source: trunk/hal/tsar_mips32/core/hal_exception.c @ 440

Last change on this file since 440 was 440, checked in by alain, 4 years ago

1/ Fix a bug in the Multithreaded "sort" applicationr:
The pthread_create() arguments must be declared as global variables.
2/ The exit syscall can be called by any thread of a process..

File size: 17.4 KB
Line 
1/*
2 * hal_exception.c - implementation of exception handler for TSAR-MIPS32.
3 *
4 * Author   Alain Greiner (2016, 2017)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include <hal_types.h>
25#include <hal_irqmask.h>
26#include <hal_special.h>
27#include <hal_exception.h>
28#include <thread.h>
29#include <printk.h>
30#include <chdev.h>
31#include <vmm.h>
32#include <errno.h>
33#include <scheduler.h>
34#include <core.h>
35#include <syscalls.h>
36#include <shared_syscalls.h>
37#include <remote_spinlock.h>
38#include <hal_kentry.h>
39
40
41//////////////////////////////////////////////////////////////////////////////////////////
42//  Extern global variables
43//////////////////////////////////////////////////////////////////////////////////////////
44
45extern   chdev_directory_t    chdev_dir;  // allocated in the kernel_init.c file.
46
47//////////////////////////////////////////////////////////////////////////////////////////
48// This enum defines the global exception types after analysis by the exception handler.
49//////////////////////////////////////////////////////////////////////////////////////////
50
51typedef enum
52{
53    EXCP_NON_FATAL,
54    EXCP_USER_ERROR,
55    EXCP_KERNEL_PANIC,
56}
57exception_handling_type_t;
58
59//////////////////////////////////////////////////////////////////////////////////////////
60// This enum defines the mask values for an MMU exception code reported by the mips32.
61//////////////////////////////////////////////////////////////////////////////////////////
62
63typedef enum
64{
65    MMU_WRITE_PT1_UNMAPPED        = 0x0001,
66    MMU_WRITE_PT2_UNMAPPED        = 0x0002,
67    MMU_WRITE_PRIVILEGE_VIOLATION = 0x0004,
68    MMU_WRITE_ACCESS_VIOLATION    = 0x0008,
69    MMU_WRITE_UNDEFINED_XTN       = 0x0020,
70    MMU_WRITE_PT1_ILLEGAL_ACCESS  = 0x0040,
71    MMU_WRITE_PT2_ILLEGAL_ACCESS  = 0x0080,
72    MMU_WRITE_DATA_ILLEGAL_ACCESS = 0x0100,
73
74    MMU_READ_PT1_UNMAPPED         = 0x1001,
75    MMU_READ_PT2_UNMAPPED         = 0x1002,
76    MMU_READ_PRIVILEGE_VIOLATION  = 0x1004,
77    MMU_READ_EXEC_VIOLATION       = 0x1010,
78    MMU_READ_UNDEFINED_XTN        = 0x1020,
79    MMU_READ_PT1_ILLEGAL_ACCESS   = 0x1040,
80    MMU_READ_PT2_ILLEGAL_ACCESS   = 0x1080,
81    MMU_READ_DATA_ILLEGAL_ACCESS  = 0x1100,
82}
83mmu_exception_subtype_t;
84
85//////////////////////////////////////////////////////////////////////////////////////////
86// This enum defines the relevant values for XCODE field in mips32 CP0_CR register.
