source: trunk/hal/tsar_mips32/core/hal_exception.c @ 505

Last change on this file since 505 was 505, checked in by viala@…, 3 years ago

[hal] Fix protoypes and add headers in hal mips32 implementation.

Fix types mismatch between implementation and interface in .h.
Add header where they were absent.

File size: 19.6 KB
RevLine 
[16]1/*
2 * hal_exception.c - implementation of exception handler for TSAR-MIPS32.
3 *
4 * Author   Alain Greiner (2016, 2017)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
[457]24#include <hal_kernel_types.h>
[16]25#include <hal_irqmask.h>
[406]26#include <hal_special.h>
[16]27#include <hal_exception.h>
28#include <thread.h>
29#include <printk.h>
[380]30#include <chdev.h>
[16]31#include <vmm.h>
32#include <errno.h>
33#include <scheduler.h>
34#include <core.h>
35#include <syscalls.h>
[440]36#include <shared_syscalls.h>
[16]37#include <remote_spinlock.h>
[406]38#include <hal_kentry.h>
[16]39
[505]40#include <hal_exception.h>
[380]41
[16]42//////////////////////////////////////////////////////////////////////////////////////////
43//  Extern global variables
44//////////////////////////////////////////////////////////////////////////////////////////
45
[380]46extern   chdev_directory_t    chdev_dir;  // allocated in the kernel_init.c file.
[16]47
48//////////////////////////////////////////////////////////////////////////////////////////
[381]49// This enum defines the global exception types after analysis by the exception handler.
50//////////////////////////////////////////////////////////////////////////////////////////
51
52typedef enum
53{
54    EXCP_NON_FATAL,
55    EXCP_USER_ERROR,
56    EXCP_KERNEL_PANIC,
57}
58exception_handling_type_t;
59
60//////////////////////////////////////////////////////////////////////////////////////////
[407]61// This enum defines the mask values for an MMU exception code reported by the mips32.
[381]62//////////////////////////////////////////////////////////////////////////////////////////
63
64typedef enum
65{
[407]66    MMU_WRITE_PT1_UNMAPPED        = 0x0001,
67    MMU_WRITE_PT2_UNMAPPED        = 0x0002,
68    MMU_WRITE_PRIVILEGE_VIOLATION = 0x0004,
69    MMU_WRITE_ACCESS_VIOLATION    = 0x0008,
70    MMU_WRITE_UNDEFINED_XTN       = 0x0020,
71    MMU_WRITE_PT1_ILLEGAL_ACCESS  = 0x0040,
72    MMU_WRITE_PT2_ILLEGAL_ACCESS  = 0x0080,
73    MMU_WRITE_DATA_ILLEGAL_ACCESS = 0x0100,
74
75    MMU_READ_PT1_UNMAPPED         = 0x1001,
76    MMU_READ_PT2_UNMAPPED         = 0x1002,
77    MMU_READ_PRIVILEGE_VIOLATION  = 0x1004,
78    MMU_READ_EXEC_VIOLATION       = 0x1010,
79    MMU_READ_UNDEFINED_XTN        = 0x1020,
80    MMU_READ_PT1_ILLEGAL_ACCESS   = 0x1040,
81    MMU_READ_PT2_ILLEGAL_ACCESS   = 0x1080,
82    MMU_READ_DATA_ILLEGAL_ACCESS  = 0x1100,
[381]83}
84mmu_exception_subtype_t;
85
86//////////////////////////////////////////////////////////////////////////////////////////
[16]87// This enum defines the relevant values for XCODE field in mips32 CP0_CR register.
