source: trunk/kernel/fs/fatfs.c @ 628

Last change on this file since 628 was 628, checked in by alain, 5 years ago

Introduce teh page_min / page_max mechanism in the fatfs_release_inode()
function, to avoid to scan all pages in FAT mapper.

File size: 106.0 KB
RevLine 
[1]1/*
2 * fatfs.c - FATFS file system API implementation.
3 *
[625]4 * Author    Alain Greiner (2016,2017,2018,2019)
[1]5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24
[457]25#include <hal_kernel_types.h>
[1]26#include <hal_special.h>
27#include <printk.h>
[401]28#include <thread.h>
[1]29#include <kmem.h>
30#include <ppm.h>
31#include <vfs.h>
[238]32#include <string.h>
[1]33#include <rpc.h>
34#include <mapper.h>
[23]35#include <cluster.h>
[1]36#include <dev_ioc.h>
37#include <fatfs.h>
38
[626]39#define LITTLE_ENDIAN  1
[50]40
[23]41//////////////////////////////////////////////////////////////////////////////////////////
42//          Extern  variables         
43//////////////////////////////////////////////////////////////////////////////////////////
[1]44
[602]45extern vfs_ctx_t     fs_context[FS_TYPES_NR];   // allocated in kernel_init.c file
[23]46
[1]47//////////////////////////////////////////////////////////////////////////////////////////
[602]48//              FATFS specific static functions
[1]49//////////////////////////////////////////////////////////////////////////////////////////
50
[188]51//////////////////////////////////////////////////////////////////////////////////////////
[238]52// These functions return the "offset" and "length" values of an
53// [offset,length] constant defined in the fatfs.h file.
54//////////////////////////////////////////////////////////////////////////////////////////
55
[568]56static inline int get_length( int offset __attribute__((unused)), int length ) { return length; }
[238]57
[568]58static inline int get_offset( int offset, int length __attribute__((unused)) ) { return offset; }
[238]59
60//////////////////////////////////////////////////////////////////////////////////////////
[440]61// This static function returns the LBA of the first sector of a FAT cluster.
[188]62// This function can be called by any thread running in any cluster.
63//////////////////////////////////////////////////////////////////////////////////////////
64// @ ctx          :     pointer on FATFS context.
65// @ cluster  : cluster index in FATFS.
66// @ return the lba value.
67//////////////////////////////////////////////////////////////////////////////////////////
68static inline uint32_t fatfs_lba_from_cluster( fatfs_ctx_t * ctx,
69                                               uint32_t      cluster )
[1]70{
[23]71    return (ctx->cluster_begin_lba + ((cluster - 2) << 3));
[1]72}
73
[246]74//////////////////////////////////////////////////////////////////////////////////////////
[626]75// This function return an integer record value (one, two, or four bytes) from a local
76// array of bytes, taking into account the global LITTLE_ENDIAN parameter:
77// if LITTLE_ENDIAN is true, the most significant byte has the highest address.
[238]78//////////////////////////////////////////////////////////////////////////////////////////
[626]79// @ offset        : first byte in array.
80// @ nbytes        : record length in bytes (1/2/4).
81// @ buffer        : local pointer on byte array.
[23]82// @ return the integer value in a 32 bits word.
[238]83//////////////////////////////////////////////////////////////////////////////////////////
84static uint32_t fatfs_get_record( uint32_t    offset,
[626]85                                  uint32_t    nbytes,
86                                  uint8_t   * buffer )
[23]87{
[626]88    uint32_t i;
89    uint32_t res = 0;
[1]90
[626]91    if ( LITTLE_ENDIAN )
[23]92    {
[626]93        for( i = nbytes ; i > 0 ; i-- ) res = (res<<8) | buffer[offset+i-1];
[23]94    }
[626]95    else 
[23]96    {
[626]97        for( i = 0 ; i < nbytes ; i++ ) res = (res<<8) | buffer[offset+i];
[23]98    }
99    return res;
100
[238]101}  // end fatfs_get_record()
[23]102
[238]103//////////////////////////////////////////////////////////////////////////////////////////
[626]104// This function return an integer record value (one, two, or four bytes) from a remote
105// array of bytes, taking into account the global LITTLE_ENDIAN parameter:
106// if LITTLE_ENDIAN is true, the most significant byte has the highest address.
[602]107//////////////////////////////////////////////////////////////////////////////////////////
[626]108// @ offset        : first byte in array.
109// @ nbytes        : record length in bytes (1/2/4).
110// @ buffer_xp     : extended pointer on byte array.
[602]111// @ return the integer value in a 32 bits word.
112//////////////////////////////////////////////////////////////////////////////////////////
[626]113static uint32_t fatfs_get_remote_record( uint32_t   offset,
114                                         uint32_t   nbytes,
115                                         xptr_t     buffer_xp )
116{
117    uint32_t i;
118    uint32_t res = 0;
119
120    if ( LITTLE_ENDIAN )
121    {
122        for( i = nbytes ; i > 0 ; i-- )
123        {
124            res = (res<<8) | hal_remote_lb( buffer_xp+offset+i-1 );
125        }
126    }
127    else 
128    {
129        for( i = 0 ; i < nbytes ; i++ )
130        {
131            res = (res<<8) | hal_remote_lb( buffer_xp+offset+i );
132        }
133    }
134    return res;
135
136}  // end fatfs_get_remote_record()
137
138//////////////////////////////////////////////////////////////////////////////////////////
139// This function writes one, two, or four bytes from a 32 bits integer to a local
140// array of bytes, taking into account the global LITTLE_ENDIAN parameter:
141// if LITTLE_ENDIAN is true, the most significant byte has the highest address.
142//////////////////////////////////////////////////////////////////////////////////////////
143// @ offset        : first byte in array.
144// @ nbytes        : record length in bytes (1/2/4).
145// @ buffer        : local pointer on byte array.
146// @ value         : 32 bits integer value.
147//////////////////////////////////////////////////////////////////////////////////////////
[602]148static void fatfs_set_record( uint32_t    offset,
[626]149                              uint32_t    nbytes,
[602]150                              uint8_t   * buffer,
151                              uint32_t    value )
152{
[626]153    uint32_t i;
[602]154
[626]155    if ( LITTLE_ENDIAN )
[602]156    {
[626]157        for( i = nbytes ; i > 0 ; i-- ) buffer[offset+i-1] = (uint8_t)(value>>((i-1)<<3));
[602]158    }
[626]159    else
[602]160    {
[626]161        for( i = 0 ; i < nbytes ; i++ ) buffer[offset+i] = (uint8_t)(value>>((nbytes-1-i)<<3));
[602]162    }
163
164}  // end fatfs_set_record()
165
166//////////////////////////////////////////////////////////////////////////////////////////
[626]167// This function writes one, two, or four bytes from a 32 bits integer to a remote
168// array of bytes, taking into account the global LITTLE_ENDIAN parameter:
169// if LITTLE_ENDIAN is true, the most significant byte has the highest address.
170//////////////////////////////////////////////////////////////////////////////////////////
171// @ offset        : first byte in array.
172// @ nbytes        : record length in bytes (1/2/4).
173// @ buffer_xp     : extended pointer on byte array.
174// @ value         : 32 bits integer value.
175//////////////////////////////////////////////////////////////////////////////////////////
176static void fatfs_set_remote_record( uint32_t    offset,
177                                     uint32_t    nbytes,
178                                     xptr_t      buffer_xp,
179                                     uint32_t    value )
180{
181    uint32_t i;
182
183    if ( LITTLE_ENDIAN )
184    {
185        for( i = nbytes ; i > 0 ; i-- )
186        {
187            hal_remote_sb( (buffer_xp+offset+i-1) , (uint8_t)(value>>((i-1)<<3)) );
188        }
189    }
190    else
191    {
192        for( i = 0 ; i < nbytes ; i++ )
193        {
194            hal_remote_sb( (buffer_xp+offset+i) , (uint8_t)(value>>((nbytes-1-i)<<3)) );
195        }
196    }
197
198}  // end fatfs_set_record()
199
200//////////////////////////////////////////////////////////////////////////////////////////
[238]201// This static function retun in the <name> buffer a short name stored in
202// a SFN FATFS directory entry.
203/////////////////////////i////////////////////////////////////////////////////////////////
204// @ buffer   : pointer on buffer containing the directory entry.
205// @ name     : [out] buffer allocated by the caller.
206//////////////////////////////////////////////////////////////////////////////////////////
207static void fatfs_get_name_from_short( uint8_t * buffer,
208                                       char    * name )
209{
210    uint32_t i;
211    uint32_t j = 0;
[23]212
[238]213    // get name
214    for ( i = 0; i < 8 && buffer[i] != ' '; i++ )
215    {
216        name[j] = to_lower( buffer[i] );
217        j++;
218    }
[23]219
[238]220    // get extension
221    for ( i = 8; i < 8 + 3 && buffer[i] != ' '; i++ )
222    {
223        // we entered the loop so there is an extension. add the dot
224        if ( i == 8 )
225        {
226            name[j] = '.';
227            j++;
228        }
229
230        name[j] = to_lower( buffer[i] );
231        j++;
232    }
233
234    name[j] = '\0';
235
[602]236}  // fatfs_get_name_from_short()
237
[238]238//////////////////////////////////////////////////////////////////////////////////////////
239// This static function retun in the <name> buffer a partial name stored in
240// a LFN FATFS directory entry.
241/////////////////////////i////////////////////////////////////////////////////////////////
242// @ buffer   : pointer on buffer containing the directory entry.
243// @ name     : [out] buffer allocated by the caller.
