source: trunk/hal/tsar_mips32/core/hal_exception.c

Last change on this file was 686, checked in by alain, 3 years ago

cosmetic

File size: 20.1 KB
RevLine 
[16]1/*
2 * hal_exception.c - implementation of exception handler for TSAR-MIPS32.
3 *
4 * Author   Alain Greiner (2016, 2017)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
[457]24#include <hal_kernel_types.h>
[16]25#include <hal_irqmask.h>
[406]26#include <hal_special.h>
[16]27#include <hal_exception.h>
28#include <thread.h>
29#include <printk.h>
[380]30#include <chdev.h>
[16]31#include <vmm.h>
32#include <errno.h>
33#include <scheduler.h>
34#include <core.h>
35#include <syscalls.h>
[440]36#include <shared_syscalls.h>
[570]37#include <remote_busylock.h>
[406]38#include <hal_kentry.h>
[505]39#include <hal_exception.h>
[380]40
[16]41//////////////////////////////////////////////////////////////////////////////////////////
42//  Extern global variables
43//////////////////////////////////////////////////////////////////////////////////////////
44
[380]45extern   chdev_directory_t    chdev_dir;  // allocated in the kernel_init.c file.
[16]46
47//////////////////////////////////////////////////////////////////////////////////////////
[407]48// This enum defines the mask values for an MMU exception code reported by the mips32.
[381]49//////////////////////////////////////////////////////////////////////////////////////////
50
51typedef enum
52{
[407]53    MMU_WRITE_PT1_UNMAPPED        = 0x0001,
54    MMU_WRITE_PT2_UNMAPPED        = 0x0002,
55    MMU_WRITE_PRIVILEGE_VIOLATION = 0x0004,
56    MMU_WRITE_ACCESS_VIOLATION    = 0x0008,
57    MMU_WRITE_UNDEFINED_XTN       = 0x0020,
58    MMU_WRITE_PT1_ILLEGAL_ACCESS  = 0x0040,
59    MMU_WRITE_PT2_ILLEGAL_ACCESS  = 0x0080,
60    MMU_WRITE_DATA_ILLEGAL_ACCESS = 0x0100,
61
62    MMU_READ_PT1_UNMAPPED         = 0x1001,
63    MMU_READ_PT2_UNMAPPED         = 0x1002,
64    MMU_READ_PRIVILEGE_VIOLATION  = 0x1004,
65    MMU_READ_EXEC_VIOLATION       = 0x1010,
66    MMU_READ_UNDEFINED_XTN        = 0x1020,
67    MMU_READ_PT1_ILLEGAL_ACCESS   = 0x1040,
68    MMU_READ_PT2_ILLEGAL_ACCESS   = 0x1080,
69    MMU_READ_DATA_ILLEGAL_ACCESS  = 0x1100,
[381]70}
71mmu_exception_subtype_t;
72
73//////////////////////////////////////////////////////////////////////////////////////////
[16]74// This enum defines the relevant values for XCODE field in mips32 CP0_CR register.