88//////////////////////////////////////////////////////////////////////////////////////////
89
90typedef enum
91{
[296]92    XCODE_ADEL = 0x4,        // Illegal address for data load
93    XCODE_ADES = 0x5,        // Illegal address for data store
94    XCODE_IBE  = 0x6,        // Instruction MMU exception       (can be NON-FATAL)
95    XCODE_DBE  = 0x7,        // Data MMU exception              (can be NON-FATAL)
96    XCODE_RI   = 0xA,        // Reserved instruction exception
97    XCODE_CPU  = 0xB,        // Coprocessor unusable exception  (can be NON-FATAl)
98    XCODE_OVR  = 0xC,        // Arithmetic Overflow exception
[16]99}
100xcode_values_t;
101
[409]102/////////////////////////////////////////////
103char * hal_mmu_exception_str( uint32_t code )
[408]104{
105    if     ( code == MMU_WRITE_PT1_UNMAPPED        ) return "WRITE_PT1_UNMAPPED";
106    else if( code == MMU_WRITE_PT2_UNMAPPED        ) return "WRITE_PT2_UNMAPPED";
107    else if( code == MMU_WRITE_PRIVILEGE_VIOLATION ) return "WRITE_PRIVILEGE_VIOLATION";
108    else if( code == MMU_WRITE_ACCESS_VIOLATION    ) return "WRITE_ACCESS_VIOLATION";
109    else if( code == MMU_WRITE_UNDEFINED_XTN       ) return "WRITE_UNDEFINED_XTN";
110    else if( code == MMU_WRITE_PT1_ILLEGAL_ACCESS  ) return "WRITE_PT1_ILLEGAL_ACCESS";
111    else if( code == MMU_WRITE_PT2_ILLEGAL_ACCESS  ) return "WRITE_PT2_ILLEGAL_ACCESS";
112    else if( code == MMU_WRITE_DATA_ILLEGAL_ACCESS ) return "WRITE_DATA_ILLEGAL_ACCESS";
113    else if( code == MMU_READ_PT1_UNMAPPED         ) return "READ_PT1_UNMAPPED";
114    else if( code == MMU_READ_PT2_UNMAPPED         ) return "READ_PT2_UNMAPPED";
115    else if( code == MMU_READ_PRIVILEGE_VIOLATION  ) return "READ_PRIVILEGE_VIOLATION";
116    else if( code == MMU_READ_EXEC_VIOLATION       ) return "READ_EXEC_VIOLATION";
117    else if( code == MMU_READ_UNDEFINED_XTN        ) return "READ_UNDEFINED_XTN";
118    else if( code == MMU_READ_PT1_ILLEGAL_ACCESS   ) return "READ_PT1_ILLEGAL_ACCESS";
119    else if( code == MMU_READ_PT2_ILLEGAL_ACCESS   ) return "READ_PT2_ILLEGAL_ACCESS";
120    else if( code == MMU_READ_DATA_ILLEGAL_ACCESS  ) return "READ_DATA_ILLEGAL_ACCESS";
121    else                                             return "undefined";
122}
123
[380]124//////////////////////////////////////////////////////////////////////////////////////////
[406]125// This function is called when a FPU Coprocessor Unavailable exception has been
[380]126// detected for the calling thread.
127// It enables the FPU, It saves the current FPU context in the current owner thread
128// descriptor if required, and restore the FPU context from the calling thread descriptor.
129//////////////////////////////////////////////////////////////////////////////////////////
130// @ this     : pointer on faulty thread descriptor.
131// @ return always EXCP_NON_FATAL
132//////////////////////////////////////////////////////////////////////////////////////////
[406]133error_t hal_fpu_exception( thread_t * this )
[380]134{
135        core_t   * core = this->core; 
136
[457]137    // enable FPU (in core SR) 
[380]138        hal_fpu_enable();
139
[457]140    // save FPU register values in current owner thread if required
[380]141        if( core->fpu_owner != NULL )
142    {
143        if( core->fpu_owner != this )
144            {
[457]145            // save the FPU registers to current owner thread context
[408]146                    hal_fpu_context_save( XPTR( local_cxy , core->fpu_owner ) );
[457]147
148            // restore FPU registers from requesting thread context
[469]149                hal_fpu_context_restore( this );
[457]150
151            // attach the FPU to the requesting thread
152                core->fpu_owner = this;
[380]153        }
154        }
[457]155    else
156    {
157        // restore FPU registers from requesting thread context
[469]158            hal_fpu_context_restore( this );
[380]159
[457]160        // attach the FPU to the requesting thread
161            core->fpu_owner = this;
162    }
[380]163
164        return EXCP_NON_FATAL;
165
166}  // end hal_fpu_exception()
167
168//////////////////////////////////////////////////////////////////////////////////////////
[437]169// This function is called when an MMU exception has been detected (IBE / DBE).