244//////////////////////////////////////////////////////////////////////////////////////////
245static void fatfs_get_name_from_long( uint8_t * buffer,
246                                      char    * name )
247{
248    uint32_t   name_offset   = 0;
249    uint32_t   buffer_offset = get_length(LDIR_ORD);
250    uint32_t   l_name_1      = get_length(LDIR_NAME_1);
251    uint32_t   l_name_2      = get_length(LDIR_NAME_2);
252    uint32_t   l_name_3      = get_length(LDIR_NAME_3);
253    uint32_t   l_attr        = get_length(LDIR_ATTR);
254    uint32_t   l_type        = get_length(LDIR_TYPE);
255    uint32_t   l_chksum      = get_length(LDIR_CHKSUM);
256    uint32_t   l_rsvd        = get_length(LDIR_RSVD);
257
258    uint32_t   j             = 0;
259    uint32_t   eof           = 0;
260
261    while ( (buffer_offset != DIR_ENTRY_SIZE)  && (!eof) )
262    {
263        while (j != l_name_1 && !eof )
264        {
265            if ( (buffer[buffer_offset] == 0x00) || 
266                 (buffer[buffer_offset] == 0xFF) )
267            {
268                eof = 1;
269                continue;
270            }
271            name[name_offset] = buffer[buffer_offset];
272            buffer_offset += 2;
273            j += 2;
274            name_offset++;
275        }
276
277        buffer_offset += (l_attr + l_type + l_chksum);
278        j = 0;
279
280        while (j != l_name_2 && !eof )
281        {
282            if ( (buffer[buffer_offset] == 0x00) || 
283                 (buffer[buffer_offset] == 0xFF) )
284            {
285                eof = 1;
286                continue;
287            }
288            name[name_offset] = buffer[buffer_offset];
289            buffer_offset += 2;
290            j += 2;
291            name_offset++;
292        }
293
294        buffer_offset += l_rsvd;
295        j = 0;
296
297        while (j != l_name_3 && !eof )
298        {
299            if ( (buffer[buffer_offset] == 0x00) || 
300                 (buffer[buffer_offset] == 0xFF) )
301            {
302                eof = 1;
303                continue;
304            }
305            name[name_offset] = buffer[buffer_offset];
306            buffer_offset += 2;
307            j += 2;
308            name_offset++;
309        }
310    }
311    name[name_offset] = 0;
312
[602]313} // end fatfs_get_name_from_long()
[238]314
[602]315//////////////////////////////////////////////////////////////////////////////////////////
316// This static function analyse the <name> input argument, and returns in other
317// output arguments various informations required to store the name in FATFS directory.
318// The <name> length cannot be larger than 31 characters :
319// - Short name (less than 13 characters) require 1 LFN entry.
320// - Medium names (from 14 to 26 characters require 2 LFN entries.
321// - Large names (up to 31 characters) require 3 LFN entries.
322//////////////////////////////////////////////////////////////////////////////////////////
323// @ name     : [in]  complete directory entry name.
324// @ length   : [out] total number of characters in name.
325// @ nb_lfn   : [out] number of LFN entries required to store the name.
326// @ sfn      : [out] a legal SFN name extracted from name / upper case and 8-3 format.
327// @ checksum : [out] checksum to be stored in SFN.
328// @ returns 0 on success / returns 1 if the name length is larger than 31 characters.
329//////////////////////////////////////////////////////////////////////////////////////////
330static error_t fatfs_name_format( const char  * name,
331                                  uint32_t    * length,
332                                  uint32_t    * nb_lfn,
333                                  char        * sfn,
334                                  uint8_t     * checksum )
335{
336    // compute name length
337    uint32_t name_length = strlen( name );
338    *length = name_length;
[1]339
[602]340    uint32_t suffix_length = 0;
341    uint32_t prefix_length = 0;
342    uint32_t dot_found     = 0;
343    uint32_t i;
344
345    // compute prefix and suffix length
346    // only the last '.' is taken into account
347    for ( i=0 ; i<name_length ; i++ )
348    {
349        if (name[i] == '.' )
350        {
351            if ( dot_found ) 
352            {
353                prefix_length += suffix_length + 1;
354                suffix_length =  0;
355            }
356            else
357            {
358                dot_found = 1;
359            }
360        }
361        else
362        { 
363            if ( dot_found)  suffix_length++;
364            else             prefix_length++;
365        }
366    } 
367
368    // build SFN prefix (8bits)
369    if (prefix_length <= 8)
370    {
371        for( i=0 ; i<8 ; i++)
372        {
373            if ( i<prefix_length ) sfn[i] = to_upper( name[i] );
374            else                   sfn[i] = 0x20;
375        }
376    }
377    else
378    {
379        for( i=0 ; i<6 ; i++)
380        {
381            sfn[i] = to_upper( name[i] );
382        }
383        sfn[6] = 0x7E;
384        sfn[7] = 0x31;
385    }
386
387    // build SFN suffix (3 bits)
388    if ( suffix_length == 0 )
389    {
390        sfn[8]  = 0x20;
391        sfn[9]  = 0x20;
392        sfn[10] = 0x20;
393    }
394    else if ( suffix_length == 1 )
395    {
396        sfn[8]  = to_upper( name[name_length-1] );
397        sfn[9]  = 0x20;
398        sfn[10] = 0x20;
399    }
400    else if ( suffix_length == 2 )
401    {
402        sfn[8]  = to_upper( name[name_length-2] );
403        sfn[9]  = to_upper( name[name_length-1] );
404        sfn[10] = 0x20;
405    }
406    else
407    {
408        sfn[8]  = to_upper( name[name_length-suffix_length] );
409        sfn[9]  = to_upper( name[name_length-suffix_length+1] );
410        sfn[10] = to_upper( name[name_length-suffix_length+2] );
411    }
412
413    // compute 8 bits checksum
414    uint8_t sum = 0;
415    for ( i=0 ; i<11 ; i++ )
416    {
417        sum = (((sum & 0x01)<<7) | ((sum & 0xFE)>>1)) + sfn[i];
418    }
419    *checksum = sum;
420
421    // set nb_lfn and length values
422    if      ( name_length <= 13 )
423    {
424        *nb_lfn  = 1;
425        return 0;
426    }
427    else if ( name_length <= 26 )
428    {
429        *nb_lfn  = 2;
430        return 0;
431    }
432    else if ( name_length <= 31 )
433    {
434        *nb_lfn  = 3;
435        return 0;
436    }
437    else
438    {
439        return 1;
440    }
441}   // end fatfs_name_format() 
442
[238]443//////////////////////////////////////////////////////////////////////////////////////////
[628]444// This static function synchronously updates the FAT on IOC device.
445// It scan the FAT mapper to copy on IOC device all dirty pages in the interval
446// defined by the <page_min> & <page_max> arguments.
447// It can be called by a thread running in any cluster.
448// WARNING : We don't take the lock protecting the FAT mapper, because the FAT lock
449// (in FATFS context) must be taken by the calling function.
[626]450//////////////////////////////////////////////////////////////////////////////////////////
[628]451// @ fatfs_ctx_xp  : extended pointer on FATFS context in FAT cluster.
452// @ page_min      : first page to be checked.
453// @ page_max      : last page to be checked
[626]454// @ return 0 if success, return -1 if the FS_INFO sector cannot be updated.
455//////////////////////////////////////////////////////////////////////////////////////////
[628]456static error_t fatfs_update_ioc_fat( xptr_t   fatfs_ctx_xp,
457                                     uint32_t page_min,
458                                     uint32_t page_max )
[626]459{
[628]460
461#if DEBUG_FATFS_UPDATE_IOC
462uint32_t   cycle = (uint32_t)hal_get_cycles();
463thread_t * this  = CURRENT_THREAD;
464if( DEBUG_FATFS_UPDATE_IOC < cycle )
465printk("\n[%s] thread[%x,%x] enter / page_min %d / page_max %d / cycle %d\n",
466__FUNCTION__ , this->process->pid, this->trdid, page_min, page_max, cycle );
467#endif
468
469    error_t       error;
470    cxy_t         fat_cxy;         // FAT cluster identifier
471    fatfs_ctx_t * fatfs_ctx;       // local pointer on FATFS context in FAT cluster
472    xptr_t        fat_mapper_xp;   // extended pointer on FAT mapper
473    mapper_t    * fat_mapper_ptr;  // local pointer on FAT mapper
474    uint32_t      page_id;         // current page index in FAT mapper
475    xptr_t        rt_xp;           // extended pointer on FAT mapper radix tree
476    xptr_t        page_xp;         // extended pointer on current page in FAT mapper
477    page_t      * page_ptr;        // local pointer on current page
478    uint32_t      flags;           // current page flags
479
480    // get pointer and cluster on FATFS context in FAT cluster
481    fat_cxy   = GET_CXY( fatfs_ctx_xp );
482    fatfs_ctx = GET_PTR( fatfs_ctx_xp );
483 
484    // get FAT mapper pointers from FATFS context
485    fat_mapper_xp  = hal_remote_l64( XPTR( fat_cxy , &fatfs_ctx->fat_mapper_xp ) );
486    fat_mapper_ptr = GET_PTR( fat_mapper_xp );
487
488// check FAT cluster
489assert( (fat_cxy == GET_CXY( fat_mapper_xp )) , "unconsistent FAT cluster" );
490
491    // build extended pointer on FAT mapper radix tree
492    rt_xp   = XPTR( fat_cxy , &fat_mapper_ptr->rt );
493
494    // scan all pages in [min,max] interval
495    for( page_id = page_min ; page_id <= page_max ; page_id++ )
496    {
497        // get extended pointer on page descriptor from FAT mapper
498        page_xp = grdxt_remote_lookup( rt_xp , page_id );
499
500        // check only existing pages
501        if ( page_xp != XPTR_NULL )
502        {
503            page_ptr = GET_PTR( page_xp );
504            flags    = hal_remote_l32( XPTR( fat_cxy , &page_ptr->flags ) );
505
506            // copy only dirty pages
507            if ( flags & PG_DIRTY )
508            {
509
510#if (DEBUG_FATFS_UPDATE_IOC & 1)
511if( DEBUG_FATFS_UPDATE_IOC < cycle )
512printk("\n[%s] thread[%x,%x] copy page %d from FAT mapper to IOC device\n",
513__FUNCTION__, page_id );
514#endif
515                // move page from mapper to device
516                error = fatfs_move_page( page_xp , IOC_SYNC_WRITE );
517
518                if ( error )  return -1;
519
520                // reset page dirty flag
521                ppm_page_undo_dirty( page_xp );
522            }
523        }
524    }  // end loop on pages
525
526#if DEBUG_FATFS_UPDATE_IOC
527cycle = (uint32_t)hal_get_cycles();
528if( DEBUG_FATFS_UPDATE_IOC < cycle )
529printk("\n[%s] thread[%x,%x] exit / cycle %d\n",
530__FUNCTION__ , this->process->pid, this->trdid, cycle );
531#endif
532
533    return 0;
534
535}  // end fatfs_update_ioc_fat()
536
537//////////////////////////////////////////////////////////////////////////////////////////
538// This static function synchronously updates the FS_INFO sector on IOC device,
539// from values contained in the FATFS context in FAT cluster.
