MAG1] != ELFMAG1)   ||
219        (elf_header->e_ident[EI_MAG2] != ELFMAG2)   ||
220        (elf_header->e_ident[EI_MAG3] != ELFMAG3))
221    {
222        boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): "
223                    "<%s> is not an ELF file\n",
224                    KERNEL_PATHNAME);
225        boot_exit();
226    }
227
228    // Get program header table offset and number of segments
229    phdr_offset     = elf_header->e_phoff;
230    segments_nb     = elf_header->e_phnum;
231
232    // Get program header table pointer
233    program_header  = (Elf32_Phdr*)(KERN_BASE + phdr_offset);
234
235    // loop on segments
236    kcode_found  = false;
237    kdata_found  = false;
238    kentry_found = false;
239    for (seg_id = 0; seg_id < segments_nb; seg_id++) 
240    {
241        if (program_header[seg_id].p_type == PT_LOAD)   // Found one loadable segment
242        {
243            // Get segment attributes.
244            seg_paddr    = program_header[seg_id].p_paddr;   
245            seg_offset   = program_header[seg_id].p_offset;
246            seg_filesz   = program_header[seg_id].p_filesz;
247            seg_memsz    = program_header[seg_id].p_memsz;
248
249            // get segment base address in buffer
250            seg_src_addr = (uint32_t)KERN_BASE + seg_offset;
251
252            // Load segment to its final physical memory address
253            boot_memcpy( (void*)seg_paddr, 
254                         (void*)seg_src_addr, 
255                         seg_filesz );
256
257#if DEBUG_BOOT_ELF
258boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n"
259            "   base = %x / size = %x\n",
260            __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz );
261#endif
262
263            // Fill remaining memory with zero if (filesz < memsz).
264            if( seg_memsz < seg_filesz )
265            {
266                boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz);
267            }
268
269            // Note: we suppose that the 'kernel.elf' file contains exactly
270            // three loadable segments ktext, kentry, & kdata:
271            // - the kcode segment is read-only and base == KCODE_BASE
272            // - the kentry segment is read-only and base == KENTRY_BASE
273
274            if( ((program_header[seg_id].p_flags & PF_W) == 0) &&
275                 (program_header[seg_id].p_paddr == KCODE_BASE) )     // kcode segment
276            {
277                if( kcode_found )
278                {
279                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
280                                "   two kcode segments found\n",
281                                __FUNCTION__ , KERNEL_PATHNAME );
282                    boot_exit();
283                } 
284
285                kcode_found     = true;
286                seg_kcode_base = seg_paddr;
287                seg_kcode_size = seg_memsz;
288            }
289            else if( program_header[seg_id].p_paddr == KENTRY_BASE ) // kentry segment
290            {
291                if( kentry_found )
292                {
293                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
294                                "   two kentry segments found\n",
295                                __FUNCTION__ , KERNEL_PATHNAME );
296                    boot_exit();
297                } 
298
299                kentry_found     = true;
300                seg_kentry_base = seg_paddr;
301                seg_kentry_size = seg_memsz;
302            }
303            else                                                    // kdata segment
304            {
305                if( kdata_found )
306                {
307                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
308                                "   two loadable kdata segments found\n",
309                                __FUNCTION__ , KERNEL_PATHNAME );
310                    boot_exit();
311                } 
312
313                kdata_found     = true;
314                seg_kdata_base = seg_paddr;
315                seg_kdata_size = seg_memsz;
316            }
317        }
318    }
319
320    // check kcode & kdata segments found
321    if( kcode_found == false )
322    {
323        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kcode not found\n",
324                    __FUNCTION__ , KERNEL_PATHNAME );
325        boot_exit();
326    }
327    if( kentry_found == false )
328    {
329        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kentry not found\n",
330                    __FUNCTION__ , KERNEL_PATHNAME );
331        boot_exit();
332    }
333    if( kdata_found == false )
334    {
335        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kdata not found\n",
336                    __FUNCTION__ , KERNEL_PATHNAME );
337        boot_exit();
338    }
339
340    // check segments sizes
341    if( seg_kentry_size > KENTRY_MAX_SIZE )
342    {
343        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kentry too large\n",
344                    __FUNCTION__ , KERNEL_PATHNAME );
345        boot_exit();
346    }
347
348    if( (seg_kcode_size + seg_kdata_size) > KCODE_MAX_SIZE )
349    {
350        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kcode + seg_kdata too large\n",
351                    __FUNCTION__ , KERNEL_PATHNAME );
352    }
353
354    // set entry point
355    kernel_entry = (uint32_t)elf_header->e_entry;
356
357#if DEBUG_BOOT_ELF
358boot_printf("\n[BOOT INFO] %s completed for file %s at cycle %d\n",
359            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
360#endif
361
362} // boot_kernel_load()
363
364/*************************************************************************************
365 * This function initializes the  boot_info_t structure for a given cluster.
