/* * hal_context.c - implementation of Thread Context API for TSAR-MIPS32 * * Author Alain Greiner (2016) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH.is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH.is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH.; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include ////////////////////////////////////////////////////////// error_t hal_cpu_context_create( struct thread_s * thread ) { kmem_req_t req; context_dmsg("\n[INFO] %s : enters for thread %x in process %x\n", __FUNCTION__ , thread->trdid , thread->process->pid ); // allocate memory for cpu_context req.type = KMEM_CPU_CTX; req.size = sizeof(hal_cpu_context_t); req.flags = AF_KERNEL | AF_ZERO; hal_cpu_context_t * context = (hal_cpu_context_t *)kmem_alloc( &req ); if( context == NULL ) return ENOMEM; // set cpu context pointer in thread thread->cpu_context = (void*)context; // stack pointer, status register and mmu_mode depends on thread type uint32_t sp_29; uint32_t c0_sr; uint32_t c2_mode; if( thread->type == THREAD_USER ) { sp_29 = ((uint32_t)thread->u_stack_base) + thread->u_stack_size; c0_sr = SR_USR_MODE; c2_mode = 0xF; } else { sp_29 = ((uint32_t)thread->k_stack_base) + thread->k_stack_size; c0_sr = SR_SYS_MODE; c2_mode = 0x3; } // align stack pointer on a double word boundary sp_29 = (sp_29 - 8) & (~ 0x7); // initialise context context->sp_29 = sp_29; context->fp_30 = sp_29; // TODO check this [AG] context->ra_31 = (uint32_t)thread->entry_func; context->c0_sr = c0_sr; context->c0_th = (uint32_t)thread; context->c2_ptpr = (uint32_t)((thread->process->vmm.gpt.ppn) >> 1); context->c2_mode = c2_mode; context_dmsg("\n[INFO] %s : exit for thread %x in process %x\n", __FUNCTION__ , thread->trdid , thread->process->pid ); return 0; } // end hal_cpu_context_create() ///////////////////////////////////////////// error_t hal_cpu_context_copy( thread_t * dst, thread_t * src ) { kmem_req_t req; // allocate memory for dst cpu_context req.type = KMEM_CPU_CTX; req.size = sizeof(hal_cpu_context_t); req.flags = AF_KERNEL | AF_ZERO; hal_cpu_context_t * dst_context = (hal_cpu_context_t *)kmem_alloc( &req ); if( dst_context == NULL ) return ENOMEM; // set cpu context pointer in dst thread dst->cpu_context = dst_context; // get cpu context pointer from src thread hal_cpu_context_t * src_context = src->cpu_context; // copy CPU context from src to dst memcpy( dst_context , src_context , sizeof(hal_cpu_context_t) ); return 0; } // end hal_cpu_context_copy() ///////////////////////////////////////////////// void hal_cpu_context_destroy( thread_t * thread ) { kmem_req_t req; req.type = KMEM_CPU_CTX; req.ptr = thread->cpu_context; kmem_free( &req ); } // end hal_cpu_context_destroy() /////////////////////////////////////////////////// error_t hal_fpu_context_create( thread_t * thread ) { kmem_req_t req; // allocate memory for uzone req.type = KMEM_FPU_CTX; req.size = sizeof(hal_fpu_context_t); req.flags = AF_KERNEL | AF_ZERO; hal_fpu_context_t * context = (hal_fpu_context_t *)kmem_alloc( &req ); if( context == NULL ) return ENOMEM; // set fpu context pointer in thread thread->fpu_context = (void*)context; return 0; } // hal_fpu_context_create() ///////////////////////////////////////////// error_t hal_fpu_context_copy( thread_t * dst, thread_t * src ) { kmem_req_t req; // allocate memory for dst fpu_context req.type = KMEM_FPU_CTX; req.size = sizeof(hal_fpu_context_t); req.flags = AF_KERNEL | AF_ZERO; hal_fpu_context_t * dst_context = (hal_fpu_context_t *)kmem_alloc( &req ); if( dst_context == NULL ) return ENOMEM; // set fpu context pointer in dst thread dst->fpu_context = (void*)dst_context; // get fpu context pointer from src thread hal_fpu_context_t * src_context = src->fpu_context; // copy CPU context from src to dst memcpy( dst_context , src_context , sizeof(hal_fpu_context_t) ); return 0; } // end hal_fpu_context_copy() ///////////////////////////////////////////////// void hal_fpu_context_destroy( thread_t * thread ) { kmem_req_t req; req.type = KMEM_FPU_CTX; req.ptr = thread->fpu_context; kmem_free( &req ); } // end hal_fpu_context_destroy() ////////////////////////////////////////////// void hal_cpu_context_save( thread_t * thread ) { uint32_t ctx = (uint32_t)thread->cpu_context; asm volatile( ".set noreorder \n" "sw $16, 0*4(%0) \n" /* save s0 to slot 0 */ "sw $17, 1*4(%0) \n" /* save s1 to slot 1 */ "sw $18, 2*4(%0) \n" /* save s2 to slot 2 */ "sw $19, 3*4(%0) \n" /* save s3 to slot 3 */ "sw $20, 4*4(%0) \n" /* save s4 to slot 4 */ "sw $21, 5*4(%0) \n" /* save s5 to slot 5 */ "sw $22, 6*4(%0) \n" /* save s6 to slot 6 */ "sw $23, 7*4(%0) \n" /* save s7 to slot 7 */ "sw $29, 8*4(%0) \n" /* save sp to slot 8 */ "sw $30, 9*4(%0) \n" /* save fp to slot 9 */ "sw $31, 10*4(%0) \n" /* save ra to slot 10 */ "mfc0 $26, $4, 2 \n" /* get c0_th from CP0 */ "sw $26, 12*4(%0) \n" /* save c0_th to slot 12 */ "mfc2 $26, $0 \n" /* get c2_ptpr from CP2 */ "sw $26, 13*4(%0) \n" /* save c2_ptpr to slot 13 */ "mfc2 $26, $1 \n" /* get c2_mod from CP2 */ "sw $26, 14*4(%0) \n" /* save c2_mode to slot 14 */ "sync \n" ".set reorder \n" : : "r"( ctx ) : "$26" , "memory" ); } ///////////////////////////////////////////////// void hal_cpu_context_restore( thread_t * thread ) { uint32_t ctx = (uint32_t)thread->cpu_context; asm volatile( ".set noreorder \n" "nop \n" "lw $16, 0*4(%0) \n" /* restore s0_16 */ "lw $17, 1*4(%0) \n" /* restore s1_17 */ "lw $18, 2*4(%0) \n" /* restore s2_18 */ "lw $19, 3*4(%0) \n" /* restore s3_19 */ "lw $20, 4*4(%0) \n" /* restore s4_20 */ "lw $21, 5*4(%0) \n" /* restore s5_21 */ "lw $22, 6*4(%0) \n" /* restore s6_22 */ "lw $23, 7*4(%0) \n" /* restore s7_23 */ "lw $29, 8*4(%0) \n" /* restore sp_29 */ "lw $30, 9*4(%0) \n" /* restore fp_30 */ "lw $31, 10*4(%0) \n" /* restore ra_31 */ "lw $26, 12*4(%0) \n" /* get c0_th from slot 12 */ "mtc0 $26, $4, 2 \n" /* restore c0_th */ "lw $26, 13*4(%0) \n" /* get c2_ptpr from slot 13 */ "mtc2 $26, $0 \n" /* restore c2_ptpr */ "lw $26, 14*4(%0) \n" /* get c2_mode from slot 14 */ "mtc2 $26, $1 \n" /* restore c2_mode */ ".set reorder \n" : : "r"(ctx) : "$16","$17","$18","$19","$20","$21","$22","$23","$26","$29","$30","$31" ); } ////////////////////////////////////////////// void hal_cpu_context_load( thread_t * thread ) { // get relevant values from thread context hal_cpu_context_t * ctx = (hal_cpu_context_t *)thread->cpu_context; uint32_t sp_29 = ctx->sp_29; uint32_t fp_30 = ctx->fp_30; uint32_t c0_th = ctx->c0_th; uint32_t c0_sr = ctx->c0_sr; uint32_t c2_ptpr = ctx->c2_ptpr; uint32_t c2_mode = ctx->c2_mode; // get pointer on entry function & argument from thread attributes uint32_t func = (uint32_t)thread->entry_func; uint32_t args = (uint32_t)thread->entry_args; // reset loadable field in thread descriptor thread->flags &= ~THREAD_FLAG_LOADABLE; // load registers asm volatile( ".set noreorder \n" "or $26, %0, $0 \n" /* $26 <= stack pointer */ "or $27, %2, $0 \n" /* $27 <= status register */ "addiu $26, $26, -4 \n" /* decrement stack pointer */ "or $4, %7, $0 \n" /* load a0 */ "sw $4, ($26) \n" /* set entry_args in stack */ "ori $27, $27, 0x2 \n" /* set EXL flag in status register */ "mtc0 $27, $12 \n" /* load c0_sr */ "mtc0 %3, $4, 2 \n" /* load c0_th */ "mtc2 %4, $0 \n" /* load c2 ptpr */ "mtc0 %6, $14 \n" /* load c0_epc */ "or $29, $16, $0 \n" /* load sp_29 */ "or $30, %1, $0 \n" /* load fp_30 */ "mtc2 %5, $1 \n" /* load c2_mode */ "nop \n" "eret \n" /* jump to user code */ "nop \n" ".set reorder \n" : : "r"(sp_29),"r"(fp_30),"r"(c0_sr),"r"(c0_th), "r"(c2_ptpr),"r"(c2_mode),"r"(func),"r"(args) : "$4","$26","$27","$29","$30" ); } // end hal_cpu_context_load() ////////////////////////////////////////////// void hal_fpu_context_save( thread_t * thread ) { uint32_t ctx = (uint32_t)thread->fpu_context; asm volatile( ".set noreorder \n" "swc1 $f0, 0*4(%0) \n" "swc1 $f1, 1*4(%0) \n" "swc1 $f2, 2*4(%0) \n" "swc1 $f3, 3*4(%0) \n" "swc1 $f4, 4*4(%0) \n" "swc1 $f5, 5*4(%0) \n" "swc1 $f6, 6*4(%0) \n" "swc1 $f7, 7*4(%0) \n" "swc1 $f8, 8*4(%0) \n" "swc1 $f9, 9*4(%0) \n" "swc1 $f10, 10*4(%0) \n" "swc1 $f11, 11*4(%0) \n" "swc1 $f12, 12*4(%0) \n" "swc1 $f13, 13*4(%0) \n" "swc1 $f14, 14*4(%0) \n" "swc1 $f15, 15*4(%0) \n" "swc1 $f16, 16*4(%0) \n" "swc1 $f17, 17*4(%0) \n" "swc1 $f18, 18*4(%0) \n" "swc1 $f19, 19*4(%0) \n" "swc1 $f20, 20*4(%0) \n" "swc1 $f21, 21*4(%0) \n" "swc1 $f22, 22*4(%0) \n" "swc1 $f23, 23*4(%0) \n" "swc1 $f24, 24*4(%0) \n" "swc1 $f25, 25*4(%0) \n" "swc1 $f26, 26*4(%0) \n" "swc1 $f27, 27*4(%0) \n" "swc1 $f28, 28*4(%0) \n" "swc1 $f29, 29*4(%0) \n" "swc1 $f30, 30*4(%0) \n" "swc1 $f31, 31*4(%0) \n" ".set reorder \n" : : "r"(ctx) ); } // end hal_cpu_context_save() ///////////////////////////////////////////////// void hal_fpu_context_restore( thread_t * thread ) { uint32_t ctx = (uint32_t)thread->fpu_context; asm volatile( ".set noreorder \n" "lwc1 $f0, 0*4(%0) \n" "lwc1 $f1, 1*4(%0) \n" "lwc1 $f2, 2*4(%0) \n" "lwc1 $f3, 3*4(%0) \n" "lwc1 $f4, 4*4(%0) \n" "lwc1 $f5, 5*4(%0) \n" "lwc1 $f6, 6*4(%0) \n" "lwc1 $f7, 7*4(%0) \n" "lwc1 $f8, 8*4(%0) \n" "lwc1 $f9, 9*4(%0) \n" "lwc1 $f10, 10*4(%0) \n" "lwc1 $f11, 11*4(%0) \n" "lwc1 $f12, 12*4(%0) \n" "lwc1 $f13, 13*4(%0) \n" "lwc1 $f14, 14*4(%0) \n" "lwc1 $f15, 15*4(%0) \n" "lwc1 $f16, 16*4(%0) \n" "lwc1 $f17, 17*4(%0) \n" "lwc1 $f18, 18*4(%0) \n" "lwc1 $f19, 19*4(%0) \n" "lwc1 $f20, 20*4(%0) \n" "lwc1 $f21, 21*4(%0) \n" "lwc1 $f22, 22*4(%0) \n" "lwc1 $f23, 23*4(%0) \n" "lwc1 $f24, 24*4(%0) \n" "lwc1 $f25, 25*4(%0) \n" "lwc1 $f26, 26*4(%0) \n" "lwc1 $f27, 27*4(%0) \n" "lwc1 $f28, 28*4(%0) \n" "lwc1 $f29, 29*4(%0) \n" "lwc1 $f30, 30*4(%0) \n" "lwc1 $f31, 31*4(%0) \n" ".set reorder \n" : : "r"(ctx) ); } // end hal_cpu_context_restore() ///////////////////////////////////// void hal_fpu_context_dup( xptr_t dst, xptr_t src ) { hal_remote_memcpy( dst , src , sizeof(hal_fpu_context_t) ); }