540// It uses and updates the FS_INFO buffer allocated in the FAT cluster.
541// It can be called by a thread running in any cluster.
542//////////////////////////////////////////////////////////////////////////////////////////
543// @ fatfs_ctx_xp  : extended pointer on FATFS context in FAT cluster.
544// @ return 0 if success, return -1 if the FS_INFO sector cannot be updated.
545//////////////////////////////////////////////////////////////////////////////////////////
546static error_t fatfs_update_ioc_fsinfo( xptr_t fatfs_ctx_xp )
547{
[626]548    cxy_t         fat_cxy;             // FAT cluster identifier
549    fatfs_ctx_t * fatfs_ctx_ptr;       // local pointer on fatfs context in FAT cluster
[628]550    uint32_t      free_clusters;       // current vale of "free_clusters" in fatfs context
551    uint32_t      free_cluster_hint;   // current vale of "free_cluster_hint" in fatfs context
[626]552    uint8_t     * fs_info_buffer_ptr;  // local pointer on FS_INFO buffer in FAT cluster
553    xptr_t        fs_info_buffer_xp;   // extended pointer on FS_INFO buffer in FAT cluster
554    uint32_t      fs_info_lba;         // FS_INFO sector lba on IOC device
555
556    // get cluster and local pointer on FAT cluster context
557    fat_cxy       = GET_CXY( fatfs_ctx_xp ); 
558    fatfs_ctx_ptr = GET_PTR( fatfs_ctx_xp ); 
559
[628]560    // force FATFS context update
561    hal_fence();
562
563    // get relevant info from fatfs context in FAT cluster
564    fs_info_lba        = hal_remote_l32( XPTR( fat_cxy , &fatfs_ctx_ptr->fs_info_lba ) );
565    free_clusters      = hal_remote_l32( XPTR( fat_cxy , &fatfs_ctx_ptr->free_clusters ) );
566    free_cluster_hint  = hal_remote_l32( XPTR( fat_cxy , &fatfs_ctx_ptr->free_cluster_hint ) );
[626]567    fs_info_buffer_ptr = hal_remote_lpt( XPTR( fat_cxy , &fatfs_ctx_ptr->fs_info_buffer ) );
[628]568
569    // build extended pointer on FS_INFO buffer in FAT cluster
[626]570    fs_info_buffer_xp  = XPTR( fat_cxy , fs_info_buffer_ptr );
[628]571   
[626]572    // update the FS_INFO buffer in FAT cluster
573    fatfs_set_remote_record( FS_FREE_CLUSTERS     , fs_info_buffer_xp , free_clusters );
574    fatfs_set_remote_record( FS_FREE_CLUSTER_HINT , fs_info_buffer_xp , free_cluster_hint );
575   
576    // update the FS_INFO sector on IOC device
577    return dev_ioc_sync_write( fs_info_buffer_xp , fs_info_lba , 1 );
578 
[628]579}  // end fatfs_update_ioc_fsinfo()
[626]580
581//////////////////////////////////////////////////////////////////////////////////////////
[625]582// This static function decrements the  "free_clusters" variable, and updates the
[626]583// "free_cluster_hint" variable in the FATFS context in FAT cluster, identified
584// by the <fat_ctx_xp> argument, when a new <cluster> has been allocated from FAT.
[625]585// It scan all slots in the FAT mapper seen as an array of 32 bits words, looking for the
586// first free slot larger than the <cluster> argument, to update "free_cluster_hint".
[628]587// It synchronously updates the FS_INFO sector on the IOC device.
588// It can be called by a thead running in any cluster.
589// The lock protecting exclusive access to the FAT must be taken by the calling function.
[602]590//////////////////////////////////////////////////////////////////////////////////////////
[626]591// @ fatfs_ctx_xp  : extended pointer on FATFS context in FAT cluster.
592// @ cluster       : recently allocated cluster index in FAT.
593// @ return 0 if success, return -1 if the FS_INFO sector cannot be updated.
[602]594//////////////////////////////////////////////////////////////////////////////////////////
[626]595static error_t fatfs_free_clusters_decrement( xptr_t    fatfs_ctx_xp,
596                                              uint32_t  cluster )
[602]597{
[626]598    error_t       error;
[628]599    cxy_t         fat_cxy;        // FAT cluster identifier
600    fatfs_ctx_t * fat_ctx_ptr;    // local pointer on fatfs context in FAT cluster
601    xptr_t        fat_mapper_xp;  // extended pointer on FAT mapper
602    xptr_t        hint_xp;        // extended pointer on "free_cluster_hint" shared variable
603    xptr_t        numb_xp;        // extended pointer on "free_clusters" shared variable
604    uint32_t      numb;           // "free_clusters" variable current value
605    uint32_t      hint;           // "free_cluster_hint" variable current value
606    uint32_t      page_id;        // page index in FAT mapper
607    uint32_t      slot_id;        // slot index in one page of FAT (1024 slots per page)
608    uint32_t      page_max;       // max number of pages in FAT mapper
609    xptr_t        page_xp;        // extended pointer on current page in FAT mapper
610    xptr_t        base_xp;        // extended pointer on current page base
611    xptr_t        slot_xp;        // extended pointer on current slot in FAT mapper
[602]612
613#if DEBUG_FATFS_FREE_CLUSTERS
614uint32_t   cycle = (uint32_t)hal_get_cycles();
615thread_t * this  = CURRENT_THREAD;
[626]616if( DEBUG_FATFS_FREE_CLUSTERS < cycle )
[602]617printk("\n[%s] thread[%x,%x] enter for allocated cluster %x / cycle %d\n",
618__FUNCTION__, this->process->pid, this->trdid, cluster , cycle );
619#endif
620
[626]621    // get FAT cluster an local pointer on fatfs context in FAT cluster
622    fat_cxy      = GET_CXY( fatfs_ctx_xp );
623    fat_ctx_ptr  = GET_PTR( fatfs_ctx_xp );
624   
625    // build extended pointers on free_clusters, and free_cluster_hint in fatfs context
626    hint_xp = XPTR( fat_cxy , &fat_ctx_ptr->free_cluster_hint );
627    numb_xp = XPTR( fat_cxy , &fat_ctx_ptr->free_clusters );
[602]628
[626]629    // update "free_clusters" value
630    numb = hal_remote_l32( numb_xp ) - 1;
631    hal_remote_s32( numb_xp , numb );
[602]632
[625]633    // get extended pointer on FAT mapper
[628]634    fat_mapper_xp = hal_remote_l64( XPTR( fat_cxy , &fat_ctx_ptr->fat_mapper_xp ) );
[625]635
636    // initialise variables to scan the FAT mapper
637    // and find the first free slot > cluster
[602]638    page_id  = (cluster + 1) >> 10;
639    slot_id  = (cluster + 1) & 0x3FF;
[626]640    page_max = hal_remote_l32( XPTR( fat_cxy, &fat_ctx_ptr->fat_sectors_count ) ) >> 3;
[602]641
642    // scan FAT mapper / loop on pages
643    while ( page_id < page_max )           
644    {
645        // get current page from mapper
[628]646        page_xp = mapper_remote_get_page( fat_mapper_xp , page_id );
[602]647
648        if( page_xp == XPTR_NULL )
649        {
650            printk("\n[ERROR] in %s : cannot access FAT mapper\n", __FUNCTION__ );
651            return -1;
652        }
653
[625]654        // get extended pointer on page
655        base_xp = ppm_page2base( page_xp );
656
[602]657        // scan FAT mapper / loop on slots
658        while ( slot_id < 1024 )
659        {
660            // get extended pointer on current slot
[625]661            slot_xp = base_xp + (slot_id << 2);
[602]662
[625]663            // test slot value
[602]664            if ( hal_remote_l32( slot_xp ) == FREE_CLUSTER )
665            {
[626]666                // update "free_cluster_hint" value
667                hint = (page_id << 10) + slot_id - 1;
668                hal_remote_s32( hint_xp , hint );
[602]669
[626]670                // update FS_INFO sector on IOC device
[628]671                error = fatfs_update_ioc_fat( fatfs_ctx_xp,
672                                              page_id,
673                                              page_id );
[626]674
675                if( error ) 
676                {
677                    printk("\n[ERROR] in %s : cannot update FS_INFO on IOC\n", __FUNCTION__ );
678                    return -1;
679                }
680
[602]681#if DEBUG_FATFS_FREE_CLUSTERS
682cycle = (uint32_t)hal_get_cycles();
683if( DEBUG_FATFS_FREE_CLUSTERS < (uint32_t)hal_get_cycles() )
[628]684printk("\n[%s] thread[%x,%x] exit / hint %x / free %x / cycle %d\n",
[626]685__FUNCTION__, this->process->pid, this->trdid, 
[628]686hal_remote_l32(hint_xp), hal_remote_l32(numb_xp), cycle );
[602]687#endif
688                return 0;
689            }
690
[625]691            // update slot_id
692            slot_id = 0;
[602]693
694        }  // end loop on slots
695
[626]696        // update page_id & slot_id variables
[602]697        page_id++;
698        slot_id = 0;
699
700    }  // end loop on pages
701
702    // return error if no free cluster found
703    printk("\n[ERROR] in %s : No free cluster found\n", __FUNCTION__ );
704    return -1;
705   
706}  // end fatfs_free_clusters_decrement()
707
708//////////////////////////////////////////////////////////////////////////////////////////
[625]709// This static function increments the "free_clusters" variable, and updates the
[626]710// "free_cluster_hint" variables in the FATFS context in FAT cluster, identified
[628]711// by the <fat_ctx_xp> argument, when a FATFS cluster is released.