366 * @ boot_info  : pointer to local boot_info_t structure 
367 * @ cxy        : cluster identifier                   
368 ************************************************************************************/
369static void boot_info_init( boot_info_t * boot_info,
370                            cxy_t         cxy )
371{
372    archinfo_header_t  * header;
373    archinfo_core_t    * core_base;     
374    archinfo_cluster_t * cluster_base; 
375    archinfo_device_t  * device_base;
376    archinfo_irq_t     * irq_base; 
377
378    archinfo_cluster_t * cluster; 
379    archinfo_cluster_t * my_cluster = NULL;   // target cluster
380    archinfo_cluster_t * io_cluster = NULL;   // cluster containing ext. peripherals
381
382    archinfo_core_t    * core;
383    uint32_t             core_id; 
384    archinfo_device_t  * device;
385    uint32_t             device_id;
386    archinfo_irq_t     * irq; 
387    uint32_t             irq_id;
388    uint32_t             end;
389    boot_device_t      * boot_dev; 
390
391    // get pointer on ARCHINFO header  and on the four arch_info arrays
392    header       = (archinfo_header_t*)ARCHINFO_BASE;
393    core_base    = archinfo_get_core_base   (header);
394    cluster_base = archinfo_get_cluster_base(header);
395    device_base  = archinfo_get_device_base (header);
396    irq_base     = archinfo_get_irq_base    (header);
397
398    // Initialize global platform parameters
399    boot_info->x_size       = header->x_size;
400    boot_info->y_size       = header->y_size;
401    boot_info->x_width      = header->x_width;
402    boot_info->y_width      = header->y_width;
403    boot_info->x_max        = header->x_size; // [FIXME]
404    boot_info->y_max        = header->name[5] == 'l' ? header->y_size - 1 : header->y_size; // [FIXME]
405    boot_info->paddr_width  = header->paddr_width;
406    boot_info->io_cxy       = header->io_cxy;
407
408    // Initialize kernel segments from global variables
409    boot_info->kcode_base  = seg_kcode_base;
410    boot_info->kcode_size  = seg_kcode_size;
411    boot_info->kdata_base  = seg_kdata_base;
412    boot_info->kdata_size  = seg_kdata_size;
413    boot_info->kentry_base = seg_kentry_base;
414    boot_info->kentry_size = seg_kentry_size;
415
416    // loop on arch_info clusters to get relevant pointers
417    for (cluster =  cluster_base;
418         cluster < &cluster_base[header->x_size * header->y_size];
419         cluster++)
420    {
421        if( cluster->cxy  == cxy )            my_cluster = cluster;
422        if( cluster->cxy  == header->io_cxy ) io_cluster = cluster;
423    }
424
425    if( my_cluster == NULL ) 
426    {
427        boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n",
428                    __FUNCTION__ , cxy );
429        boot_exit();
430    }
431
432    if( io_cluster == NULL ) 
433    {
434        boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n",
435                    __FUNCTION__ , header->io_cxy );
436        boot_exit();
437    }
438
439    //////////////////////////////////////////////////////////
440    // initialize the boot_info array of external peripherals
441
442#if DEBUG_BOOT_INFO
443boot_printf("\n[BOOT INFO] %s : external peripherals at cycle %d\n",
444            __FUNCTION__ , boot_get_proctime() );
445#endif
446
447    device_id = 0;
448    for (device = &device_base[io_cluster->device_offset];
449         device < &device_base[io_cluster->device_offset + io_cluster->devices];
450         device++ )
451    {
452        if( device_id >= CONFIG_MAX_EXT_DEV ) 
453        {
454            boot_printf("\n[ERROR] in %s : too much external devices in arch_info\n",
455                        __FUNCTION__ );
456            boot_exit();
457        }
458       
459        // keep only external devices
460        if( (device->type != DEV_TYPE_RAM_SCL) &&
461            (device->type != DEV_TYPE_ICU_XCU) &&
462            (device->type != DEV_TYPE_MMC_TSR) &&
463            (device->type != DEV_TYPE_DMA_SCL) ) 
464        {
465            boot_dev = &boot_info->ext_dev[device_id];
466
467            boot_dev->type     = device->type;