75//////////////////////////////////////////////////////////////////////////////////////////
76
77typedef enum
78{
[296]79    XCODE_ADEL = 0x4,        // Illegal address for data load
80    XCODE_ADES = 0x5,        // Illegal address for data store
81    XCODE_IBE  = 0x6,        // Instruction MMU exception       (can be NON-FATAL)
82    XCODE_DBE  = 0x7,        // Data MMU exception              (can be NON-FATAL)
83    XCODE_RI   = 0xA,        // Reserved instruction exception
84    XCODE_CPU  = 0xB,        // Coprocessor unusable exception  (can be NON-FATAl)
85    XCODE_OVR  = 0xC,        // Arithmetic Overflow exception
[16]86}
87xcode_values_t;
88
[409]89/////////////////////////////////////////////
90char * hal_mmu_exception_str( uint32_t code )
[408]91{
[527]92  switch (code) {
93    case (MMU_WRITE_PT1_UNMAPPED):        return "WRITE_PT1_UNMAPPED";
94    case (MMU_WRITE_PT2_UNMAPPED):        return "WRITE_PT2_UNMAPPED";
95    case (MMU_WRITE_PRIVILEGE_VIOLATION): return "WRITE_PRIVILEGE_VIOLATION";
96    case (MMU_WRITE_ACCESS_VIOLATION):    return "WRITE_ACCESS_VIOLATION";
97    case (MMU_WRITE_UNDEFINED_XTN):       return "WRITE_UNDEFINED_XTN";
98    case (MMU_WRITE_PT1_ILLEGAL_ACCESS):  return "WRITE_PT1_ILLEGAL_ACCESS";
99    case (MMU_WRITE_PT2_ILLEGAL_ACCESS):  return "WRITE_PT2_ILLEGAL_ACCESS";
100    case (MMU_WRITE_DATA_ILLEGAL_ACCESS): return "WRITE_DATA_ILLEGAL_ACCESS";
101    case (MMU_READ_PT1_UNMAPPED):         return "READ_PT1_UNMAPPED";
102    case (MMU_READ_PT2_UNMAPPED):         return "READ_PT2_UNMAPPED";
103    case (MMU_READ_PRIVILEGE_VIOLATION):  return "READ_PRIVILEGE_VIOLATION";
104    case (MMU_READ_EXEC_VIOLATION):       return "READ_EXEC_VIOLATION";
105    case (MMU_READ_UNDEFINED_XTN):        return "READ_UNDEFINED_XTN";
106    case (MMU_READ_PT1_ILLEGAL_ACCESS):   return "READ_PT1_ILLEGAL_ACCESS";
107    case (MMU_READ_PT2_ILLEGAL_ACCESS):   return "READ_PT2_ILLEGAL_ACCESS";
108    case (MMU_READ_DATA_ILLEGAL_ACCESS):  return "READ_DATA_ILLEGAL_ACCESS";
109    default:                              return "undefined";
110  }
[408]111}
112
[380]113//////////////////////////////////////////////////////////////////////////////////////////
[406]114// This function is called when a FPU Coprocessor Unavailable exception has been
[380]115// detected for the calling thread.
116// It enables the FPU, It saves the current FPU context in the current owner thread
117// descriptor if required, and restore the FPU context from the calling thread descriptor.
118//////////////////////////////////////////////////////////////////////////////////////////
119// @ this     : pointer on faulty thread descriptor.
120// @ return always EXCP_NON_FATAL
121//////////////////////////////////////////////////////////////////////////////////////////
[406]122error_t hal_fpu_exception( thread_t * this )
[380]123{
124        core_t   * core = this->core; 
125
[457]126    // enable FPU (in core SR) 
[380]127        hal_fpu_enable();
128
[457]129    // save FPU register values in current owner thread if required
[380]130        if( core->fpu_owner != NULL )
131    {
132        if( core->fpu_owner != this )
133            {
[457]134            // save the FPU registers to current owner thread context
[408]135                    hal_fpu_context_save( XPTR( local_cxy , core->fpu_owner ) );
[457]136
137            // restore FPU registers from requesting thread context
[469]138                hal_fpu_context_restore( this );
[457]139
140            // attach the FPU to the requesting thread
141                core->fpu_owner = this;
[380]142        }
143        }
[457]144    else
145    {
146        // restore FPU registers from requesting thread context
[469]147            hal_fpu_context_restore( this );
[380]148
[457]149        // attach the FPU to the requesting thread
150            core->fpu_owner = this;
151    }
[380]152
153        return EXCP_NON_FATAL;
154
155}  // end hal_fpu_exception()
156
157//////////////////////////////////////////////////////////////////////////////////////////
[437]158// This function is called when an MMU exception has been detected (IBE / DBE).
[380]159// It get the relevant exception arguments from the MMU.
[610]160// It signal a fatal error in case of illegal access. In case of page unmapped,
161// it get the client process to access the relevant VMM: for a RPC thread, the client
162// process is NOT the calling thread process.
163// Then, it checks that the faulty address belongs to a registered vseg, update the local
[380]164// vseg list from the reference cluster if required, and signal a fatal user error
165// in case of illegal virtual address. Finally, it updates the local page table from the
166// reference cluster.
[632]167// WARNING : In order to prevent deadlocks, this function enable IRQs before calling the
168// vmm_handle_page_fault() and the vmm_handle_cow() functions, because concurrent calls
169// to these functions can create cross dependencies...