[380]170// It get the relevant exception arguments from the MMU.
171// It signal a fatal error in case of illegal access. In case of page unmapped
172// it checks that the faulty address belongs to a registered vseg. It update the local
173// vseg list from the reference cluster if required, and signal a fatal user error
174// in case of illegal virtual address. Finally, it updates the local page table from the
175// reference cluster.
176//////////////////////////////////////////////////////////////////////////////////////////
177// @ this     : pointer on faulty thread descriptor.
[440]178// @ excPC    :
[406]179// @ is_ins   : IBE if true / DBE if false.
[380]180// @ return EXCP_NON_FATAL / EXCP_USER_ERROR / EXCP_KERNEL_PANIC
181//////////////////////////////////////////////////////////////////////////////////////////
[406]182error_t hal_mmu_exception( thread_t * this,
[437]183                           uint32_t   excPC,
[406]184                           bool_t     is_ins ) 
[380]185{
[406]186        process_t      * process;
187    error_t          error;
[380]188
[406]189    uint32_t         mmu_ins_excp_code;
190    uint32_t         mmu_ins_bad_vaddr;
191    uint32_t         mmu_dat_excp_code;
192    uint32_t         mmu_dat_bad_vaddr;
[380]193
[406]194    uint32_t         bad_vaddr;
[380]195    uint32_t         excp_code;
196       
[406]197    process = this->process;
[380]198
199    // get relevant values from MMU
200        hal_get_mmu_excp( &mmu_ins_excp_code,
201                          &mmu_ins_bad_vaddr,
202                          &mmu_dat_excp_code, 
203                          &mmu_dat_bad_vaddr );
204
[406]205    // get exception code and faulty vaddr, depending on IBE/DBE
206    if( is_ins )
[380]207    {
208        excp_code = mmu_ins_excp_code;
209        bad_vaddr = mmu_ins_bad_vaddr;
210    }
[406]211    else 
[380]212    {
213        excp_code = mmu_dat_excp_code;
214        bad_vaddr = mmu_dat_bad_vaddr;
215    }
216
[438]217#if DEBUG_HAL_EXCEPTIONS
[432]218uint32_t cycle = (uint32_t)hal_get_cycles();
[438]219if( DEBUG_HAL_EXCEPTIONS < cycle )
[457]220printk("\n[DBG] %s : thread %x in process %x enter / is_ins %d / %s / vaddr %x / cycle %d\n",
[469]221__FUNCTION__, this->trdid, process->pid,
222is_ins, hal_mmu_exception_str(excp_code), bad_vaddr, cycle);
[432]223#endif
[408]224
[407]225   // analyse exception code
226    switch( excp_code )
[380]227    {
[407]228        case MMU_WRITE_PT1_UNMAPPED:      // non fatal
229        case MMU_WRITE_PT2_UNMAPPED:
230        case MMU_READ_PT1_UNMAPPED:
231        case MMU_READ_PT2_UNMAPPED:
232        {
233            // try to map the unmapped PTE
234            error = vmm_handle_page_fault( process, 
[440]235                                           bad_vaddr >> CONFIG_PPM_PAGE_SHIFT,  // vpn
236                                           false );                             // not a COW
[407]237            if( error )   
238            {
[469]239                printk("\n[USER ERROR] in %s for thread %x in process %x\n"
240                "   cannot map vaddr = %x / is_ins %d / epc %x\n",
241                __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC );
[406]242
[407]243                        return EXCP_USER_ERROR;
244            } 
245            else            // page fault successfull
246            {
[391]247
[438]248#if DEBUG_HAL_EXCEPTIONS
[432]249cycle = (uint32_t)hal_get_cycles();
[438]250if( DEBUG_HAL_EXCEPTIONS < cycle )
[457]251printk("\n[DBG] %s : thread %x in process %x exit / page-fault handled for vaddr = %x\n",
252__FUNCTION__, this->trdid, process->pid, bad_vaddr );
[432]253#endif
[407]254 
255                return EXCP_NON_FATAL;
256            }