87//////////////////////////////////////////////////////////////////////////////////////////
88
89typedef enum
90{
91    XCODE_ADEL = 0x4,        // Illegal address for data load
92    XCODE_ADES = 0x5,        // Illegal address for data store
93    XCODE_IBE  = 0x6,        // Instruction MMU exception       (can be NON-FATAL)
94    XCODE_DBE  = 0x7,        // Data MMU exception              (can be NON-FATAL)
95    XCODE_RI   = 0xA,        // Reserved instruction exception
96    XCODE_CPU  = 0xB,        // Coprocessor unusable exception  (can be NON-FATAl)
97    XCODE_OVR  = 0xC,        // Arithmetic Overflow exception
98}
99xcode_values_t;
100
101/////////////////////////////////////////////
102char * hal_mmu_exception_str( uint32_t code )
103{
104    if     ( code == MMU_WRITE_PT1_UNMAPPED        ) return "WRITE_PT1_UNMAPPED";
105    else if( code == MMU_WRITE_PT2_UNMAPPED        ) return "WRITE_PT2_UNMAPPED";
106    else if( code == MMU_WRITE_PRIVILEGE_VIOLATION ) return "WRITE_PRIVILEGE_VIOLATION";
107    else if( code == MMU_WRITE_ACCESS_VIOLATION    ) return "WRITE_ACCESS_VIOLATION";
108    else if( code == MMU_WRITE_UNDEFINED_XTN       ) return "WRITE_UNDEFINED_XTN";
109    else if( code == MMU_WRITE_PT1_ILLEGAL_ACCESS  ) return "WRITE_PT1_ILLEGAL_ACCESS";
110    else if( code == MMU_WRITE_PT2_ILLEGAL_ACCESS  ) return "WRITE_PT2_ILLEGAL_ACCESS";
111    else if( code == MMU_WRITE_DATA_ILLEGAL_ACCESS ) return "WRITE_DATA_ILLEGAL_ACCESS";
112    else if( code == MMU_READ_PT1_UNMAPPED         ) return "READ_PT1_UNMAPPED";
113    else if( code == MMU_READ_PT2_UNMAPPED         ) return "READ_PT2_UNMAPPED";
114    else if( code == MMU_READ_PRIVILEGE_VIOLATION  ) return "READ_PRIVILEGE_VIOLATION";
115    else if( code == MMU_READ_EXEC_VIOLATION       ) return "READ_EXEC_VIOLATION";
116    else if( code == MMU_READ_UNDEFINED_XTN        ) return "READ_UNDEFINED_XTN";
117    else if( code == MMU_READ_PT1_ILLEGAL_ACCESS   ) return "READ_PT1_ILLEGAL_ACCESS";
118    else if( code == MMU_READ_PT2_ILLEGAL_ACCESS   ) return "READ_PT2_ILLEGAL_ACCESS";
119    else if( code == MMU_READ_DATA_ILLEGAL_ACCESS  ) return "READ_DATA_ILLEGAL_ACCESS";
120    else                                             return "undefined";
121}
122
123//////////////////////////////////////////////////////////////////////////////////////////
124// This function is called when a FPU Coprocessor Unavailable exception has been
125// detected for the calling thread.
126// It enables the FPU, It saves the current FPU context in the current owner thread
127// descriptor if required, and restore the FPU context from the calling thread descriptor.
128//////////////////////////////////////////////////////////////////////////////////////////
129// @ this     : pointer on faulty thread descriptor.
130// @ return always EXCP_NON_FATAL
131//////////////////////////////////////////////////////////////////////////////////////////
132error_t hal_fpu_exception( thread_t * this )
133{
134        core_t   * core = this->core; 
135
136    // enable FPU 
137        hal_fpu_enable();
138
139    // save FPU context in current owner thread if required
140        if( core->fpu_owner != NULL )
141    {
142        if( core->fpu_owner != this )
143            {
144                    hal_fpu_context_save( XPTR( local_cxy , core->fpu_owner ) );
145        }
146        }
147
148    // attach the FPU to the requesting thread
149        hal_fpu_context_restore( this->fpu_context );
150        core->fpu_owner = this;
151
152        return EXCP_NON_FATAL;
153
154}  // end hal_fpu_exception()
155
156//////////////////////////////////////////////////////////////////////////////////////////
157// This function is called when an MMU exception has been detected (IBE / DBE).
158// It get the relevant exception arguments from the MMU.
159// It signal a fatal error in case of illegal access. In case of page unmapped
160// it checks that the faulty address belongs to a registered vseg. It update the local
161// vseg list from the reference cluster if required, and signal a fatal user error
162// in case of illegal virtual address. Finally, it updates the local page table from the
163// reference cluster.
164//////////////////////////////////////////////////////////////////////////////////////////
165// @ this     : pointer on faulty thread descriptor.
166// @ excPC    :
167// @ is_ins   : IBE if true / DBE if false.