[625]712// If the released cluster index is smaller than the current (hint) value,
713// it set "free_cluster_hint" <= cluster.
[628]714// It does NOT update the  FS_INFO sector on the IOC device.
715// It can be called by a thead running in any cluster.
716// The lock protecting exclusive access to the FAT must be taken by the calling function.
[602]717//////////////////////////////////////////////////////////////////////////////////////////
[626]718// @ fatfs_ctx_xp  : extended pointer on FATFS context in FAT cluster.
719// @ cluster       : recently released cluster index in FAT.
720// @ return 0 if success, return -1 if the FS_INFO sector cannot be updated.
[602]721//////////////////////////////////////////////////////////////////////////////////////////
[626]722static error_t fatfs_free_clusters_increment( xptr_t   fatfs_ctx_xp,
723                                              uint32_t cluster )
[602]724{
[626]725    error_t       error;
726    cxy_t         fat_cxy;      // FAT cluster identifier
727    fatfs_ctx_t * fat_ctx_ptr;  // local pointer on fatfs context in FAT cluster
[602]728    xptr_t        hint_xp;      // extended pointer on "free_cluster_hint" shared variable
729    xptr_t        numb_xp;      // extended pointer on "free_clusters" shared variable
730    uint32_t      hint;         // "free_cluster_hint" variable current value
731    uint32_t      numb;         // "free_clusters" variable current value
732
[626]733#if DEBUG_FATFS_FREE_CLUSTERS
734uint32_t   cycle = (uint32_t)hal_get_cycles();
735thread_t * this  = CURRENT_THREAD;
736if( DEBUG_FATFS_FREE_CLUSTERS < cycle )
737printk("\n[%s] thread[%x,%x] enter for released cluster %x / cycle %d\n",
738__FUNCTION__, this->process->pid, this->trdid, cluster , cycle );
739#endif
740
741    // get FAT cluster an local pointer on fatfs context in FAT cluster
742    fat_cxy      = GET_CXY( fatfs_ctx_xp );
743    fat_ctx_ptr  = GET_PTR( fatfs_ctx_xp );
744   
[625]745    // build extended pointers on free_clusters, and free_cluster_hint
[626]746    hint_xp = XPTR( fat_cxy , &fat_ctx_ptr->free_cluster_hint );
747    numb_xp = XPTR( fat_cxy , &fat_ctx_ptr->free_clusters );
[602]748
749    // get current value of free_cluster_hint and free_clusters
750    hint = hal_remote_l32( hint_xp );
751    numb = hal_remote_l32( numb_xp );
752
[626]753    // update "numb" and "hint" variables as required
754    numb++;
755    if ( (cluster - 1) < hint ) hint = cluster - 1;
[602]756
757    // update free_clusters
[626]758    hal_remote_s32( numb_xp , numb );
759    hal_remote_s32( hint_xp , hint );
[602]760
[626]761    // update FS_INFO sector on IOC device
[628]762    error = fatfs_update_ioc_fsinfo( fatfs_ctx_xp );
[626]763
764    if( error ) 
765    {
766        printk("\n[ERROR] in %s : cannot update FS_INFO on IOC\n", __FUNCTION__ );
767        return -1;
768    }
769
[602]770#if DEBUG_FATFS_FREE_CLUSTERS
[628]771cycle = (uint32_t)hal_get_cycles();
[602]772if( DEBUG_FATFS_FREE_CLUSTERS < (uint32_t)hal_get_cycles() )
[628]773printk("\n[%s] thread[%x,%x] exit / hint %x / free %x / cycle %d\n",
[602]774__FUNCTION__, this->process->pid, this->trdid,
[628]775hal_remote_l32( hint_xp ), hal_remote_l32( numb_xp ), cycle );
[602]776#endif
777
[626]778    return 0;
779
[602]780}  // end fatfs_free_clusters_increment()
781
782//////////////////////////////////////////////////////////////////////////////////////////
[628]783// This recursive function is called by the generic function fatfs_release_inode().
784// It release all FATFS clusters allocated to a given inode to the FAT mapper.
785// It can be called by a thread running in any cluster, as it use remote pointers
786// to access both the FAT mapper and the FATFS context in the FAT cluster, defined
787// by the <fat_mapper_xp> and <fatfs_ctx_xp> arguments.
788// The removal is done in reverse order of the linked list (from last cluster to first).
789// It returns in the <dirty_page_min> and <dirty_page_max> buffers the indexes of the
790// modified pages in the FAT mapper.
791// It updates the FAT mapper and the free_cluster info in the FATFS context, but does NOT
792// update the FAT and the FS_INFO on IOC device.
[602]793//////////////////////////////////////////////////////////////////////////////////////////
[628]794// @ fat_mapper_xp  : [in]  extended pointer on FAT mapper.
795// @ fatfs_ctx_xp   : [in]  extended pointer on FATFS context in FAT cluster.
796// @ cluster        : [in]  index of cluster to be released from FAT mapper.
797// @ dirty_page_min : [out] pointer on buffer for min dirty page index.
798// @ dirty_page_max : [out] pointer on buffer for max dirty page index.
799// @ return 0 if success / return -1 if error.
