/////////////////////////////////////////////////////////////////////////////////// // File : sdc_driver.c // Date : 31/08/2012 // Author : cesar fuguet // Copyright (c) UPMC-LIP6 /////////////////////////////////////////////////////////////////////////////////// // #include #include //#include //#include #include #include #include #include #include #define SYSCLK_FREQ (RESET_SYSTEM_CLK * 1000) #define SDCARD_RESET_ITER_MAX 4 /////////////////////////////////////////////////////////////////////////////// // Global variables /////////////////////////////////////////////////////////////////////////////// __attribute__((section(".kdata"))) static struct sdcard_dev sdcard; __attribute__((section(".kdata"))) static struct spi_dev* spi; /////////////////////////////////////////////////////////////////////////////// // This function enables SD Card select signal /////////////////////////////////////////////////////////////////////////////// static void _sdc_enable() { spi_ss_assert(sdcard.spi, sdcard.slave_id); } /////////////////////////////////////////////////////////////////////////////// // This function disables SD Card select signal /////////////////////////////////////////////////////////////////////////////// static void _sdc_disable() { spi_ss_deassert(sdcard.spi, sdcard.slave_id); } /////////////////////////////////////////////////////////////////////////////// // This function writes on the SPI tx register to generate SD card clock ticks // - tick_count: number of ticks to generate (1 tick -> 8 clocks) /////////////////////////////////////////////////////////////////////////////// static void _sdc_gen_tick(unsigned int tick_count) { register int i = 0; while(i++ < tick_count) spi_put_tx(sdcard.spi, 0xFF, 0); } /////////////////////////////////////////////////////////////////////////////// // This function changes the SD card access pointer position in terms of // blocks // - lba: number of logical block to move the pointer /////////////////////////////////////////////////////////////////////////////// void _sdc_lseek(unsigned int lba) { sdcard.access_pointer = sdcard.block_length * lba; } /////////////////////////////////////////////////////////////////////////////// // This function gets a byte from the SD card /////////////////////////////////////////////////////////////////////////////// static unsigned char _sdc_receive_char() { _sdc_gen_tick(1); return spi_get_rx(sdcard.spi, 0); } /////////////////////////////////////////////////////////////////////////////// // This function returns when a valid response from the SD card is received or // a timeout has been triggered // Returns the SD card response value /////////////////////////////////////////////////////////////////////////////// static unsigned char _sdc_wait_response() { unsigned char sdcard_rsp; register int iter; iter = 0; sdcard_rsp = _sdc_receive_char(); while ( (iter < SDCARD_COMMAND_TIMEOUT) && !SDCARD_CHECK_R1_VALID(sdcard_rsp) ) { sdcard_rsp = _sdc_receive_char(); iter++; } return sdcard_rsp; } /////////////////////////////////////////////////////////////////////////////// // This function returns when a data block from the SD card is received (data // block start marker received). // It must be called after a read command /////////////////////////////////////////////////////////////////////////////// static void _sdc_wait_data_block() { while (_sdc_receive_char() != 0xFE); } /////////////////////////////////////////////////////////////////////////////// // This function sends a command to the SD card // - index: CMD index // - app: type of command // - args: CMD arguments vector // - crc7: CRC (7 bits) to send /////////////////////////////////////////////////////////////////////////////// static int _sdc_send_command ( int index, int app , void * args , unsigned crc7 ) { unsigned char sdcard_rsp; unsigned char * _args; _sdc_gen_tick(5); if (app == SDCARD_ACMD) { spi_put_tx(sdcard.spi, 0x40 | 55 , 0 );// CMD