168// @ return EXCP_NON_FATAL / EXCP_USER_ERROR / EXCP_KERNEL_PANIC
169//////////////////////////////////////////////////////////////////////////////////////////
170error_t hal_mmu_exception( thread_t * this,
171                           uint32_t   excPC,
172                           bool_t     is_ins ) 
173{
174        process_t      * process;
175    error_t          error;
176
177    uint32_t         mmu_ins_excp_code;
178    uint32_t         mmu_ins_bad_vaddr;
179    uint32_t         mmu_dat_excp_code;
180    uint32_t         mmu_dat_bad_vaddr;
181
182    uint32_t         bad_vaddr;
183    uint32_t         excp_code;
184       
185    process = this->process;
186
187    // get relevant values from MMU
188        hal_get_mmu_excp( &mmu_ins_excp_code,
189                          &mmu_ins_bad_vaddr,
190                          &mmu_dat_excp_code, 
191                          &mmu_dat_bad_vaddr );
192
193    // get exception code and faulty vaddr, depending on IBE/DBE
194    if( is_ins )
195    {
196        excp_code = mmu_ins_excp_code;
197        bad_vaddr = mmu_ins_bad_vaddr;
198    }
199    else 
200    {
201        excp_code = mmu_dat_excp_code;
202        bad_vaddr = mmu_dat_bad_vaddr;
203    }
204
205#if DEBUG_HAL_EXCEPTIONS
206uint32_t cycle = (uint32_t)hal_get_cycles();
207if( DEBUG_HAL_EXCEPTIONS < cycle )
208printk("\n[DBG] %s : thread %x enter / is_ins %d / %s / vaddr %x / cycle %d\n",
209__FUNCTION__, this, is_ins, hal_mmu_exception_str(excp_code), bad_vaddr, cycle );
210#endif
211
212   // analyse exception code
213    switch( excp_code )
214    {
215        case MMU_WRITE_PT1_UNMAPPED:      // non fatal
216        case MMU_WRITE_PT2_UNMAPPED:
217        case MMU_READ_PT1_UNMAPPED:
218        case MMU_READ_PT2_UNMAPPED:
219        {
220            // try to map the unmapped PTE
221            error = vmm_handle_page_fault( process, 
222                                           bad_vaddr >> CONFIG_PPM_PAGE_SHIFT,  // vpn
223                                           false );                             // not a COW
224            if( error )   
225            {
226                printk("\n[ERROR] in %s for thread %x : cannot map vaddr = %x\n",
227                __FUNCTION__ , this->trdid , bad_vaddr );
228
229                        return EXCP_USER_ERROR;
230            } 
231            else            // page fault successfull
232            {
233
234#if DEBUG_HAL_EXCEPTIONS
235cycle = (uint32_t)hal_get_cycles();
236if( DEBUG_HAL_EXCEPTIONS < cycle )
237printk("\n[DBG] %s : thread %x exit / page-fault handled for vaddr = %x\n",
238__FUNCTION__ , this , bad_vaddr );
239#endif
240 
241                return EXCP_NON_FATAL;
242            }
243        }
244        case MMU_WRITE_PRIVILEGE_VIOLATION:  // illegal access user error
245        case MMU_READ_PRIVILEGE_VIOLATION:
246        {
247            printk("\n[ERROR] in %s for thread %x : illegal user access to vaddr = %x\n",
248            __FUNCTION__ , this->trdid , bad_vaddr );
249
250            return EXCP_USER_ERROR;
251        }
252        case MMU_WRITE_ACCESS_VIOLATION:     // user error, or Copy-on-Write
253        {
254            // access page table to get GPT_COW flag
255            bool_t cow = hal_gpt_pte_is_cow( &(process->vmm.gpt),
256                                             bad_vaddr >> CONFIG_PPM_PAGE_SHIFT ); 
257
258            if( cow )                        // Copy-on-Write
259            {
260                // try to allocate and copy the page
261                error = vmm_handle_page_fault( process,
262                                               bad_vaddr >> CONFIG_PPM_PAGE_SHIFT,  // vpn
263                                               true );                              // COW
264                if( error )
265                {
266                    printk("\n[ERROR] in %s for thread %x : cannot cow vaddr = %x\n",
267                    __FUNCTION__ , this->trdid , bad_vaddr );