468            boot_dev->base     = device->base;
469            boot_dev->channels = device->channels;
470            boot_dev->param0   = device->arg0;   
471            boot_dev->param1   = device->arg1;   
472            boot_dev->param2   = device->arg2;   
473            boot_dev->param3   = device->arg3;   
474            boot_dev->irqs     = device->irqs;   
475
476            device_id++;
477
478#if DEBUG_BOOT_INFO
479boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
480            device_type_str( device->type ) , device->base , device->size ,
481            device->channels , device->irqs );   
482#endif
483        }
484   
485        // handle IRQs for PIC
486        if (device->type == DEV_TYPE_PIC_TSR) 
487        {
488            for (irq_id = 0; irq_id < CONFIG_MAX_EXTERNAL_IRQS ; irq_id++)
489            {
490                boot_dev->irq[irq_id].valid  = 0;
491            }
492
493            for (irq = &irq_base[device->irq_offset];
494                 irq < &irq_base[device->irq_offset + device->irqs];
495                 irq++)
496            {
497                boot_dev->irq[irq->port].valid    = 1;
498                boot_dev->irq[irq->port].dev_type = irq->dev_type;
499                boot_dev->irq[irq->port].channel  = irq->channel;
500                boot_dev->irq[irq->port].is_rx    = irq->is_rx;
501
502#if DEBUG_BOOT_INFO
503boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
504            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
505#endif
506            }
507        }
508    }   // end loop on io_cluster peripherals
509
510    // initialize number of external peripherals
511    boot_info->ext_dev_nr = device_id;
512
513    // Initialize cluster specific resources
514    boot_info->cxy  = my_cluster->cxy;
515
516#if DEBUG_BOOT_INFO
517boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ , cxy );
518#endif
519
520    ////////////////////////////////////////
521    // Initialize array of core descriptors
522    core_id = 0;
523    for (core = &core_base[my_cluster->core_offset];
524         core < &core_base[my_cluster->core_offset + my_cluster->cores];
525         core++ )
526    {
527        boot_info->core[core_id].gid = (gid_t)core->gid;
528        boot_info->core[core_id].lid = (lid_t)core->lid; 
529        boot_info->core[core_id].cxy = (cxy_t)core->cxy;
530
531#if DEBUG_BOOT_INFO
532boot_printf("  - core_gid = %x : cxy = %x / lid = %d\n", 
533            core->gid , core->cxy , core->lid );
534#endif
535        core_id++;
536    }
537
538    // Initialize number of cores in my_cluster
539    boot_info->cores_nr = core_id;
540
541    //////////////////////////////////////////////////////////////////////
542    // initialise boot_info array of internal devices (RAM, ICU, MMC, DMA)
543
544#if DEBUG_BOOT_INFO
545boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", __FUNCTION__ , cxy );
546#endif
547
548    device_id = 0;
549    for (device = &device_base[my_cluster->device_offset];
550         device < &device_base[my_cluster->device_offset + my_cluster->devices];
551         device++ )
552    {
553        // keep only internal devices
554        if( (device->type == DEV_TYPE_RAM_SCL) ||
555            (device->type == DEV_TYPE_ICU_XCU) ||
556            (device->type == DEV_TYPE_MMC_TSR) ||
557            (device->type == DEV_TYPE_DMA_SCL) ||
558            (device->type == DEV_TYPE_TXT_MTY) )
559        {
560            if (device->type == DEV_TYPE_RAM_SCL)   // RAM
561            {
562                // set number of physical memory pages
563                boot_info->pages_nr   = device->size >> CONFIG_PPM_PAGE_SHIFT;
564
565#if DEBUG_BOOT_INFO
566boot_printf("  - RAM : %x pages\n", boot_info->pages_nr );
567#endif
568            }
569            else                                    // ICU / MMC / DMA / MTY
570            {
571                if( device_id >= CONFIG_MAX_INT_DEV ) 
572                {
573                    boot_printf("\n[ERROR] in %s : too much internal devices in cluster %x\n",
574                                __FUNCTION__ , cxy );