[380]170//////////////////////////////////////////////////////////////////////////////////////////
171// @ this     : pointer on faulty thread descriptor.
[440]172// @ excPC    :
[406]173// @ is_ins   : IBE if true / DBE if false.
[380]174// @ return EXCP_NON_FATAL / EXCP_USER_ERROR / EXCP_KERNEL_PANIC
175//////////////////////////////////////////////////////////////////////////////////////////
[406]176error_t hal_mmu_exception( thread_t * this,
[437]177                           uint32_t   excPC,
[406]178                           bool_t     is_ins ) 
[380]179{
[406]180        process_t      * process;
181    error_t          error;
[380]182
[406]183    uint32_t         mmu_ins_excp_code;
184    uint32_t         mmu_ins_bad_vaddr;
185    uint32_t         mmu_dat_excp_code;
186    uint32_t         mmu_dat_bad_vaddr;
[380]187
[406]188    uint32_t         bad_vaddr;
[380]189    uint32_t         excp_code;
[610]190
191    // get faulty thread process 
[406]192    process = this->process;
[380]193
194    // get relevant values from MMU
195        hal_get_mmu_excp( &mmu_ins_excp_code,
196                          &mmu_ins_bad_vaddr,
197                          &mmu_dat_excp_code, 
198                          &mmu_dat_bad_vaddr );
199
[406]200    // get exception code and faulty vaddr, depending on IBE/DBE
201    if( is_ins )
[380]202    {
203        excp_code = mmu_ins_excp_code;
204        bad_vaddr = mmu_ins_bad_vaddr;
205    }
[406]206    else 
[380]207    {
208        excp_code = mmu_dat_excp_code;
209        bad_vaddr = mmu_dat_bad_vaddr;
210    }
211
[438]212#if DEBUG_HAL_EXCEPTIONS
[432]213uint32_t cycle = (uint32_t)hal_get_cycles();
[438]214if( DEBUG_HAL_EXCEPTIONS < cycle )
[619]215printk("\n[%s] thread[%x,%x] on core [%x,%x] enter\n  is_ins %d / %s / vaddr %x / cycle %d\n",
[610]216__FUNCTION__, process->pid, this->trdid, local_cxy, this->core->lid,
[469]217is_ins, hal_mmu_exception_str(excp_code), bad_vaddr, cycle);
[432]218#endif
[408]219
[407]220   // analyse exception code
221    switch( excp_code )
[380]222    {
[610]223        case MMU_WRITE_PT1_UNMAPPED:      // can be non fatal
224        case MMU_WRITE_PT2_UNMAPPED:      // can be non fatal
225        case MMU_READ_PT1_UNMAPPED:       // can be non fatal
226        case MMU_READ_PT2_UNMAPPED:       // can be non fatal
[407]227        {
228            // try to map the unmapped PTE
229            error = vmm_handle_page_fault( process, 
[686]230                                           bad_vaddr >> CONFIG_PPM_PAGE_ORDER );
[406]231
[587]232            if( error == EXCP_NON_FATAL )            // page-fault successfully handled
[407]233            {
[391]234
[438]235#if DEBUG_HAL_EXCEPTIONS
[432]236cycle = (uint32_t)hal_get_cycles();
[438]237if( DEBUG_HAL_EXCEPTIONS < cycle )
[619]238printk("\n[%s] thread[%x,%x] on core [%x,%x] exit\n  page-fault handled for vaddr = %x\n",
[610]239__FUNCTION__, process->pid, this->trdid, local_cxy, this->core->lid, bad_vaddr );
[432]240#endif
[407]241 
242                return EXCP_NON_FATAL;
243            }
[587]244            else if( error == EXCP_USER_ERROR )      // illegal vaddr
245            {
[625]246                printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n"
[610]247                "  %s : epc %x / badvaddr %x / is_ins %d\n",
248                __FUNCTION__, this->process->pid, this->trdid, local_cxy,
249                this->core->lid, (uint32_t)hal_get_cycles(),
250                hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins );
[587]251
252                        return EXCP_USER_ERROR;
253            } 
254            else  // error == EXCP_KERNEL_PANIC 
255            {
[625]256                printk("\n[PANIC] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n"
[610]257                "  %s : epc %x / badvaddr %x / is_ins %d\n",
258                __FUNCTION__, this->process->pid, this->trdid, local_cxy,
259                this->core->lid, (uint32_t)hal_get_cycles(),
260                hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins );
[587]261
262                        return EXCP_KERNEL_PANIC;
263            } 
[407]264        }
[610]265        case MMU_WRITE_PRIVILEGE_VIOLATION:  // illegal user error
266        case MMU_READ_PRIVILEGE_VIOLATION:   // illegal
[380]267        {
[625]268            printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n"
[610]269            "  %s : epc %x / badvaddr %x / is_ins %d\n",
270            __FUNCTION__, this->process->pid, this->trdid, local_cxy,
271            this->core->lid, (uint32_t)hal_get_cycles(),
272            hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins );
[380]273
[407]274            return EXCP_USER_ERROR;
275        }
[610]276        case MMU_WRITE_ACCESS_VIOLATION:    // can be non fatal if COW
[380]277        {
[610]278            // try to handle a possible COW
279            error = vmm_handle_cow( process,
[686]280                                    bad_vaddr >> CONFIG_PPM_PAGE_ORDER );
[380]281
[610]282            if( error == EXCP_NON_FATAL )        // COW successfully handled
[407]283            {
[380]284
[438]285#if DEBUG_HAL_EXCEPTIONS
[432]286cycle = (uint32_t)hal_get_cycles();
[438]287if( DEBUG_HAL_EXCEPTIONS < cycle )
[610]288printk("\n[%s] thread[%x,%x] exit / copy-on-write handled for vaddr = %x\n",
[587]289__FUNCTION__, process->pid, this->trdid, bad_vaddr );
[432]290#endif
[610]291                return EXCP_NON_FATAL;
292            } 
293            else if( error == EXCP_USER_ERROR )  // illegal write access
294            {
[625]295                    printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n"
[610]296                    "  %s : epc %x / badvaddr %x / is_ins %d\n",
297                    __FUNCTION__, this->process->pid, this->trdid, local_cxy,
298                    this->core->lid, (uint32_t)hal_get_cycles(),
299                    hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins );
[380]300
[587]301                            return EXCP_USER_ERROR;
[407]302            }
[610]303            else   // error == EXCP_KERNEL_PANIC
[407]304            {
[625]305                printk("\n[PANIC] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n"
[610]306                "  %s : epc %x / badvaddr %x / is_ins %d\n",
307                __FUNCTION__, this->process->pid, this->trdid, local_cxy,
308                this->core->lid, (uint32_t)hal_get_cycles(),
309                hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins );
[407]310
[610]311                        return EXCP_USER_ERROR;
[407]312            }
313        }
314        case MMU_READ_EXEC_VIOLATION:        // user error
315        {
[625]316            printk("\n[ERROR] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n"
[610]317            "  %s : epc %x / badvaddr %x / is_ins %d\n",
318            __FUNCTION__, this->process->pid, this->trdid, local_cxy,
319            this->core->lid, (uint32_t)hal_get_cycles(),
320            hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins );
[407]321
322            return EXCP_USER_ERROR;
323        }
[469]324        default:                             // this is a kernel error   
[407]325        {
[625]326            printk("\n[PANIC] in %s : thread[%x,%x] on core[%x,%x] / cycle %d\n"
[610]327            "  %s : epc %x / badvaddr %x / is_ins %d\n",
328            __FUNCTION__, this->process->pid, this->trdid, local_cxy,
329            this->core->lid, (uint32_t)hal_get_cycles(),
330            hal_mmu_exception_str(excp_code), excPC, bad_vaddr, is_ins );
[407]331
332            return EXCP_KERNEL_PANIC;
333        }
334    } 
[380]335} // end hal_mmu_exception()
336
337//////////////////////////////////////////////////////////////////////////////////////////
[619]338// This function prints on the kernel terminal the saved context (core registers)
[380]339// and the thread state of a faulty thread.
340//////////////////////////////////////////////////////////////////////////////////////////
341// @ this     : pointer on faulty thread descriptor.