[602]800//////////////////////////////////////////////////////////////////////////////////////////
[628]801static error_t fatfs_recursive_release( xptr_t      fat_mapper_xp,
802                                        xptr_t      fatfs_ctx_xp,
803                                        uint32_t    cluster,
804                                        uint32_t  * dirty_page_min,
805                                        uint32_t  * dirty_page_max )
[602]806{
[628]807    uint32_t next;       // next cluster index
808    uint32_t page_id;    // page index in FAT mapper
809    uint32_t word_id;    // word index in page
[602]810
[628]811    // get page index and word index from cluster
812    page_id = cluster >> 10;
813    word_id = cluster & 0x3FF;
[602]814
[625]815    // get next cluster index from FAT mapper
[628]816    if ( mapper_remote_get_32( fat_mapper_xp,
817                               page_id,
818                               word_id,
[625]819                               &next ) ) return -1;
820
[602]821#if (DEBUG_FATFS_RELEASE_INODE & 1)
822thread_t * this = CURRENT_THREAD;
823if ( DEBUG_FATFS_RELEASE_INODE < (uint32_t)hal_get_cycles() )
824printk("\n[%s] thread[%x,%x] access FAT for cluster %x / next %x\n",
825__FUNCTION__, this->process->pid, this->trdid, cluster, next );
826#endif
827
828    if ( next < END_OF_CHAIN_CLUSTER_MIN )  // non terminal case
829    {
830        // call fatfs_recursive_release() on next cluster
[628]831        if ( fatfs_recursive_release( fat_mapper_xp,
832                                      fatfs_ctx_xp,
833                                      next,
834                                      dirty_page_min,
835                                      dirty_page_max ) ) return -1;
[602]836    }       
837
[628]838    // update FAT mapper
839    if ( mapper_remote_set_32( fat_mapper_xp,
840                               page_id, 
841                               word_id,
[625]842                               FREE_CLUSTER ) ) return -1;
[602]843
[628]844    // update dirty_page_min / dirty_page_max buffers
845    if( page_id < *dirty_page_min ) *dirty_page_min = page_id;
846    if( page_id > *dirty_page_max ) *dirty_page_max = page_id;
[602]847
[628]848    // Update free_cluster info in FATFS context
849    return fatfs_free_clusters_increment( fatfs_ctx_xp , cluster );
850
[602]851}  // end fatfs_recursive_release()
852
853
854//////////////////////////////////////////////////////////////////////////////////////////
[568]855//              FATFS specific extern functions
[238]856//////////////////////////////////////////////////////////////////////////////////////////
[1]857
[626]858///////////////////////////////////
859void fatfs_display_ctx( cxy_t cxy )
[265]860{
[626]861    // get pointer on local FATFS context
862    vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
863        fatfs_ctx_t * ctx     = hal_remote_lpt( XPTR( cxy , &vfs_ctx->extend ) );
864
865    uint32_t fat_sectors       = hal_remote_l32( XPTR( cxy , &ctx->fat_sectors_count ) );
866    uint32_t sector_size       = hal_remote_l32( XPTR( cxy , &ctx->bytes_per_sector ) );
867    uint32_t sec_per_clus      = hal_remote_l32( XPTR( cxy , &ctx->sectors_per_cluster ) );
868    uint32_t fat_lba           = hal_remote_l32( XPTR( cxy , &ctx->fat_begin_lba ) );
869    uint32_t data_lba          = hal_remote_l32( XPTR( cxy , &ctx->cluster_begin_lba ) );
870    uint32_t fsinfo_lba        = hal_remote_l32( XPTR( cxy , &ctx->fs_info_lba ) );
871    uint32_t root_dir_clus     = hal_remote_l32( XPTR( cxy , &ctx->root_dir_cluster ) );
872    uint32_t free_clusters     = hal_remote_l32( XPTR( cxy , &ctx->free_clusters ) );
873    uint32_t free_cluster_hint = hal_remote_l32( XPTR( cxy , &ctx->free_cluster_hint ) );
874    xptr_t   mapper_xp         = hal_remote_l64( XPTR( cxy , &ctx->fat_mapper_xp ) );
875    void   * fs_info_buffer    = hal_remote_lpt( XPTR( cxy , &ctx->fs_info_buffer ) );
876
877    printk("\n*** FAT context in cluster %x\n" 
[602]878           "- fat_sectors       = %d\n"
879           "- sector size       = %d\n"
880           "- cluster size      = %d\n"
[626]881           "- fat_lba           = %x\n"
882           "- data_lba          = %x\n"
883           "- fsinfo_lba        = %x\n"
884           "- root_dir_cluster  = %x\n"
885           "- free_clusters     = %x\n"
886           "- free_cluster_hint = %x\n"
887           "- fat_mapper_ptr    = %x\n"
888           "- fs_info_buffer    = %x\n",
889           cxy,
890           fat_sectors,
891           sector_size,
892           sector_size * sec_per_clus,
893           fat_lba,
894           data_lba,
895           fsinfo_lba,
896           root_dir_clus,
897           free_clusters,
898           free_cluster_hint,
899           GET_PTR( mapper_xp ),
900           fs_info_buffer );
[265]901
[626]902}  // end fatfs_ctx_display()
[602]903
904//////////////////////////////////////////
905void fatfs_display_fat( uint32_t  page_id,
906                        uint32_t  nentries )
907{
908    uint32_t line;
909    uint32_t maxline;
910
[626]911    // compute number of lines to display
[602]912    maxline = nentries >> 3;
913    if( nentries & 0x7 ) maxline++;
914
915    // get pointer on local FATFS context
[626]916    vfs_ctx_t   * vfs_ctx       = &fs_context[FS_TYPE_FATFS];
917    fatfs_ctx_t * loc_fatfs_ctx = (fatfs_ctx_t *)vfs_ctx->extend;
[602]918
919    // get extended pointer on FAT mapper
[626]920    xptr_t fat_mapper_xp  = loc_fatfs_ctx->fat_mapper_xp;
[602]921
[626]922    // get FAT cluster identifier
923    cxy_t  fat_cxy = GET_CXY( fat_mapper_xp );
924
925    // get pointer on FATFS context in FAT cluster
926    fatfs_ctx_t * fat_fatfs_ctx = hal_remote_lpt( XPTR( fat_cxy , &vfs_ctx->extend ) );
927 
928    // get current value of hint and free_clusters
929    uint32_t hint = hal_remote_l32( XPTR( fat_cxy , &fat_fatfs_ctx->free_cluster_hint ) );
930    uint32_t free = hal_remote_l32( XPTR( fat_cxy , &fat_fatfs_ctx->free_clusters ) );
931 
932    // get extended pointer on requested page in FAT mapper
[602]933    xptr_t     page_xp  = mapper_remote_get_page( fat_mapper_xp , page_id );
934
935    // get extended pointer on requested page base
936    xptr_t     base_xp  = ppm_page2base( page_xp );
[626]937    void     * base     = GET_PTR( base_xp );
[602]938
[626]939    printk("\n***** FAT mapper / cxy %x / page_id %d / base %x / free_clusters %x / hint %x\n",
940    fat_cxy, page_id, base, free, hint );
941
[602]942    for( line = 0 ; line < maxline ; line++ )
943    {
944        printk("%x : %X | %X | %X | %X | %X | %X | %X | %X\n", (line<<3),
945        hal_remote_l32( base_xp + ((line<<5)      ) ),
946        hal_remote_l32( base_xp + ((line<<5) + 4  ) ),
947        hal_remote_l32( base_xp + ((line<<5) + 8  ) ),
948        hal_remote_l32( base_xp + ((line<<5) + 12 ) ),
949        hal_remote_l32( base_xp + ((line<<5) + 16 ) ),
950        hal_remote_l32( base_xp + ((line<<5) + 20 ) ),
951        hal_remote_l32( base_xp + ((line<<5) + 24 ) ),
952        hal_remote_l32( base_xp + ((line<<5) + 28 ) ) );
953    }
954
955}  // end fatfs_display_fat()
956
957///////////////////////////////////////////////////////
958error_t fatfs_get_cluster( uint32_t   first_cluster_id,
[406]959                           uint32_t   searched_page_index,
[265]960                           uint32_t * searched_cluster_id )
[238]961{
[602]962    xptr_t     current_page_xp;        // pointer on current page descriptor
963    uint32_t * buffer;                 // pointer on current page (array of uint32_t)
[406]964    uint32_t   current_page_index;     // index of current page in FAT
[625]965    uint32_t   current_slot_index;     // index of slot in current page
[238]966    uint32_t   page_count_in_file;     // index of page in file (index in linked list)
[406]967    uint32_t   next_cluster_id;        // content of current FAT slot
[627]968    xptr_t     lock_xp;                // extended pointer on FAT lock
[1]969
[602]970assert( (searched_page_index > 0) ,
971"no FAT access required for first page\n");
[246]972
[438]973#if DEBUG_FATFS_GET_CLUSTER
[602]974uint32_t   cycle = (uint32_t)hal_get_cycles();
975thread_t * this  = CURRENT_THREAD;
[438]976if( DEBUG_FATFS_GET_CLUSTER < cycle )
[625]977printk("\n[%s] thread[%x,%x] enter / first_cluster_id %d / searched_index %d / cycle %d\n",
[602]978__FUNCTION__, this->process->pid, this->trdid, first_cluster_id, searched_page_index, cycle );
[435]979#endif
[265]980
[627]981    // get local pointer on VFS context (same in all clusters)
982    vfs_ctx_t * vfs_ctx = &fs_context[FS_TYPE_FATFS];
983
[602]984    // get local pointer on local FATFS context
[627]985    fatfs_ctx_t * loc_fatfs_ctx = vfs_ctx->extend;
[1]986
[602]987    // get extended pointer and cluster on FAT mapper
[627]988    xptr_t fat_mapper_xp  = loc_fatfs_ctx->fat_mapper_xp;
989    cxy_t  fat_cxy        = GET_CXY( fat_mapper_xp );
[602]990
[627]991    // get local pointer on FATFS context in FAT cluster
992    fatfs_ctx_t * fat_fatfs_ctx = hal_remote_lpt( XPTR( fat_cxy , &vfs_ctx->extend ) );
993
994    // build extended pointer on FAT lock in FAT cluster
995    lock_xp = XPTR( fat_cxy , &fat_fatfs_ctx->lock );
996
997    // take FAT lock in read mode
998    remote_rwlock_rd_acquire( lock_xp );
999
[602]1000    // initialize loop variable (1024 slots per page)
1001    current_page_index  = first_cluster_id >> 10;
[625]1002    current_slot_index  = first_cluster_id & 0x3FF;
[238]1003    page_count_in_file  = 0;
[406]1004    next_cluster_id     = 0xFFFFFFFF;
[238]1005
[625]1006    // scan FAT mapper (i.e. traverse FAT linked list)
[406]1007    while( page_count_in_file < searched_page_index )
[238]1008    {
[625]1009        // get pointer on current page descriptor in FAT mapper
1010        current_page_xp = mapper_remote_get_page( fat_mapper_xp , current_page_index );
[238]1011
[602]1012        if( current_page_xp == XPTR_NULL )
1013        {
[625]1014            printk("\n[ERROR] in %s : cannot get next page from FAT mapper\n", __FUNCTION__);
[627]1015            remote_rwlock_rd_release( lock_xp );
[602]1016            return -1;
1017        }
[238]1018
1019        // get pointer on buffer for current page
[602]1020        xptr_t base_xp = ppm_page2base( current_page_xp );
1021        buffer = (uint32_t *)GET_PTR( base_xp );
[238]1022
1023        // get FAT slot content
[627]1024        next_cluster_id = hal_remote_l32( XPTR( fat_cxy, &buffer[current_slot_index] ) );
[238]1025
[438]1026#if (DEBUG_FATFS_GET_CLUSTER & 1)
1027if( DEBUG_FATFS_GET_CLUSTER < cycle )
[602]1028printk("\n[%s] traverse FAT / current_page_index = %d\n"
[625]1029"current_slot_index = %d / next_cluster_id = %d\n",
1030__FUNCTION__, current_page_index, current_slot_index , next_cluster_id );
[435]1031#endif
[238]1032        // update loop variables
[625]1033        current_page_index = next_cluster_id >> 10;
1034        current_slot_index = next_cluster_id & 0x3FF;
[238]1035        page_count_in_file++;
1036    }
[246]1037
[625]1038    if( next_cluster_id == 0xFFFFFFFF )
1039    {
1040        printk("\n[ERROR] in %s : searched_cluster_id not found in FAT\n", __FUNCTION__ );
[627]1041        remote_rwlock_rd_release( lock_xp );
[625]1042        return -1;
1043    }
[406]1044   
[627]1045    // release FAT lock
1046    remote_rwlock_rd_release( lock_xp );
1047
[438]1048#if DEBUG_FATFS_GET_CLUSTER
[435]1049cycle = (uint32_t)hal_get_cycles();
[438]1050if( DEBUG_FATFS_GET_CLUSTER < cycle )
[602]1051printk("\n[%s] thread[%x,%x] exit / searched_cluster_id = %d / cycle %d\n",
1052__FUNCTION__, this->process->pid, this->trdid, next_cluster_id / cycle );
[435]1053#endif
[406]1054
1055    *searched_cluster_id = next_cluster_id;
[238]1056    return 0;
1057
1058}  // end fatfs_get_cluster()
1059
1060
1061
[1]1062///////////////////////////////////////////////////////////////////////////////////////
[602]1063// Generic API : the following functions are called by the kernel VFS
[188]1064//               and must be defined by all supported file systems.