575                    boot_exit();
576                }
577       
578                boot_dev = &boot_info->int_dev[device_id];
579
580                boot_dev->type     = device->type;
581                boot_dev->base     = device->base;
582                boot_dev->channels = device->channels;
583                boot_dev->param0   = device->arg0;   
584                boot_dev->param1   = device->arg1;   
585                boot_dev->param2   = device->arg2;   
586                boot_dev->param3   = device->arg3;   
587                boot_dev->irqs     = device->irqs; 
588
589                device_id++;
590
591#if DEBUG_BOOT_INFO
592boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
593            device_type_str( device->type ) , device->base , device->size ,
594            device->channels , device->irqs );   
595#endif
596
597                // handle IRQs for ICU
598                if (device->type == DEV_TYPE_ICU_XCU) 
599                {
600                    for (irq_id = 0; irq_id < CONFIG_MAX_INTERNAL_IRQS ; irq_id++)
601                    {
602                        boot_dev->irq[irq_id].valid  = 0;
603                    }
604
605                    for (irq = &irq_base[device->irq_offset];
606                         irq < &irq_base[device->irq_offset + device->irqs] ; irq++)
607                    {
608                        boot_dev->irq[irq->port].valid    = 1;
609                        boot_dev->irq[irq->port].dev_type = irq->dev_type;
610                        boot_dev->irq[irq->port].channel  = irq->channel;
611                        boot_dev->irq[irq->port].is_rx    = irq->is_rx;
612
613#if DEBUG_BOOT_INFO
614boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
615            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
616#endif
617
618                    }
619                }
620            }
621        }
622    }  // end loop on local peripherals
623
624    // initialize number of internal peripherals
625    boot_info->int_dev_nr = device_id;
626
627   // Get the top address of the kernel segments
628    end = boot_info->kdata_base + boot_info->kdata_size;
629
630    // compute number of physical pages occupied by the kernel code
631    boot_info->pages_offset = ( (end & CONFIG_PPM_PAGE_MASK) == 0 ) ?
632                 (end >> CONFIG_PPM_PAGE_SHIFT) : (end >> CONFIG_PPM_PAGE_SHIFT) + 1;
633
634    // no reserved sones for TSAR architecture
635    boot_info->rsvd_nr = 0;
636
637    // set boot_info signature
638    boot_info->signature = BOOT_INFO_SIGNATURE;
639
640} // boot_info_init()
641
642/***********************************************************************************
643 * This function check the local boot_info_t structure for a given core.
644 * @ boot_info  : pointer to local 'boot_info_t' structure to be checked.
645 * @ lid        : core local identifier, index the core descriptor table.
646 **********************************************************************************/
647static void boot_check_core( boot_info_t * boot_info, 
648                             lid_t         lid)
649{
650    gid_t         gid;        // global hardware identifier of this core
651    boot_core_t * this;       // BOOT_INFO core descriptor of this core. 
652
653    // Get core hardware identifier
654    gid = (gid_t)boot_get_procid();
655
656    // get pointer on core descriptor
657    this = &boot_info->core[lid];
658
659    if ( (this->gid != gid) ||  (this->cxy != boot_info->cxy) )
660    {
661        boot_printf("\n[BOOT ERROR] in boot_check_core() :\n"
662                    " - boot_info cxy = %x\n"
663                    " - boot_info lid = %d\n"
664                    " - boot_info gid = %x\n"
665                    " - actual    gid = %x\n",
666                    this->cxy , this->lid , this->gid , gid );
667        boot_exit();
668    }
669
670} // boot_check_core()
671
672/*********************************************************************************
673 * This function is called by CP0 in cluster(0,0) to activate all other CP0s.
674 * It returns the number of CP0s actually activated.