257        }
258        case MMU_WRITE_PRIVILEGE_VIOLATION:  // illegal access user error
259        case MMU_READ_PRIVILEGE_VIOLATION:
[380]260        {
[469]261            printk("\n[USER ERROR] in %s for thread %x in process %x\n"
262            "   illegal user access to vaddr = %x / is_ins %d / epc %x\n",
263            __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC );
[380]264
[407]265            return EXCP_USER_ERROR;
266        }
[408]267        case MMU_WRITE_ACCESS_VIOLATION:     // user error, or Copy-on-Write
[380]268        {
[407]269            // access page table to get GPT_COW flag
270            bool_t cow = hal_gpt_pte_is_cow( &(process->vmm.gpt),
[408]271                                             bad_vaddr >> CONFIG_PPM_PAGE_SHIFT ); 
[380]272
[407]273            if( cow )                        // Copy-on-Write
274            {
275                // try to allocate and copy the page
[440]276                error = vmm_handle_page_fault( process,
277                                               bad_vaddr >> CONFIG_PPM_PAGE_SHIFT,  // vpn
278                                               true );                              // COW
[407]279                if( error )
280                {
[469]281                    printk("\n[USER ERROR] in %s for thread %x in process %x\n"
282                    "   cannot cow vaddr = %x / is_ins %d / epc %x\n",
283                    __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC );
[380]284
[407]285                            return EXCP_USER_ERROR;
286                }
287                else         // Copy on write successfull
288                {
[380]289
[438]290#if DEBUG_HAL_EXCEPTIONS
[432]291cycle = (uint32_t)hal_get_cycles();
[438]292if( DEBUG_HAL_EXCEPTIONS < cycle )
[457]293printk("\n[DBG] %s : thread %x in process %x exit / copy-on-write handled for vaddr = %x\n",
294__FUNCTION__, this->trdid, process->pid, bad_vaddr );
[432]295#endif
[380]296
[407]297                    return EXCP_NON_FATAL;
298                } 
299            }
300            else                             // non writable user error
301            {
[469]302                printk("\n[USER ERROR] in %s for thread %x in process %x\n"
303                "   non-writable vaddr = %x / is_ins %d / epc %x\n",
304                __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC );
[407]305
306                return EXCP_USER_ERROR;
307            }
308        }
309        case MMU_READ_EXEC_VIOLATION:        // user error
310        {
[469]311            printk("\n[USER_ERROR] in %s for thread %x in process %x\n"
312            "   non-executable vaddr = %x / is_ins %d / epc %x\n",
313            __FUNCTION__, this->trdid, this->process->pid, bad_vaddr, is_ins, excPC );
[407]314
315            return EXCP_USER_ERROR;
316        }
[469]317        default:                             // this is a kernel error   
[407]318        {
[469]319            printk("\n[KERNEL ERROR] in %s for thread %x in process %x\n"
320            "  epc %x / badvaddr %x / is_ins %d\n",
321            __FUNCTION__, this->trdid, this->process->pid, excPC, bad_vaddr, is_ins );
[407]322
323            return EXCP_KERNEL_PANIC;
324        }
325    } 
[380]326} // end hal_mmu_exception()
327
328//////////////////////////////////////////////////////////////////////////////////////////
329// This static function prints on the kernel terminal the saved context (core registers)
330// and the thread state of a faulty thread.
331//////////////////////////////////////////////////////////////////////////////////////////
332// @ this     : pointer on faulty thread descriptor.
[425]333// @ uzone    : pointer on register array.