268
269                            return EXCP_USER_ERROR;
270                }
271                else         // Copy on write successfull
272                {
273
274#if DEBUG_HAL_EXCEPTIONS
275cycle = (uint32_t)hal_get_cycles();
276if( DEBUG_HAL_EXCEPTIONS < cycle )
277printk("\n[DBG] %s : thread %x exit / copy-on-write handled for vaddr = %x\n",
278__FUNCTION__ , this , bad_vaddr );
279#endif
280
281                    return EXCP_NON_FATAL;
282                } 
283            }
284            else                             // non writable user error
285            {
286                printk("\n[ERROR] in %s for thread %x : non-writable vaddr = %x\n",
287                __FUNCTION__ , this->trdid , bad_vaddr );
288
289                return EXCP_USER_ERROR;
290            }
291        }
292        case MMU_READ_EXEC_VIOLATION:        // user error
293        {
294            printk("\n[ERROR] in %s for thread %x : read to non-executable vaddr = %x\n",
295            __FUNCTION__ , this->trdid , bad_vaddr );
296
297            return EXCP_USER_ERROR;
298        }
299        default:                             // this is a kernel error => panic   
300        {
301            assert( false , __FUNCTION__ ,
302            "thread %x / core[%x,%d] / epc %x / vaddr %x / cycle %d\n",
303            this, local_cxy, this->core->lid, excPC, bad_vaddr, (uint32_t)hal_get_cycles() );
304
305            return EXCP_KERNEL_PANIC;
306        }
307    } 
308} // end hal_mmu_exception()
309
310//////////////////////////////////////////////////////////////////////////////////////////
311// This static function prints on the kernel terminal the saved context (core registers)
312// and the thread state of a faulty thread.
313//////////////////////////////////////////////////////////////////////////////////////////
314// @ this     : pointer on faulty thread descriptor.
315// @ uzone    : pointer on register array.
316// @ error    : EXCP_USER_ERROR or EXCP_KERNEL_PANIC
317//////////////////////////////////////////////////////////////////////////////////////////
318static void hal_exception_dump( thread_t * this,
319                                reg_t    * uzone,
320                                error_t    error )
321{
322    uint32_t    save_sr;
323    core_t    * core    = this->core;
324    process_t * process = this->process;
325
326    // get pointers on TXT0 chdev
327    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
328    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
329    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
330
331    // get extended pointer on remote TXT0 chdev lock
332    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
333
334    // get TXT0 lock in busy waiting mode
335    remote_spinlock_lock_busy( lock_xp , &save_sr );
336
337    if( error == EXCP_USER_ERROR )
338    {
339        nolock_printk("\n=== USER ERROR / trdid %x / pid %x / core[%x,%d] / cycle %d ===\n",
340        this->trdid, process->pid, local_cxy, core->lid , (uint32_t)hal_get_cycles() );
341    }
342    else
343    {
344        nolock_printk("\n=== KERNEL PANIC / trdid %x / pid %x / core[%x,%d] / cycle %d ===\n",
345        this->trdid, process->pid, local_cxy, core->lid , (uint32_t)hal_get_cycles() );
346    }
347
348        nolock_printk("local locks = %d / remote locks = %d / blocked_vector = %X\n\n",
349    this->local_locks, this->remote_locks, this->blocked );
350
351    nolock_printk("c0_cr   %X  c0_epc  %X  c0_sr  %X  c0_th  %X\n",
352    uzone[UZ_CR], uzone[UZ_EPC], uzone[UZ_SR], uzone[UZ_TH] );
353
354    nolock_printk("c2_mode %X  c2_ptpr %X\n",
355    uzone[UZ_MODE], uzone[UZ_PTPR] );
356
357    nolock_printk("at_01   %X  v0_2    %X  v1_3   %X  a0_4   %X  a1_5   %X\n",
358        uzone[UZ_AT], uzone[UZ_V0], uzone[UZ_V1], uzone[UZ_A0], uzone[UZ_A1] );
359
360    nolock_printk("a2_6    %X  a3_7    %X  t0_8   %X  t1_9   %X  t2_10  %X\n",