675 ********************************************************************************/
676static uint32_t boot_wake_all_cp0s( void )
677{
678    archinfo_header_t*  header;         // Pointer on ARCHINFO header
679    archinfo_cluster_t* cluster_base;   // Pointer on ARCHINFO clusters base
680    archinfo_cluster_t* cluster;        // Iterator for loop on clusters
681    archinfo_device_t*  device_base;    // Pointer on ARCHINFO devices base
682    archinfo_device_t*  device;         // Iterator for loop on devices
683    uint32_t            cp0_nb = 0;     // CP0s counter
684
685    header       = (archinfo_header_t*)ARCHINFO_BASE;
686    cluster_base = archinfo_get_cluster_base(header);
687    device_base  = archinfo_get_device_base (header); 
688
689    // loop on all clusters
690    for (cluster = cluster_base;
691         cluster < &cluster_base[header->x_size * header->y_size];
692         cluster++)
693    {
694        // Skip boot cluster.
695        if (cluster->cxy == BOOT_CORE_CXY)
696            continue;
697           
698        // Skip clusters without core (thus without CP0).
699        if (cluster->cores == 0)
700            continue;
701
702        // Skip clusters without device (thus without XICU).
703        if (cluster->devices == 0)
704            continue;
705
706        // search XICU device associated to CP0, and send a WTI to activate it
707        for (device = &device_base[cluster->device_offset];
708             device < &device_base[cluster->device_offset + cluster->devices];
709             device++)
710        {
711            if (device->type == DEV_TYPE_ICU_XCU)
712            {
713
714#if DEBUG_BOOT_WAKUP
715boot_printf("\n[BOOT] core[%x,0] activated at cycle %d\n",
716            cluster->cxy , boot_get_proctime );
717#endif
718
719                boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry);
720                cp0_nb++;
721            }
722        }
723    }
724    return cp0_nb;
725
726} // boot_wake_cp0()
727
728/*********************************************************************************
729 * This function is called by all CP0 to activate the other CPi cores.
730 * @ boot_info  : pointer to local 'boot_info_t' structure.
731 *********************************************************************************/
732static void boot_wake_local_cores(boot_info_t * boot_info)
733{
734    unsigned int     core_id;       
735
736    // get pointer on XCU device descriptor in boot_info
737    boot_device_t *  xcu = &boot_info->int_dev[0];
738 
739    // loop on cores
740    for (core_id = 1; core_id < boot_info->cores_nr; core_id++)
741    {
742
743#if DEBUG_BOOT_WAKUP
744boot_printf("\n[BOOT] core[%x,%d] activated at cycle %d\n",
745             boot_info->cxy , core_id , boot_get_proctime() );
746#endif
747        // send an IPI
748        boot_remote_sw( (xptr_t)(xcu->base + (core_id << 2)) , (uint32_t)boot_entry ); 
749    }
750} // boot_wake_local_cores()
751
752
753/*********************************************************************************
754 * This main function of the boot-loader is called by the  boot_entry() 
755 * function, and executed by all cores.
756 * The arguments values are computed by the boot_entry code.
757 * @ lid    : core local identifier,
758 * @ cxy    : cluster identifier,
759 *********************************************************************************/
760void boot_loader( lid_t lid,
761                  cxy_t cxy )
762{
763    boot_info_t * boot_info;       // pointer on local boot_info_t structure
764
765    if (lid == 0) 
766    {
767        /****************************************************
768         * PHASE A : only CP0 in boot cluster executes it
769         ***************************************************/
770        if (cxy == BOOT_CORE_CXY)
771        {
772            boot_printf("\n[BOOT] core[%x,%d] enters at cycle %d\n",
773                        cxy , lid , boot_get_proctime() );
774
775            // Initialize IOC driver
776            if      (USE_IOC_BDV) boot_bdv_init();
777            else if (USE_IOC_HBA) boot_hba_init();
778            // else if (USE_IOC_SDC) boot_sdc_init();
779            // else if (USE_IOC_SPI) boot_spi_init();
780            else if (!USE_IOC_RDK)
781            {
782                boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n");
783                boot_exit();
784            }
785
786            // Initialize FAT32.
787            boot_fat32_init();
788
789            // Load the 'kernel.elf' file into memory from IOC, and set   
790            // the global variables defining the kernel layout     
791            boot_kernel_load();
792
793            boot_printf("\n[BOOT] core[%x,%d] loaded kernel at cycle %d\n",
794                        cxy , lid , boot_get_proctime() );
795
796            // Load the arch_info.bin file into memory.
