/* * soclib_dma.c - soclib Multi Channels DMA driver implementation * * Author Alain Greiner (2017,2018,2019,2020) * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include /////////////////////////////////////// void soclib_dma_init( chdev_t * chdev ) { // get hardware device cluster and local pointer cxy_t dma_cxy = GET_CXY( chdev->base ); uint32_t * dma_ptr = (uint32_t *)GET_PTR( chdev->base ); // set driver specific fields in chdev descriptor chdev->cmd = &soclib_dma_cmd; chdev->isr = &soclib_dma_isr; // disable interrupts hal_remote_s32( XPTR( dma_cxy , dma_ptr + DMA_IRQ_DISABLED ) , 1 ); } // soclib_dma_init() ////////////////////////////////////////////////////////////////// void __attribute__ ((noinline)) soclib_dma_cmd( xptr_t thread_xp ) { bool_t sync; xptr_t dev_xp; // extended pointer on DMA devive xptr_t dst_xp; // extended pointer on destination buffer xptr_t src_xp; // extended pointer on source buffer uint32_t size; // buffer size uint32_t status; // DMA status // get client thread cluster and local pointer cxy_t client_cxy = GET_CXY( thread_xp ); thread_t * client_ptr = (thread_t *)GET_PTR( thread_xp ); #if (DEBUG_HAL_IOC_RX || DEBUG_HAL_IOC_TX) uint32_t cycle = (uint32_t)hal_get_cycles(); thread_t * this = CURRENT_THREAD; process_t * process = hal_remote_lpt( XPTR( th_cxy , &th_ptr->process ) ); pid_t client_pid = hal_remote_l32( XPTR( th_cxy , &process->pid ) ); trdid_t client_trdid = hal_remote_l32( XPTR( th_cxy , &th_ptr->trdid ) ); #endif // TODO both the client and the server threads are allways local, // we could replace all these remote accesses by local accesses !!! [AG] // get command arguments and extended pointer on DMA device descriptor sync = hal_remote_l32( XPTR( client_cxy , &client_ptr->dma_cmd.sync ) ); dev_xp = (xptr_t)hal_remote_l64( XPTR( client_cxy , &client_ptr->dma_cmd.dev_xp ) ); dst_xp = (xptr_t)hal_remote_l64( XPTR( client_cxy , &client_ptr->dma_cmd.dst_xp ) ); src_xp = (xptr_t)hal_remote_l64( XPTR( client_cxy , &client_ptr->dma_cmd.src_xp ) ); size = hal_remote_l32( XPTR( client_cxy , &client_ptr->dma_cmd.size ) ); // get DMA device cluster and local pointer cxy_t dev_cxy = GET_CXY( dev_xp ); chdev_t * dev_ptr = (chdev_t *)GET_PTR( dev_xp ); // get pointers on DMA peripheral xptr_t dma_xp = hal_remote_l32( XPTR( dev_cxy , &dev_ptr->base ) ); cxy_t dma_cxy = GET_CXY( dma_xp ); uint32_t * dma_ptr = GET_PTR( dma_xp ); // get DMA channel index and channel base address uint32_t * base = dma_ptr + DMA_SPAN * dev_ptr->channel; // split dst and src buffers addresses in two 32 bits words uint32_t dst_lsb = (uint32_t)(dst_xp); uint32_t dst_msb = (uint32_t)(dst_xp>>32); uint32_t src_lsb = (uint32_t)(src_xp); uint32_t src_msb = (uint32_t)(src_xp>>32); // set SOCLIB_DMA registers and launch tranfer operation hal_remote_s32( XPTR( dma_cxy , base + DMA_SRC ) , src_lsb ); hal_remote_s32( XPTR( dma_cxy , base + DMA_SRC_EXT ) , src_msb ); hal_remote_s32( XPTR( dma_cxy , base + DMA_DST ) , dst_lsb ); hal_remote_s32( XPTR( dma_cxy , base + DMA_DST_EXT ) , dst_msb ); hal_remote_s32( XPTR( dma_cxy , base + DMA_LEN_STS ) , size ); #if DEBUG_HAL_DMA if( DEBUG_HAL_DMA < cycle ) printk("\n[%s] thread[%x,%x] launched DMA for client thread[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, client_pid, client_trdid, cycle ); #endif // waiting policy