361        uzone[UZ_A2], uzone[UZ_A3], uzone[UZ_T0], uzone[UZ_T1], uzone[UZ_T2] );
362 
363    nolock_printk("t3_11   %X  t4_12   %X  t5_13  %X  t6_14  %X  t7_15  %X\n",
364        uzone[UZ_T3], uzone[UZ_T4], uzone[UZ_T5], uzone[UZ_T6], uzone[UZ_T7] );
365
366    nolock_printk("s0_16   %X  s1_17   %X  s2_18  %X  s3_19  %X  s4_20  %X\n",
367        uzone[UZ_S0], uzone[UZ_S1], uzone[UZ_S2], uzone[UZ_S3], uzone[UZ_S4] );
368 
369    nolock_printk("s5_21   %X  s6_22   %X  s7_23  %X  s8_24  %X  ra_25  %X\n",
370        uzone[UZ_S5], uzone[UZ_S6], uzone[UZ_S7], uzone[UZ_T8], uzone[UZ_T9] );
371
372    nolock_printk("gp_28   %X  sp_29   %X  S8_30  %X  ra_31  %X\n",
373        uzone[UZ_GP], uzone[UZ_SP], uzone[UZ_S8], uzone[UZ_RA] );
374
375    // release the lock
376    remote_spinlock_unlock_busy( lock_xp , save_sr );
377
378}  // end hal_exception_dump()
379
380///////////////////////
381void hal_do_exception()
382{
383    uint32_t   * uzone;
384    thread_t   * this;
385        error_t      error;
386        uint32_t     excCode;                  // 4 bits XCODE from CP0_CR
387        uint32_t     excPC;                    // fauty instruction address
388
389    // get pointer on faulty thread uzone
390    this  = CURRENT_THREAD;
391    uzone = (uint32_t *)CURRENT_THREAD->uzone_current;
392
393    // get XCODE and EPC from UZONE
394        excCode        = (uzone[UZ_CR] >> 2) & 0xF;
395    excPC          = uzone[UZ_EPC];
396
397#if DEBUG_HAL_EXCEPTIONS
398uint32_t cycle = (uint32_t)hal_get_cycles();
399if( DEBUG_HAL_EXCEPTIONS < cycle )
400printk("\n[DBG] %s : thread %x enter / core[%x,%d] / pid %x / epc %x / xcode %x / cycle %d\n",
401__FUNCTION__, this, local_cxy, this->core->lid, this->process->pid, excPC, excCode, cycle );
402#endif
403
404        switch(excCode)
405        {
406        case XCODE_DBE:     // can be non fatal
407        {
408                    error = hal_mmu_exception( this , excPC , false );  // data MMU exception
409            break;
410        }
411            case XCODE_IBE:     // can be non fatal
412        {
413                    error = hal_mmu_exception( this , excPC , true );   // ins MMU exception
414                    break;
415        }
416            case XCODE_CPU:    // can be non fatal
417        {
418            if( ((uzone[UZ_CR] >> 28) & 0x3) == 1 )     // unavailable FPU
419            {
420                error = hal_fpu_exception( this );
421            }
422            else
423            {
424                        error = EXCP_USER_ERROR;
425            }
426                    break;
427        }
428        case XCODE_OVR:    // user fatal error
429        case XCODE_RI:     // user fatal error
430        case XCODE_ADEL:   // user fatal error
431        case XCODE_ADES:   // user fatal error
432        {
433                    error = EXCP_USER_ERROR;
434                break;
435        }
436        default:
437        {
438                    error = EXCP_KERNEL_PANIC;
439        }
440        }
441   
442    // analyse error code
443        if( error == EXCP_USER_ERROR )          //  user error => kill user process
444        {
445        hal_exception_dump( this , uzone , error );
446
447        sys_exit( EXIT_FAILURE );
448        }
449    else if( error == EXCP_KERNEL_PANIC )   // kernel error => kernel panic
450    {
451        hal_exception_dump( this , uzone , error );
452
453        assert( false , __FUNCTION__ , "thread %x in process %x on core [%x,%d]",
454        this , this->process->pid , local_cxy , this->core->lid );
455    }
456
457#if DEBUG_HAL_EXCEPTIONS
458cycle = (uint32_t)hal_get_cycles();
459if( DEBUG_HAL_EXCEPTIONS < cycle )
460printk("\n[DBG] %s : thread %x exit / core[%x,%d] / pid %x / epc %x / xcode %x / cycle %d\n",
461__FUNCTION__, this, local_cxy, this->core->lid, this->process->pid, excPC, excCode, cycle );
462#endif
463
464}  // end hal_do_exception()
465
466
Note: See TracBrowser for help on using the repository browser.