[1]1065///////////////////////////////////////////////////////////////////////////////////////
1066
[568]1067/////////////////////////////////////
[484]1068fatfs_ctx_t * fatfs_ctx_alloc( void )
[1]1069{
[23]1070    kmem_req_t    req;
[188]1071        req.type    = KMEM_FATFS_CTX;
1072        req.size    = sizeof(fatfs_ctx_t);
1073    req.flags   = AF_KERNEL | AF_ZERO;
[1]1074
[188]1075        return (fatfs_ctx_t *)kmem_alloc( &req );
1076}
[23]1077
[188]1078//////////////////////////////////////////////
1079void fatfs_ctx_init( fatfs_ctx_t * fatfs_ctx )
1080{
1081    error_t       error;
1082    kmem_req_t    req;
1083    uint8_t     * buffer;
[626]1084    xptr_t        buffer_xp;
[23]1085
[602]1086#if DEBUG_FATFS_CTX_INIT
[625]1087uint32_t   cycle = (uint32_t)hal_get_cycles();
1088thread_t * this  = CURRENT_THREAD;
[602]1089if( DEBUG_FATFS_CTX_INIT < cycle )
1090printk("\n[%s] thread[%x,%x] enter for fatfs_ctx = %x / cycle %d\n",
1091__FUNCTION__ , this->process->pid, this->trdid, fatfs_ctx , cycle );
[435]1092#endif
[23]1093
[602]1094// check argument
[625]1095assert( (fatfs_ctx != NULL) , "pointer on FATFS context is NULL" );
[23]1096
[626]1097// check only cluster 0 does FATFS initialization
[625]1098assert( (local_cxy == 0) , "only cluster 0 can initialize FATFS");
[602]1099
[626]1100    // allocate a permanent 512 bytes buffer to store
1101    // - temporarily the BOOT sector
1102    // - permanently the FS_INFO sector
[50]1103        req.type    = KMEM_512_BYTES;
1104    req.flags   = AF_KERNEL | AF_ZERO;
1105        buffer      = (uint8_t *)kmem_alloc( &req );
[626]1106    buffer_xp   = XPTR( local_cxy , buffer );
[188]1107
[602]1108    if( buffer == NULL ) 
1109    {
1110        printk("\n[PANIC] in %s : cannot allocate buffer\n", __FUNCTION__ );
1111        hal_core_sleep();
1112    }
[50]1113     
[602]1114    // load the BOOT record from device
[626]1115    error = dev_ioc_sync_read( buffer_xp , 0 , 1 );
[23]1116
[602]1117    if ( error )
1118    {
1119        printk("\n[PANIC] in %s : cannot access boot record\n", __FUNCTION__ );
1120        hal_core_sleep();
1121    }
[279]1122
[602]1123#if (DEBUG_FATFS_CTX_INIT & 0x1)
1124if( DEBUG_FATFS_CTX_INIT < cycle )
[623]1125putb( "boot record", buffer , 256 );
[50]1126#endif
1127
[602]1128    // get sector size from boot record
[626]1129    uint32_t sector_size = fatfs_get_record( BPB_BYTSPERSEC , buffer );
[602]1130    if ( sector_size != 512 )
1131    {
1132        printk("\n[PANIC] in %s : sector size must be 512 bytes\n", __FUNCTION__ );
1133        hal_core_sleep();
1134    }
[50]1135
[602]1136    // get cluster size from boot record
[626]1137    uint32_t nb_sectors = fatfs_get_record( BPB_SECPERCLUS , buffer );
[602]1138    if ( nb_sectors != 8 )
1139    {
1140        printk("\n[PANIC] in %s : cluster size must be 8 sectors\n", __FUNCTION__ );
1141        hal_core_sleep();
1142    }
[50]1143
[602]1144    // get number of FAT copies from boot record
[626]1145    uint32_t nb_fats = fatfs_get_record( BPB_NUMFATS , buffer );
[602]1146    if ( nb_fats != 1 )
1147    {
1148        printk("\n[PANIC] in %s : number of FAT copies must be 1\n", __FUNCTION__ );
1149        hal_core_sleep();
1150    }
[50]1151
[602]1152    // get number of sectors in FAT from boot record
[626]1153    uint32_t fat_sectors = fatfs_get_record( BPB_FAT32_FATSZ32 , buffer );
[602]1154    if ( (fat_sectors & 0xF) != 0 )
1155    {
1156        printk("\n[PANIC] in %s : FAT size not multiple of 16 sectors\n", __FUNCTION__ );
1157        hal_core_sleep();
1158    }
[50]1159
[602]1160    // get root cluster from boot record
[626]1161    uint32_t root_cluster = fatfs_get_record( BPB_FAT32_ROOTCLUS , buffer );
[602]1162    if ( root_cluster != 2 ) 
1163    {
1164        printk("\n[PANIC] in %s : root cluster index must be 2\n", __FUNCTION__ );
1165        hal_core_sleep();
1166    }
[50]1167
[23]1168    // get FAT lba from boot record
[626]1169    uint32_t fat_lba = fatfs_get_record( BPB_RSVDSECCNT , buffer );
[50]1170
[602]1171    // get FS_INFO sector lba from boot record
[626]1172    uint32_t fs_info_lba = fatfs_get_record( BPB_FAT32_FSINFO , buffer );
[602]1173
1174    // load the FS_INFO record from device
[626]1175    error = dev_ioc_sync_read( buffer_xp , fs_info_lba , 1 );
[602]1176
1177    if ( error )
1178    {
1179        printk("\n[PANIC] in %s : cannot access FS_INFO record\n", __FUNCTION__ );
1180        hal_core_sleep();
1181    }
1182
[626]1183    // get free_clusters number from FS_INFO record
1184    uint32_t free_clusters = fatfs_get_record( FS_FREE_CLUSTERS , buffer );
[602]1185    if ( free_clusters >= fat_sectors << 7 )
1186    {
1187        printk("\n[PANIC] in %s : unconsistent free_clusters\n", __FUNCTION__ );
1188        hal_core_sleep();
1189    }
1190
[626]1191    // get free_cluster_hint from FS_INFO record
1192    uint32_t free_cluster_hint = fatfs_get_record( FS_FREE_CLUSTER_HINT , buffer );
1193
[602]1194    if ( free_cluster_hint >= fat_sectors << 7 )
1195    {
1196        printk("\n[PANIC] in %s : unconsistent free_cluster_hint\n", __FUNCTION__ );
1197        hal_core_sleep();
1198    }
1199
[23]1200    // allocate a mapper for the FAT itself
[246]1201    mapper_t * fat_mapper = mapper_create( FS_TYPE_FATFS );
[602]1202    if ( fat_mapper == NULL )
1203    {
1204        printk("\n[PANIC] in %s : no memory for FAT mapper\n", __FUNCTION__ );
1205        hal_core_sleep();
1206    }
[50]1207
[626]1208    // the inode field is NULL for the FAT mapper
[246]1209    fat_mapper->inode = NULL;
1210
[23]1211    // initialize the FATFS context
1212    fatfs_ctx->fat_begin_lba         = fat_lba;
1213    fatfs_ctx->fat_sectors_count     = fat_sectors; 
1214    fatfs_ctx->bytes_per_sector      = sector_size;
[188]1215    fatfs_ctx->sectors_per_cluster   = nb_sectors;
[23]1216    fatfs_ctx->cluster_begin_lba     = fat_lba + fat_sectors;
1217    fatfs_ctx->root_dir_cluster      = 2;
1218    fatfs_ctx->fat_mapper_xp         = XPTR( local_cxy , fat_mapper );
[626]1219    fatfs_ctx->fs_info_lba           = fs_info_lba;
[602]1220    fatfs_ctx->free_clusters         = free_clusters;
1221    fatfs_ctx->free_cluster_hint     = free_cluster_hint;
[626]1222    fatfs_ctx->fs_info_buffer        = buffer;
[23]1223
[628]1224    remote_rwlock_init( XPTR( local_cxy , &fatfs_ctx->lock ) , LOCK_FATFS_FAT );
[602]1225
[625]1226#if (DEBUG_FATFS_CTX_INIT & 0x1)
1227if( DEBUG_FATFS_CTX_INIT < cycle )
1228fatfs_ctx_display( fatfs_ctx );
1229#endif
1230
[602]1231#if DEBUG_FATFS_CTX_INIT
[435]1232cycle = (uint32_t)hal_get_cycles();
[602]1233if( DEBUG_FATFS_CTX_INIT < cycle )
1234printk("\n[%s]  thread[%x,%x] exit for fatfs_ctx = %x / cycle %d\n",
1235__FUNCTION__, this->process->pid, this->trdid, fatfs_ctx, cycle );
[435]1236#endif
[279]1237
[23]1238}  // end fatfs_ctx_init()
1239
[188]1240/////////////////////////////////////////////////
1241void fatfs_ctx_destroy( fatfs_ctx_t * fatfs_ctx )
[23]1242{
1243    kmem_req_t    req;
[188]1244    req.type = KMEM_FATFS_CTX;
[23]1245    req.ptr  = fatfs_ctx;
1246    kmem_free( &req );
1247}
1248
[602]1249///////////////////////////////////////////////
1250error_t fatfs_add_dentry( vfs_inode_t  * inode,
1251                          vfs_dentry_t * dentry )
[1]1252{
[401]1253    error_t       error;
[602]1254    uint32_t      length;        // dentry name length
1255    uint32_t      nb_lfn;        // number or required LFN
1256    char          sfn[11];       // buffer for SFN name
1257    uint8_t       checksum;      // name checksum
1258    mapper_t    * mapper;        // loal pointer on parent inode mapper
1259    xptr_t        mapper_xp;     // extended pointer on parent inode mapper
1260    xptr_t        child_xp;      // extended pointer on child inode
1261    cxy_t         child_cxy;     // child inode cluster
1262    vfs_inode_t * child_ptr;     // child inode local pointer
1263    uint32_t      size;          // child inode size
1264    uint32_t      type;          // child inode type
1265    uint32_t      cluster;       // child inode cluster index
[246]1266
[602]1267#if DEBUG_FATFS_ADD_DENTRY
1268char       dir_name[CONFIG_VFS_MAX_NAME_LENGTH];
1269uint32_t   cycle = (uint32_t)hal_get_cycles();
1270thread_t * this  = CURRENT_THREAD;
1271vfs_inode_get_name( XPTR( local_cxy , inode ) , dir_name );
1272if( DEBUG_FATFS_ADD_DENTRY < cycle )