and START bit spi_put_tx(sdcard.spi, 0x00 , 0 );// Argument[0] spi_put_tx(sdcard.spi, 0x00 , 0 );// Argument[1] spi_put_tx(sdcard.spi, 0x00 , 0 );// Argument[2] spi_put_tx(sdcard.spi, 0x00 , 0 );// Argument[3] spi_put_tx(sdcard.spi, 0x01 | (crc7 << 1), 0 );// END bit sdcard_rsp = _sdc_wait_response(); if (SDCARD_CHECK_R1_ERROR(sdcard_rsp)) { return sdcard_rsp; } } _args = (unsigned char *) args; _sdc_gen_tick(1); spi_put_tx(sdcard.spi, 0x40 | index , 0 ); spi_put_tx(sdcard.spi, _args[0] , 0 ); spi_put_tx(sdcard.spi, _args[1] , 0 ); spi_put_tx(sdcard.spi, _args[2] , 0 ); spi_put_tx(sdcard.spi, _args[3] , 0 ); spi_put_tx(sdcard.spi, 0x01 | (crc7 << 1), 0 ); return _sdc_wait_response(); } /////////////////////////////////////////////////////////////////////////////// // This function initializes the SD card (reset procedure) // - channel: channel index (only channel 0 is supported) // Returns 0 if success, other value if failure /////////////////////////////////////////////////////////////////////////////// static int _sdc_open( unsigned int channel ) { unsigned char args[4]; unsigned char sdcard_rsp; unsigned int iter, ersp; sdcard.spi = spi; sdcard.slave_id = channel; // supply SD card ramp up time (min 74 cycles) _sdc_gen_tick(10); // Assert slave select signal // Send CMD0 (Reset Command) // Deassert slave select signal _sdc_enable(); args[0] = 0; args[1] = 0; args[2] = 0; args[3] = 0; sdcard_rsp = _sdc_send_command(0, SDCARD_CMD, args, 0x4A); if ( sdcard_rsp != 0x01 ) { printk("[SDC ERROR] card CMD0 failed\n"); return sdcard_rsp; } _sdc_disable(); // send CMD8. If card is pre-v2, It will reply with illegal command. // Otherwise we announce sdhc support. _sdc_enable(); args[0] = 0; args[1] = 0; args[2] = 0x01; args[3] = 0x01; sdcard_rsp = _sdc_send_command(8, SDCARD_CMD, args, 0x63); if (!SDCARD_CHECK_R1_VALID(sdcard_rsp)) { printk("[SDC ERROR] card CMD8 failed\n"); return sdcard_rsp; } if (!SDCARD_CHECK_R1_ERROR(sdcard_rsp)) { // no error, command accepted. get whole reply ersp = _sdc_receive_char(); ersp = (ersp << 8) | _sdc_receive_char(); ersp = (ersp << 8) | _sdc_receive_char(); ersp = (ersp << 8) | _sdc_receive_char(); if ((ersp & 0xffff) != 0x0101) { // voltage mismatch printk("[SDC ERROR] card CMD8 mismatch : ersp = %x\n"); return sdcard_rsp; } printk("[SDC WARNING] v2 or later "); sdcard.sdhc = 1; } else if ((sdcard_rsp & SDCARD_R1_ILLEGAL_CMD) == 0) { // other error printk("[SDC ERROR] card CMD8 error\n"); return sdcard_rsp; } else { sdcard.sdhc = 0; } _sdc_disable(); // send CMD41, enabling the card _sdc_enable(); args[0] = sdcard.sdhc ? 0x40: 0; args[1] = 0; args[2] = 0; args[3] = 0; iter = 0; while( iter++ < SDCARD_COMMAND_TIMEOUT ) { sdcard_rsp = _sdc_send_command(41, SDCARD_ACMD, args, 0x00); if( sdcard_rsp == 0x01 ) { continue; } break; } _sdc_disable(); if (sdcard_rsp) { printk("[SDC ERROR] ACMD41 failed\n"); return sdcard_rsp; } if (sdcard.sdhc != 0) { // get the card capacity to see if it's really HC _sdc_enable(); args[0] = sdcard.sdhc ? 0x40: 0; args[1] = 0; args[2] = 0; args[3] = 0; sdcard_rsp = _sdc_send_command(58, SDCARD_CMD, args, 0x00); if (sdcard_rsp) { printk("[SDC ERROR] CMD58 failed\n"); return sdcard_rsp; } ersp = _sdc_receive_char(); ersp = (ersp << 8) | _sdc_receive_char(); ersp = (ersp << 8) | _sdc_receive_char(); ersp = (ersp << 8) | _sdc_receive_char(); if (ersp & 0x40000000) { printk(" SDHC "); } else { sdcard.sdhc = 0; } _sdc_disable(); } printk("card detected\n"); return 0; } /////////////////////////////////////////////////////////////////////////////// // This function sets the block size in the SD card. // - len: block size in bytes (only 512 bytes supported) // Returns 0 if success, other value if failure /////////////////////////////////////////////////////////////////////////////// static unsigned int _sdc_set_block_size(unsigned int len) { unsigned char args[4]; unsigned char sdcard_rsp; register int i; // For now, supported block size is 