797            boot_archinfo_load();
798
799            // Get local boot_info_t structure base address.
800            // It is the first structure in the .kdata segment.
801            boot_info = (boot_info_t *)seg_kdata_base;
802
803            // Initialize local boot_info_t structure.
804            boot_info_init( boot_info , cxy );
805
806            // check boot_info signature
807            if (boot_info->signature != BOOT_INFO_SIGNATURE)
808            {
809                boot_printf("\n[BOOT ERROR] in %s reported by core[%x,%d]\n"
810                            "  illegal boot_info signature / should be %x\n",
811                            __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE );
812                boot_exit();
813            }
814
815            boot_printf("\n[BOOT] core[%x,%d] loaded arch_info at cycle %d\n",
816                        cxy , lid , boot_get_proctime() );
817
818            // Check core information.
819            boot_check_core(boot_info, lid);
820
821            // Activate other CP0s / get number of active CP0s
822            active_cp0s_nr = boot_wake_all_cp0s() + 1;
823
824            // Wait until all clusters (i.e all CP0s) ready to enter kernel.
825            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) ,
826                                 active_cp0s_nr );
827
828            // activate other local cores
829            boot_wake_local_cores( boot_info );
830
831// display address extensions
832// uint32_t cp2_data_ext;
833// uint32_t cp2_ins_ext;
834// asm volatile( "mfc2   %0,  $24" : "=&r" (cp2_data_ext) );
835// asm volatile( "mfc2   %0,  $25" : "=&r" (cp2_ins_ext) );
836// boot_printf("\n[BOOT] core[%x,%d] CP2_DATA_EXT = %x / CP2_INS_EXT = %x\n",
837// cxy , lid , cp2_data_ext , cp2_ins_ext );
838
839            // Wait until all local cores in cluster ready
840            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
841                                 boot_info->cores_nr );
842        }
843        /******************************************************************
844         * PHASE B : all CP0s other than CP0 in boot cluster execute it
845         *****************************************************************/
846        else
847        {
848            // at this point, all INSTRUCTION address extension registers
849            // point on cluster(0,0), but the DATA extension registers point
850            // already on the local cluster to use the local stack.
851            // To access the bootloader global variables we must first copy
852            // the boot code (data and instructions) in the local cluster.
853            boot_remote_memcpy( XPTR( cxy           , BOOT_BASE ),
854                                XPTR( BOOT_CORE_CXY , BOOT_BASE ),
855                                BOOT_MAX_SIZE );
856
857            // from now, it is safe to refer to the boot code global variables
858            boot_printf("\n[BOOT] core[%x,%d] replicated boot code at cycle %d\n",
859                        cxy , lid , boot_get_proctime() );
860
861                        // switch to the INSTRUCTION local memory space, to avoid contention.
862            asm volatile("mtc2  %0, $25" :: "r"(cxy));
863
864            // Copy the arch_info.bin file into the local memory.
865            boot_remote_memcpy(XPTR(cxy,           ARCHINFO_BASE),
866                               XPTR(BOOT_CORE_CXY, ARCHINFO_BASE),
867                               ARCHINFO_MAX_SIZE );
868
869            boot_printf("\n[BOOT] core[%x,%d] replicated arch_info at cycle %d\n",
870                        cxy , lid , boot_get_proctime() );
871
872            // Copy the kcode segment into local memory
873            boot_remote_memcpy( XPTR( cxy           , seg_kcode_base ),
874                                XPTR( BOOT_CORE_CXY , seg_kcode_base ),
875                                seg_kcode_size );
876
877            // Copy the kdata segment into local memory
878            boot_remote_memcpy( XPTR( cxy           , seg_kdata_base ),
879                                XPTR( BOOT_CORE_CXY , seg_kdata_base ),
880                                seg_kdata_size );
881
882            // Copy the kentry segment into local memory
883            boot_remote_memcpy( XPTR( cxy           , seg_kentry_base ),
884                                XPTR( BOOT_CORE_CXY , seg_kentry_base ),
885                                seg_kentry_size );
886
887            boot_printf("\n[BOOT] core[%x,%d] replicated kernel code at cycle %d\n",
888                        cxy , lid , boot_get_proctime() );
889
890            // Get local boot_info_t structure base address.