[407]334// @ error    : EXCP_USER_ERROR or EXCP_KERNEL_PANIC
[380]335//////////////////////////////////////////////////////////////////////////////////////////
336static void hal_exception_dump( thread_t * this,
[408]337                                reg_t    * uzone,
[407]338                                error_t    error )
[380]339{
[408]340    uint32_t    save_sr;
341    core_t    * core    = this->core;
342    process_t * process = this->process;
[380]343
344    // get pointers on TXT0 chdev
[407]345    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
[380]346    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
347    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
348
349    // get extended pointer on remote TXT0 chdev lock
350    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
351
352    // get TXT0 lock in busy waiting mode
353    remote_spinlock_lock_busy( lock_xp , &save_sr );
354
[407]355    if( error == EXCP_USER_ERROR )
356    {
[408]357        nolock_printk("\n=== USER ERROR / trdid %x / pid %x / core[%x,%d] / cycle %d ===\n",
358        this->trdid, process->pid, local_cxy, core->lid , (uint32_t)hal_get_cycles() );
[407]359    }
[380]360    else
[407]361    {
[469]362        nolock_printk("\n=== KERNEL ERROR / trdid %x / pid %x / core[%x,%d] / cycle %d ===\n",
[408]363        this->trdid, process->pid, local_cxy, core->lid , (uint32_t)hal_get_cycles() );
[407]364    }
[380]365
[408]366        nolock_printk("local locks = %d / remote locks = %d / blocked_vector = %X\n\n",
367    this->local_locks, this->remote_locks, this->blocked );
[380]368
[408]369    nolock_printk("c0_cr   %X  c0_epc  %X  c0_sr  %X  c0_th  %X\n",
370    uzone[UZ_CR], uzone[UZ_EPC], uzone[UZ_SR], uzone[UZ_TH] );
[380]371
[408]372    nolock_printk("c2_mode %X  c2_ptpr %X\n",
373    uzone[UZ_MODE], uzone[UZ_PTPR] );
[380]374
[408]375    nolock_printk("at_01   %X  v0_2    %X  v1_3   %X  a0_4   %X  a1_5   %X\n",
376        uzone[UZ_AT], uzone[UZ_V0], uzone[UZ_V1], uzone[UZ_A0], uzone[UZ_A1] );
377
378    nolock_printk("a2_6    %X  a3_7    %X  t0_8   %X  t1_9   %X  t2_10  %X\n",
379        uzone[UZ_A2], uzone[UZ_A3], uzone[UZ_T0], uzone[UZ_T1], uzone[UZ_T2] );
[380]380 
[408]381    nolock_printk("t3_11   %X  t4_12   %X  t5_13  %X  t6_14  %X  t7_15  %X\n",
382        uzone[UZ_T3], uzone[UZ_T4], uzone[UZ_T5], uzone[UZ_T6], uzone[UZ_T7] );
[380]383
[408]384    nolock_printk("s0_16   %X  s1_17   %X  s2_18  %X  s3_19  %X  s4_20  %X\n",
385        uzone[UZ_S0], uzone[UZ_S1], uzone[UZ_S2], uzone[UZ_S3], uzone[UZ_S4] );
[380]386 
[408]387    nolock_printk("s5_21   %X  s6_22   %X  s7_23  %X  s8_24  %X  ra_25  %X\n",
388        uzone[UZ_S5], uzone[UZ_S6], uzone[UZ_S7], uzone[UZ_T8], uzone[UZ_T9] );
[380]389
[408]390    nolock_printk("gp_28   %X  sp_29   %X  S8_30  %X  ra_31  %X\n",
391        uzone[UZ_GP], uzone[UZ_SP], uzone[UZ_S8], uzone[UZ_RA] );
[407]392
[380]393    // release the lock
394    remote_spinlock_unlock_busy( lock_xp , save_sr );
395
396}  // end hal_exception_dump()
397
[408]398///////////////////////
[481]399void hal_do_exception( void )
[16]400{
[408]401    uint32_t   * uzone;
402    thread_t   * this;
403        error_t      error;
404        uint32_t     excCode;                  // 4 bits XCODE from CP0_CR
[437]405        uint32_t     excPC;                    // fauty instruction address
[16]406
[408]407    // get pointer on faulty thread uzone
408    this  = CURRENT_THREAD;
[425]409    uzone = (uint32_t *)CURRENT_THREAD->uzone_current;
[408]410
[437]411    // get XCODE and EPC from UZONE
[408]412        excCode        = (uzone[UZ_CR] >> 2) & 0xF;
[437]413    excPC          = uzone[UZ_EPC];
[16]414
[438]415#if DEBUG_HAL_EXCEPTIONS
[432]416uint32_t cycle = (uint32_t)hal_get_cycles();
[438]417if( DEBUG_HAL_EXCEPTIONS < cycle )
[457]418printk("\n[DBG] %s : thread %x in process %x enter / core[%x,%d] / epc %x / xcode %x / cycle %d\n",
419__FUNCTION__, this->trdid, this->process->pid, local_cxy, this->core->lid, excPC, excCode, cycle );