depends on the command type // - for an asynchronous command, this function is called by the server thread // => block and deschedule after launching the transfer. // The operation status is reported in the command by the ISR, and the // server thread is re-activated by the ISR. // - for a synchronous command, this function is called by the client thread // => mask the DMA_IRQ and poll the DMA status register until transfer completion, // and reports status in the command when the transfer is completed. if( sync ) // client thread poll status until completion { while( 1 ) { status = hal_remote_l32( XPTR( dma_cxy , base + DMA_LEN_STS ) ); if( (status == DMA_SUCCESS) || (status == DMA_IDLE) ) { // set operation status in command hal_remote_s32( XPTR( client_cxy , &client_ptr->dma_cmd.error ) , 0 ); #if DEBUG_HAL_DMA cycle = (uint32_t)hal_get_cycles(); if( DEBUG_HAL_DMA < cycle ) printk("\n[%s] thread[%x,%x] exit after SYNC success / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, cycle ); #endif // exit while break; } else if( (status == DMA_ERROR_READ) || (status == DMA_ERROR_WRITE) ) { // set operation status in command hal_remote_s32( XPTR( client_cxy , &client_ptr->dma_cmd.error ) , 1 ); #if DEBUG_HAL_DMA cycle = (uint32_t)hal_get_cycles(); if( DEBUG_HAL_DMA < cycle ) printk("\n[%s] thread[%x,%x] exit after SYNC failure / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, cycle ); #endif // exit while break; } } } else // server thread block and deschedule { // server thread blocks on ISR thread_block( XPTR( local_cxy , CURRENT_THREAD ) , THREAD_BLOCKED_ISR ); // enable DMA interrupts hal_remote_s32( XPTR( dma_cxy , dma_ptr + DMA_IRQ_DISABLED ) , 0 ); // server thread deschedules sched_yield("blocked on ISR"); // disable DMA interrupts hal_remote_s32( XPTR( dma_cxy , dma_ptr + DMA_IRQ_DISABLED ) , 1 ); #if DEBUG_HAL_DMA cycle = (uint32_t)hal_get_cycles(); if( DEBUG_HAL_DMA < cycle ) printk("\n[%s] thread[%x,%x] exit after ASYNC / client thread[%x,%x] / cycle %d\n", __FUNCTION__ , this->process->pid, this->trdid, client_pid, client_trdid, cycle ); #endif } } // soclib_dma_cmd() ///////////////////////////////////////////////////////////////// void __attribute__ ((noinline)) soclib_dma_isr( chdev_t * chdev ) { // get extended pointer on server thread xptr_t server_xp = XPTR( local_cxy , &chdev->server ); // get extended pointer on client thread xptr_t root = XPTR( local_cxy , &chdev->wait_root ); xptr_t client_xp = XLIST_FIRST( root , thread_t , wait_list ); // get client thread cluster and local pointer cxy_t client_cxy = GET_CXY( client_xp ); thread_t * client_ptr = (thread_t *)GET_PTR( client_xp ); // get SOCLIB_DMA peripheral cluster and local pointer cxy_t dma_cxy = GET_CXY( chdev->base ); uint32_t * dma_ptr = (uint32_t *)GET_PTR( chdev->base ); // build DMA channel base address uint32_t * base = dma_ptr + (DMA_SPAN * chdev->channel); // get DMA status register uint32_t status = hal_remote_l32( XPTR( dma_cxy , base + DMA_LEN_STS ) ); // acknowledge IRQ hal_remote_s32( XPTR( dma_cxy , base + DMA_RESET ) , 0 ); // set operation status in command error_t error = ( status != DMA_SUCCESS ); hal_remote_s32( XPTR( client_cxy , &client_ptr->dma_cmd.error ) , error ); // unblock server thread thread_unblock( server_xp , THREAD_BLOCKED_ISR ); } // soclib_dma_isr()