342//////////////////////////////////////////////////////////////////////////////////////////
[625]343static void hal_exception_dump( thread_t * this )
[380]344{
[408]345    core_t    * core    = this->core;
346    process_t * process = this->process;
[619]347    reg_t     * uzone   = this->uzone_current;
[380]348
349    // get pointers on TXT0 chdev
[407]350    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
[380]351    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
352    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
353
354    // get extended pointer on remote TXT0 chdev lock
355    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
356
357    // get TXT0 lock in busy waiting mode
[570]358    remote_busylock_acquire( lock_xp );
[380]359
[686]360    nolock_printk("\n=== thread(%x,%x) / core[%x,%d] / cycle %d ===\n",
361    process->pid, this->trdid, process->pid, core->lid, (uint32_t)hal_get_cycles() );
[380]362
[570]363        nolock_printk("busylocks = %d / blocked_vector = %X / flags = %X\n\n",
364    this->busylocks, this->blocked, this->flags );
[380]365
[408]366    nolock_printk("c0_cr   %X  c0_epc  %X  c0_sr  %X  c0_th  %X\n",
367    uzone[UZ_CR], uzone[UZ_EPC], uzone[UZ_SR], uzone[UZ_TH] );
[380]368
[408]369    nolock_printk("c2_mode %X  c2_ptpr %X\n",
370    uzone[UZ_MODE], uzone[UZ_PTPR] );
[380]371
[408]372    nolock_printk("at_01   %X  v0_2    %X  v1_3   %X  a0_4   %X  a1_5   %X\n",
373        uzone[UZ_AT], uzone[UZ_V0], uzone[UZ_V1], uzone[UZ_A0], uzone[UZ_A1] );
374
375    nolock_printk("a2_6    %X  a3_7    %X  t0_8   %X  t1_9   %X  t2_10  %X\n",
376        uzone[UZ_A2], uzone[UZ_A3], uzone[UZ_T0], uzone[UZ_T1], uzone[UZ_T2] );
[380]377 
[408]378    nolock_printk("t3_11   %X  t4_12   %X  t5_13  %X  t6_14  %X  t7_15  %X\n",
379        uzone[UZ_T3], uzone[UZ_T4], uzone[UZ_T5], uzone[UZ_T6], uzone[UZ_T7] );
[380]380
[408]381    nolock_printk("s0_16   %X  s1_17   %X  s2_18  %X  s3_19  %X  s4_20  %X\n",
382        uzone[UZ_S0], uzone[UZ_S1], uzone[UZ_S2], uzone[UZ_S3], uzone[UZ_S4] );
[380]383 
[619]384    nolock_printk("s5_21   %X  s6_22   %X  s7_23  %X  t8_24  %X  t9_25  %X\n",
[408]385        uzone[UZ_S5], uzone[UZ_S6], uzone[UZ_S7], uzone[UZ_T8], uzone[UZ_T9] );
[380]386
[408]387    nolock_printk("gp_28   %X  sp_29   %X  S8_30  %X  ra_31  %X\n",
388        uzone[UZ_GP], uzone[UZ_SP], uzone[UZ_S8], uzone[UZ_RA] );
[407]389
[380]390    // release the lock
[570]391    remote_busylock_release( lock_xp );
[380]392
393}  // end hal_exception_dump()
394
[610]395/////////////////////////////
[481]396void hal_do_exception( void )
[16]397{
[408]398    uint32_t   * uzone;
399    thread_t   * this;
400        error_t      error;
401        uint32_t     excCode;                  // 4 bits XCODE from CP0_CR
[437]402        uint32_t     excPC;                    // fauty instruction address
[16]403
[408]404    // get pointer on faulty thread uzone
405    this  = CURRENT_THREAD;
[425]406    uzone = (uint32_t *)CURRENT_THREAD->uzone_current;
[408]407
[437]408    // get XCODE and EPC from UZONE
[408]409        excCode        = (uzone[UZ_CR] >> 2) & 0xF;
[437]410    excPC          = uzone[UZ_EPC];
[16]411
[438]412#if DEBUG_HAL_EXCEPTIONS
[432]413uint32_t cycle = (uint32_t)hal_get_cycles();
[438]414if( DEBUG_HAL_EXCEPTIONS < cycle )
[610]415printk("\n[%s] thread[%x,%x] enter / core[%x,%d] / epc %x / xcode %x / cycle %d\n",
416__FUNCTION__, this->process->pid, this->trdid,
417local_cxy, this->core->lid, excPC, excCode, cycle );
[432]418#endif
[406]419
[16]420        switch(excCode)
421        {
[469]422        case XCODE_DBE:     // Data Bus Error : can be non fatal if page fault
[406]423        {
[437]424                    error = hal_mmu_exception( this , excPC , false );  // data MMU exception
[406]425            break;
426        }
[469]427            case XCODE_IBE:     // Instruction Bus Error : can be non fatal if page fault