1273printk("\n[%s]  thread[%x,%x] enter / parent <%s> / child <%s> / cycle %d\n",
1274__FUNCTION__, this->process->pid, this->trdid, dir_name, dentry->name, cycle );
1275#endif
[1]1276
[602]1277// check arguments
1278assert( (inode != NULL) , "inode pointer is NULL\n" );
1279assert( (dentry != NULL) , "dentry pointer is NULL\n" );
1280assert( (inode->mapper != NULL ) , "mapper pointer is NULL\n" );
1281 
1282    // get pointers on directory mapper
1283    mapper    = inode->mapper;
1284    mapper_xp = XPTR( local_cxy , mapper );
[1]1285
[602]1286    // get extended pointers on remote child inode
1287    child_xp  = dentry->child_xp;
1288    child_cxy = GET_CXY( child_xp );
1289    child_ptr = GET_PTR( child_xp );
[1]1290
[602]1291    // get relevant infos from child inode
1292    type    =                     hal_remote_l32( XPTR( child_cxy , &child_ptr->type ) );
1293    size    =                     hal_remote_l32( XPTR( child_cxy , &child_ptr->size ) );
1294    cluster = (uint32_t)(intptr_t)hal_remote_lpt( XPTR( child_cxy , &child_ptr->extend ) );
[1]1295
[602]1296    // analyse dentry name
1297    error = fatfs_name_format( dentry->name,
1298                               &length,
1299                               &nb_lfn,
1300                               sfn,
1301                               &checksum );
1302    if ( error )
[246]1303    {
[602]1304        printk("\n[ERROR] in %s : dentry name > 31 bytes\n", __FUNCTION__ );
1305        return -1;
1306    }
1307                               
1308    // Search end of directory with two embedded loops:
1309    // - scan the pages in the mapper
1310    // - scan the entries in each page to find NO_MORE_ENTRY
[1]1311
[602]1312    xptr_t     page_xp;                 // extended pointer on page descriptor
1313    xptr_t     base_xp;                 // extended pointer on page base
1314    uint8_t  * base;                    // local pointer on page base (array of bytes)
1315    uint32_t   page_id = 0;             // page index in mapper
1316    uint32_t   offset  = 0;             // position in page
1317    uint32_t   found   = 0;             // NO_MORE_ENTRY found
[1]1318
[602]1319    // loop on pages in mapper
1320    while ( found == 0 )
[1]1321    {
[602]1322        // get extended pointer on page descriptor in mapper
1323        page_xp  = mapper_remote_get_page( mapper_xp , page_id );
[1]1324
[602]1325        if ( page_xp == XPTR_NULL )
1326        {
1327            printk("\n[ERROR] in %s : cannot extend directory mapper\n", __FUNCTION__ );
1328            return -1;
1329        }
1330       
1331        // get pointer on page base
1332        base_xp = ppm_page2base( page_xp );
1333        base = GET_PTR( base_xp );
[246]1334
[602]1335        // loop on directory entries in this page
1336        while ( (offset < 4096) && (found == 0) )
[265]1337        {
[626]1338            if ( fatfs_get_record( LDIR_ORD, (base + offset) ) == NO_MORE_ENTRY )
[602]1339            {
1340                found = 1;
1341            } 
1342            else
1343            {
1344                offset = offset + 32;
1345            }
1346        }  // end loop on entries
1347
1348        if ( found == 0 )
1349        {
1350            page_id++;
1351            offset = 0;
[265]1352        }
[602]1353    }  // end loop on pages
1354
1355    // Modify the directory mapper: depending on the name length,
1356    // the new child requires to write (3, 4, or 5) directory entries.
1357    // To actually register the new child, we use a 5 steps FSM
1358    // (one state per entry to be written), that is traversed as:
1359    // LFN3 -> LFN2 -> LFN1 -> NORMAL -> NOMORE
1360    // At most two pages are modified:
1361    // - the page containing the NO_MORE_ENTRY is always modified
1362    // - the following page can be modified if the name spread on to pages.
1363
1364    char * name = dentry->name;
1365
1366    uint32_t step;          // FSM state
1367
1368    if      ( nb_lfn == 1 ) step = 3;
1369    else if ( nb_lfn == 2 ) step = 4;
1370    else if ( nb_lfn == 3 ) step = 5;
1371   
1372    uint8_t  * entry;       // pointer on directory entry to be written
1373    uint32_t   i;           // byte index in one 32 bytes directory
1374    uint32_t   c;           // character index in name
1375
1376    while ( step )   
1377    {
1378        // when the new child is split on two pages,
1379        // we need to access a new page in mapper
1380        if ( offset >= 4096 )
[265]1381        {
[602]1382            // copy the modified page to IOC device
[614]1383            fatfs_move_page( page_xp , IOC_SYNC_WRITE );   
[265]1384
[602]1385            // get the next page in FAT mapper
1386            page_xp  = mapper_remote_get_page( mapper_xp , page_id + 1 );
1387
1388            if ( page_xp == XPTR_NULL )
[265]1389            {
[602]1390                printk("\n[ERROR] in %s : cannot extend directory mapper\n", __FUNCTION__ );
1391                return -1;
1392            }
1393       
1394            // get pointer on page base
1395            base_xp = ppm_page2base( page_xp );
1396            base = GET_PTR( base_xp );
1397           
1398            // update offset
1399            offset = 0;
1400        }
[407]1401
[602]1402        // compute directory entry address
1403        entry = base + offset;
1404
1405#if (DEBUG_FATFS_ADD_DENTRY & 1)
1406if( DEBUG_FATFS_ADD_DENTRY < cycle )
1407printk("\n[%s] FSM step = %d / offset = %x / nb_lfn = %d\n",
1408__FUNCTION__, step, offset, nb_lfn );
[435]1409#endif
[602]1410
1411        // write 32 bytes (one directory entry) per iteration
1412        switch ( step )
1413        {
1414            case 5:   // write LFN3 entry
1415            {
1416                c = 26;
1417                // scan the 32 bytes in dir_entry
1418                for ( i = 0 ; i < 32 ; i++ )
1419                {
1420                    if (i == 0)
1421                    {
1422                        if ( nb_lfn == 3) entry[i] = 0x43;
1423                        else              entry[i] = 0x03;
1424                    }
1425                    else if ( ( ((i >= 1 ) && (i<=10) && ((i&1)==1))   ||
1426                                ((i >= 14) && (i<=25) && ((i&1)==0))   ||
1427                                ((i >= 28) && (i<=31) && ((i&1)==0)) ) &&
1428                              ( c < length ) )
1429                    {
1430                                          entry[i] = name[c];
1431                                          c++;
1432                    }
1433                    else if (i == 11)     entry[i] = 0x0F;
1434                    else if (i == 13)     entry[i] = checksum;
1435                    else                  entry[i] = 0x00;
1436                }
1437                step--;
1438                break;
[265]1439            }
[602]1440            case 4:   // write LFN2 entry 
[265]1441            {
[602]1442                c = 13;
1443                // scan the 32 bytes in dir_entry
1444                for ( i = 0 ; i < 32 ; i++ )
1445                {
1446                    if (i == 0)
1447                    {
1448                        if ( nb_lfn == 2) entry[i] = 0x42;
1449                        else              entry[i] = 0x02;
1450                    }
1451                    else if ( ( ((i >= 1 ) && (i<=10) && ((i&1)==1))   ||
1452                                ((i >= 14) && (i<=25) && ((i&1)==0))   ||
1453                                ((i >= 28) && (i<=31) && ((i&1)==0)) ) &&
1454                              ( c < length ) )
1455                    {
1456                                          entry[i] = name[c];
1457                                          c++;
1458                    }
1459                    else if (i == 11)     entry[i] = 0x0F;
1460                    else if (i == 13)     entry[i] = checksum;
1461                    else                  entry[i] = 0x00;
1462                }
1463                step--;
1464                break;
1465            }
1466            case 3:   // Write LFN1 entry   
1467            {
1468                c = 0;
1469                // scan the 32 bytes in dir_entry
1470                for ( i = 0 ; i < 32 ; i++ )
1471                {
1472                    if (i == 0)
1473                    {
1474                        if ( nb_lfn == 1) entry[i] = 0x41;