[432]420#endif
[406]421
[16]422        switch(excCode)
423        {
[469]424        case XCODE_DBE:     // Data Bus Error : can be non fatal if page fault
[406]425        {
[437]426                    error = hal_mmu_exception( this , excPC , false );  // data MMU exception
[406]427            break;
428        }
[469]429            case XCODE_IBE:     // Instruction Bus Error : can be non fatal if page fault
[16]430        {
[437]431                    error = hal_mmu_exception( this , excPC , true );   // ins MMU exception
[406]432                    break;
[16]433        }
[469]434            case XCODE_CPU:    // Coprocessor unavailable : can be non fatal if FPU
[16]435        {
[469]436            if( ((uzone[UZ_CR] >> 28) & 0x3) == 1 )             // FPU
[16]437            {
[469]438                error = hal_fpu_exception( this );
[16]439            }
[469]440            else                                                // undefined coprocessor
[16]441            {
[469]442                printk("\n[USER_ERROR] in %s for thread %x in process %x\n"
443                "   undefined coprocessor / epc %x\n",
444                __FUNCTION__, this->trdid, this->process->pid, excPC );
445
[16]446                        error = EXCP_USER_ERROR;
447            }
[406]448                    break;
[16]449        }
[469]450        case XCODE_OVR:    // Arithmetic Overflow : user fatal error
451        {
452            printk("\n[USER_ERROR] in %s for thread %x in process %x\n"
453            "   arithmetic overflow / epc %x\n",
454            __FUNCTION__, this->trdid, this->process->pid, excPC );
455
456                    error = EXCP_USER_ERROR;
457                break;
458        }
459        case XCODE_RI:     // Reserved Instruction : user fatal error
460        {
461            printk("\n[USER_ERROR] in %s for thread %x in process %x\n"
462            "   reserved instruction / epc %x\n",
463            __FUNCTION__, this->trdid, this->process->pid, excPC );
464
465                    error = EXCP_USER_ERROR;
466                break;
467        }
[380]468        case XCODE_ADEL:   // user fatal error
[16]469        {
[469]470            printk("\n[USER_ERROR] in %s for thread %x in process %x\n"
471            "   illegal data load address / epc %x\n",
472            __FUNCTION__, this->trdid, this->process->pid, excPC );
473
[16]474                    error = EXCP_USER_ERROR;
[406]475                break;
[16]476        }
[469]477        case XCODE_ADES:   //   user fatal error
478        {
479            printk("\n[USER_ERROR] in %s for thread %x in process %x\n"
480            "   illegal data store address / epc %x\n",
481            __FUNCTION__, this->trdid, this->process->pid, excPC );
482
483                    error = EXCP_USER_ERROR;
484                break;
485        }
[16]486        default:
487        {
[317]488                    error = EXCP_KERNEL_PANIC;
[16]489        }
490        }
491   
492    // analyse error code
[317]493        if( error == EXCP_USER_ERROR )          //  user error => kill user process
[16]494        {
[408]495        hal_exception_dump( this , uzone , error );
[407]496
[440]497        sys_exit( EXIT_FAILURE );
[16]498        }
499    else if( error == EXCP_KERNEL_PANIC )   // kernel error => kernel panic
500    {
[408]501        hal_exception_dump( this , uzone , error );
[425]502
[492]503        assert( false , "Exception raised kernel panic see information below.\n" );
[16]504    }
[406]505
[438]506#if DEBUG_HAL_EXCEPTIONS
[432]507cycle = (uint32_t)hal_get_cycles();
[438]508if( DEBUG_HAL_EXCEPTIONS < cycle )
[457]509printk("\n[DBG] %s : thread %x in process %x exit / core[%x,%d] / epc %x / xcode %x / cycle %d\n",
510__FUNCTION__, this->trdid, this->process->pid, local_cxy, this->core->lid, excPC, excCode, cycle );
[432]511#endif
[406]512
[16]513}  // end hal_do_exception()
514
515
Note: See TracBrowser for help on using the repository browser.