891            boot_info = (boot_info_t*)seg_kdata_base;
892
893            // Initialize local boot_info_t structure.
894            boot_info_init( boot_info , cxy );
895
896            // Check core information.
897            boot_check_core( boot_info , lid );
898
899            // get number of active clusters from BOOT_CORE cluster
900            uint32_t count = boot_remote_lw( XPTR( BOOT_CORE_CXY , &active_cp0s_nr ) );
901
902            // Wait until all clusters (i.e all CP0s) ready to enter kernel
903            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count );
904
905            // activate other local cores
906            boot_wake_local_cores( boot_info );
907
908// display address extensions
909// uint32_t cp2_data_ext;
910// uint32_t cp2_ins_ext;
911// asm volatile( "mfc2   %0,  $24" : "=&r" (cp2_data_ext) );
912// asm volatile( "mfc2   %0,  $25" : "=&r" (cp2_ins_ext) );
913// boot_printf("\n[BOOT] core[%x,%d] CP2_DATA_EXT = %x / CP2_INS_EXT = %x\n",
914// cxy , lid , cp2_data_ext , cp2_ins_ext );
915
916            // Wait until all local cores in cluster ready
917            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
918                                 boot_info->cores_nr );
919        }
920    }
921    else
922    {
923        /***************************************************************
924         * PHASE C: all non CP0 cores in all clusters execute it
925         **************************************************************/
926
927        // Switch to the INSTRUCTIONS local memory space
928        // to avoid contention at the boot cluster.
929        asm volatile("mtc2  %0, $25" :: "r"(cxy));
930
931        // Get local boot_info_t structure base address.
932        boot_info = (boot_info_t *)seg_kdata_base;
933
934        // Check core information
935        boot_check_core(boot_info, lid);
936
937// display address extensions
938// uint32_t cp2_data_ext;
939// uint32_t cp2_ins_ext;
940// asm volatile( "mfc2   %0,  $24" : "=&r" (cp2_data_ext) );
941// asm volatile( "mfc2   %0,  $25" : "=&r" (cp2_ins_ext) );
942// boot_printf("\n[BOOT] core[%x,%d] CP2_DATA_EXT = %x / CP2_INS_EXT = %x\n",
943// cxy , lid , cp2_data_ext , cp2_ins_ext );
944
945        // Wait until all local cores in cluster ready
946        boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr );
947    }
948
949    // Each core initialise the following registers before jumping to kernel:
950    // - sp_29    : stack pointer on idle thread,
951    // - c0_sr    : reset BEV bit
952    // - a0_04    : pointer on boot_info structure
953    // - c0_ebase : kentry_base(and jump to kernel_entry.
954
955    // The array of idle-thread descriptors is allocated in the kdata segment,
956    // just after the boot_info structure
957    uint32_t sp;
958    uint32_t base;
959    uint32_t offset = sizeof( boot_info_t );
960    uint32_t pmask  = CONFIG_PPM_PAGE_MASK;
961    uint32_t psize  = CONFIG_PPM_PAGE_SIZE;
962
963    // compute base address of idle thread descriptors array
964    if( offset & pmask ) base = seg_kdata_base + (offset & ~pmask) + psize;
965    else                 base = seg_kdata_base + offset;
966
967    // compute stack pointer
968    sp = base + ((lid + 1) * CONFIG_THREAD_DESC_SIZE) - 16;
969
970    asm volatile( "mfc0  $27,  $12           \n"
971                  "lui   $26,  0xFFBF        \n"
972                  "ori   $26,  $26,  0xFFFF  \n"
973                  "and   $27,  $27,  $26     \n"
974                  "mtc0  $27,  $12           \n"
975                  "move  $4,   %0            \n"
976                  "move  $29,  %1            \n"
977                  "mtc0  %2,   $15,  1       \n"
978                  "jr    %3                  \n"
979                  :
980                  : "r"(boot_info) ,
981                    "r"(sp) ,
982                    "r"(boot_info->kentry_base) ,
983                    "r"(kernel_entry) 
984                  : "$26" , "$27" , "$29" , "$4" );
985
986
987} // boot_loader()
Note: See TracBrowser for help on using the repository browser.