512 bytes if (len != 512) return 1; // When using high capacity SDCARD, the block_length is not a number of bytes // but a number of blocks (transfer unit) if (sdcard.sdhc) { sdcard.block_length = len / 512; return 0; } for (i = 0; i < 4; i++) { args[i] = (len >> (32 - (i+1)*8)) & 0xFF; } _sdc_enable(); sdcard_rsp = _sdc_send_command(16, SDCARD_CMD, args, 0x00); if ( SDCARD_CHECK_R1_ERROR(sdcard_rsp) ) { _sdc_disable(); return sdcard_rsp; } _sdc_disable(); sdcard.block_length = len; return 0; } ///////////////////////////////////////////////////////////////////////////////// // Extern functions ///////////////////////////////////////////////////////////////////////////////// //////////////////////// void soclib_sdc_init( chdev_t* chdev ) { spi = (struct spi_dev*)SEG_IOC_BASE; // initializing the SPI controller _spi_init ( spi , 200000 , /**< SPI_clk: 200 Khz */ SYSCLK_FREQ , /**< Sys_clk */ 8 , /**< Charlen: 8 */ SPI_TX_NEGEDGE, SPI_RX_POSEDGE ); // initializing the SD Card unsigned int iter = 0; unsigned char sdcard_rsp; unsigned int i; while(1) { printk("[SDC WARNING] Trying to initialize SD card...\n"); sdcard_rsp = _sdc_open( 0 ); // only channel 0 if (sdcard_rsp == 0) { printk("OK\n"); break; } printk("KO\n"); for (i = 0; i < 1000; i++); if (++iter >= SDCARD_RESET_ITER_MAX) { assert( false, __FUNCTION__, "\n[SDC ERROR] During SD card reset / card response = %x \n", sdcard_rsp); } } // set the block length of the SD Card sdcard_rsp = _sdc_set_block_size(512); if (sdcard_rsp) { assert( false, __FUNCTION__, "[SDC ERROR] During SD card block size initialization\n"); } // incrementing SDCARD clock frequency for normal function _spi_init ( spi , 10000000 , // SPI_clk 10 Mhz SYSCLK_FREQ , // Sys_clk -1 , // Charlen: 8 -1 , -1 ); printk("[SDC WARNING] Finish SD card initialization\n\r"); /* Initialize the chdev */ // get extended pointer on SOCLIB_BDV peripheral base address xptr_t sdc_xp = chdev->base; // set driver specific fields chdev->cmd = &soclib_sdc_cmd; chdev->isr = &soclib_sdc_isr; } // end soclib_sdc_init() ///////////////////////////////////////////////////// void __attribute__ ((noinline)) soclib_sdc_cmd( xptr_t th_xp ) { cxy_t th_cxy = GET_CXY( th_xp ); thread_t * th_ptr = GET_PTR( th_xp ); // get command arguments and extended pointer on IOC device uint32_t cmd_type = hal_remote_lw ( XPTR( th_cxy , &th_ptr->ioc_cmd.type ) ); unsigned int lba = hal_remote_lw ( XPTR( th_cxy , &th_ptr->ioc_cmd.lba ) ); xptr_t buf_xp = (xptr_t)hal_remote_lwd( XPTR( th_cxy , &th_ptr->ioc_cmd.buf_xp ) ); unsigned int count = hal_remote_lw ( XPTR( th_cxy , &th_ptr->ioc_cmd.count ) ); unsigned char args[4]; unsigned char sdcard_rsp; unsigned int i; unsigned int curr = lba; unsigned int last = lba + count; if ( cmd_type == IOC_SYNC_READ ) // read access { for ( ; curr < last ; curr++ ) { _sdc_lseek(curr); for (i = 0; i < 4; i++) { args[i] = (sdcard.access_pointer >> (32 - (i+1)*8)) & 0xFF; } _sdc_enable(); sdcard_rsp = _sdc_send_command(17, SDCARD_CMD, args, 0x00); if ( SDCARD_CHECK_R1_ERROR(sdcard_rsp) ) { _sdc_disable(); return sdcard_rsp; } _sdc_wait_data_block(); if (spi_get_data(sdcard.spi, buf_xp, 512 )) { _sdc_disable(); return 1; } // Get the CRC16 (comes at the end of the data block) _sdc_receive_char(); // first byte _sdc_receive_char(); // second byte _sdc_disable(); buf_xp += 512; } } else // write access { assert( false, __FUNCTION__, "[SDC ERROR] function _sdc_write() not iplemented yet\n"); } } // _end sdc_access() /////////////////////////////////////////////////////////////////////////////// // This ISR handles the IRQ generated by a SDC controler /////////////////////////////////////////////////////////////////////////////// void __attribute__ ((noinline)) soclib_sdc_isr( chdev_t * chdev ) { assert( false, __FUNCTION__, "\n[GIET ERROR] _sdc_isr() not implemented\n"); } // Local Variables: // tab-width: 4 // c-basic-offset: 4 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4