[16]428        {
[437]429                    error = hal_mmu_exception( this , excPC , true );   // ins MMU exception
[406]430                    break;
[16]431        }
[469]432            case XCODE_CPU:    // Coprocessor unavailable : can be non fatal if FPU
[16]433        {
[469]434            if( ((uzone[UZ_CR] >> 28) & 0x3) == 1 )             // FPU
[16]435            {
[469]436                error = hal_fpu_exception( this );
[16]437            }
[469]438            else                                                // undefined coprocessor
[16]439            {
[635]440                printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n"
[469]441                "   undefined coprocessor / epc %x\n",
[635]442                __FUNCTION__, this->process->pid, this->trdid, 
443                (uint32_t)hal_get_cycles() , excPC );
[469]444
[16]445                        error = EXCP_USER_ERROR;
446            }
[406]447                    break;
[16]448        }
[469]449        case XCODE_OVR:    // Arithmetic Overflow : user fatal error
450        {
[635]451            printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n"
[469]452            "   arithmetic overflow / epc %x\n",
[635]453            __FUNCTION__, this->process->pid, this->trdid, 
454            (uint32_t)hal_get_cycles() , excPC );
[469]455
456                    error = EXCP_USER_ERROR;
457                break;
458        }
459        case XCODE_RI:     // Reserved Instruction : user fatal error
460        {
[635]461            printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n"
[469]462            "   reserved instruction / epc %x\n",
[635]463            __FUNCTION__, this->process->pid, this->trdid, 
464            (uint32_t)hal_get_cycles() , excPC );
[469]465
466                    error = EXCP_USER_ERROR;
467                break;
468        }
[380]469        case XCODE_ADEL:   // user fatal error
[16]470        {
[635]471            printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n"
[610]472            "   illegal data load address / epc %x / bad_address %x\n",
[635]473            __FUNCTION__, this->process->pid, this->trdid,
474            (uint32_t)hal_get_cycles(), excPC, hal_get_bad_vaddr() );
[469]475
[16]476                    error = EXCP_USER_ERROR;
[406]477                break;
[16]478        }
[469]479        case XCODE_ADES:   //   user fatal error
480        {
[635]481            printk("\n[USER_ERROR] in %s for thread[%x,%x] / cycle %d\n"
[610]482            "   illegal data store address / epc %x / bad_address %x\n",
[635]483            __FUNCTION__, this->process->pid, this->trdid, 
484            (uint32_t)hal_get_cycles(), excPC, hal_get_bad_vaddr() );
[469]485
486                    error = EXCP_USER_ERROR;
487                break;
488        }
[16]489        default:
490        {
[317]491                    error = EXCP_KERNEL_PANIC;
[16]492        }
493        }
494   
495    // analyse error code
[317]496        if( error == EXCP_USER_ERROR )          //  user error => kill user process
[16]497        {
[625]498        hal_exception_dump( this );
[407]499
[440]500        sys_exit( EXIT_FAILURE );
[16]501        }
502    else if( error == EXCP_KERNEL_PANIC )   // kernel error => kernel panic
503    {
[625]504        hal_exception_dump( this );
[425]505
[610]506        hal_core_sleep();
[16]507    }
[406]508
[438]509#if DEBUG_HAL_EXCEPTIONS
[432]510cycle = (uint32_t)hal_get_cycles();
[438]511if( DEBUG_HAL_EXCEPTIONS < cycle )
[610]512printk("\n[%s] thread[%x,%x] exit / core[%x,%d] / epc %x / xcode %x / cycle %d\n",
513__FUNCTION__, this->process->pid, this->trdid,
514local_cxy, this->core->lid, excPC, excCode, cycle );
[432]515#endif
[406]516
[16]517}  // end hal_do_exception()
518
519
Note: See TracBrowser for help on using the repository browser.