1475                        else              entry[i] = 0x01;
1476                    }
1477                    else if ( ( ((i >= 1 ) && (i<=10) && ((i&1)==1))   ||
1478                                ((i >= 14) && (i<=25) && ((i&1)==0))   ||
1479                                ((i >= 28) && (i<=31) && ((i&1)==0)) ) &&
1480                              ( c < length ) )
1481                    {
1482                                          entry[i] = name[c];
1483                                          c++;
1484                    }
1485                    else if (i == 11)     entry[i] = 0x0F;
1486                    else if (i == 13)     entry[i] = checksum;
1487                    else                  entry[i] = 0x00;
1488                }
1489                step--;
1490                break;
1491            }
1492            case 2:   // write NORMAL entry     
1493            {
1494                // scan the 32 bytes in dir_entry
1495                for ( i = 0 ; i < 32 ; i++ )
1496                {
1497                    if      ( i < 11 )                              // 8.3 SFN
1498                    {
1499                                          entry[i] = sfn[i];
1500                    }
1501                    else if (i == 11)                               // ATTR
1502                    {
1503                        if (type == INODE_TYPE_DIR)  entry[i] = 0x10;
1504                        else                         entry[i] = 0x20;
1505                    }
1506                    else if (i == 20)     entry[i] = cluster>>16;   // cluster.B2
1507                    else if (i == 21)     entry[i] = cluster>>24;   // cluster.B3
1508                    else if (i == 26)     entry[i] = cluster>>0;    // cluster.B0
1509                    else if (i == 27)     entry[i] = cluster>>8;    // cluster.B1
1510                    else if (i == 28)     entry[i] = size>>0;       // size.B0
1511                    else if (i == 29)     entry[i] = size>>8;       // size.B1
1512                    else if (i == 30)     entry[i] = size>>16;      // size.B2
1513                    else if (i == 31)     entry[i] = size>>24;      // size.B3
1514                    else                  entry[i] = 0x00;
1515                }
[407]1516
[602]1517                // update the "extend" field in dentry descriptor
1518                dentry->extend = (void*)(intptr_t)(((page_id<<12) + offset)>>5);
1519
1520                step--;
1521                break;
[265]1522            }
[602]1523            case 1:   // write NOMORE entry 
1524            {
1525                entry [0] = 0x00;
1526                step--;
1527                break;
1528            }
1529        } // end switch step
[265]1530
[602]1531        offset += 32;
[265]1532
[602]1533    } // exit while     
1534
1535    // copy the modified page to the IOC device
[614]1536    fatfs_move_page( page_xp , IOC_SYNC_WRITE );   
[602]1537
1538#if DEBUG_FATFS_ADD_DENTRY
1539cycle = (uint32_t)hal_get_cycles();
1540if( DEBUG_FATFS_ADD_DENTRY < cycle )
[614]1541printk("\n[%s]  thread[%x,%x] exit / parent <%s> / child <%s> / cycle %d\n",
[602]1542__FUNCTION__, this->process->pid, this->trdid, dir_name, dentry->name, cycle );
[435]1543#endif
[406]1544
[602]1545    return 0;
[265]1546
[602]1547}  // end fatfs_add_dentry()
[246]1548
[602]1549//////////////////////////////////////////////////
1550error_t fatfs_remove_dentry( vfs_inode_t  * inode,
1551                             vfs_dentry_t * dentry )
1552{
1553    xptr_t     mapper_xp;  // extended pointer on mapper
1554    mapper_t * mapper;     // local pointer on mapper
1555    xptr_t     page_xp;    // extended pointer on mapper page descriptor
1556    xptr_t     base_xp;    // extended pointer on mapper page base
1557    uint8_t  * base;       // local pointer on mapper page base
[246]1558
[602]1559#if DEBUG_FATFS_REMOVE_DENTRY
1560char       dir_name[CONFIG_VFS_MAX_NAME_LENGTH];
1561uint32_t   cycle = (uint32_t)hal_get_cycles();
1562thread_t * this  = CURRENT_THREAD;
1563vfs_inode_get_name( XPTR( local_cxy , inode ) , dir_name );
1564if( DEBUG_FATFS_REMOVE_DENTRY < cycle )
[610]1565printk("\n[%s] thread[%x,%x] enter / parent <%s> / child <%s> / cycle %d\n",
[602]1566__FUNCTION__, this->process->pid, this->trdid, dir_name, dentry->name, cycle );
[435]1567#endif
[401]1568
[602]1569// check arguments
1570assert( (inode != NULL) , "inode pointer is NULL\n" );
1571assert( (dentry != NULL) , "dentry pointer is NULL\n" );
1572assert( (inode->type == INODE_TYPE_DIR) , "inode is not a directory\n" );
1573assert( (inode->mapper != NULL ) , "mapper pointer is NULL\n" );
1574
1575    // get pointers on directory mapper
1576    mapper    = inode->mapper;
1577    mapper_xp = XPTR( local_cxy , mapper );
1578
1579    // compute number of LFN entries
1580    uint32_t nb_lfn;
1581    uint32_t name_length = strlen( dentry->name );
1582
1583    if      ( name_length <= 13 ) nb_lfn  = 1;
1584    else if ( name_length <= 26 ) nb_lfn  = 2;
1585    else                          nb_lfn  = 3;
1586
1587    // we must invalidate (2, 3 or 4) 32 bytes entries:
1588    // the NORMAL entry (registered in dentry->extend) and all preceding LFN entries
1589    // At most two pages are modified:
1590    // - the page containing the NORMAL entry is always modified.
1591    // - the preceding page is modified when the name spread on two pages.
1592
1593    // get 32 bytes directory entry index from dentry->extend
1594    uint32_t  dentry_id  = (uint32_t)(intptr_t)dentry->extend; 
1595
1596    // get page index and offset in parent directory mapper
1597    uint32_t  page_id    = dentry_id >> 7;
1598    uint32_t  offset     = (dentry_id & 0x7F)<<5;
1599
[610]1600#if DEBUG_FATFS_REMOVE_DENTRY & 1
1601if( DEBUG_FATFS_REMOVE_DENTRY < cycle )
1602printk("\n[%s] dentry_id %x / page_id %x / offset %x\n",
1603__FUNCTION__, dentry_id, page_id, offset );
1604#endif
1605
[602]1606    // get extended pointer on page descriptor from parent directory mapper
1607    page_xp  = mapper_remote_get_page( mapper_xp , page_id );
1608
1609    if ( page_xp == XPTR_NULL )
[406]1610    {
[602]1611        printk("\n[ERROR] in %s : cannot extend directory mapper\n", __FUNCTION__ );
1612        return -1;
[406]1613    }
[602]1614       
1615    // get pointers on page base
1616    base_xp = ppm_page2base( page_xp );
1617    base    = GET_PTR( base_xp );
1618
1619    // invalidate NORMAL entry in directory cache
1620    base[offset] = 0xE5;
1621
1622    // invalidate LFN entries
1623    while ( nb_lfn )
1624    {
1625        if (offset == 0)  // we must load page (page_id - 1)
1626        {
1627
1628// check page_id
1629assert( (page_id > 0), "page_id and offset cannot be both 0\n" );
1630
1631            // copy the modified page to the IOC device
[614]1632            fatfs_move_page( page_xp , IOC_SYNC_WRITE );   
[602]1633
1634            // get extended pointer on page descriptor from parent directory mapper
1635            page_xp  = mapper_remote_get_page( mapper_xp , page_id );
1636
1637            if ( page_xp == XPTR_NULL )
1638            {
1639                printk("\n[ERROR] in %s : cannot access directory mapper\n", __FUNCTION__ );
1640                return -1;
1641            }
1642       
1643            // get pointers on page base
1644            base_xp = ppm_page2base( page_xp );
1645            base    = GET_PTR( base_xp );
1646
1647            // update offset
1648            offset = 4096;
1649        }
1650
1651        offset = offset - 32;
1652
1653// check for LFN entry
[626]1654assert( (fatfs_get_record( DIR_ATTR, base + offset ) == ATTR_LONG_NAME_MASK ),
[602]1655"this directory entry must be a LFN\n");
1656
1657        // invalidate LFN entry
1658        base[offset] = 0xE5;
1659
1660        nb_lfn--;
1661    }     
1662
1663    // copy the modified page to the IOC device
[614]1664    fatfs_move_page( page_xp , IOC_SYNC_WRITE );   
[602]1665   
1666
1667#if DEBUG_FATFS_REMOVE_DENTRY
1668cycle = (uint32_t)hal_get_cycles();
1669if( DEBUG_FATFS_REMOVE_DENTRY < cycle )
[610]1670printk("\n[%s] thread[%x,%x] exit / parent %s / child %s / cycle %d\n",
[602]1671__FUNCTION__, this->process->pid, this->trdid, dir_name, dentry->name, cycle );
[406]1672#endif
1673
[1]1674    return 0;
1675
[602]1676}  // end fatfs_remove_dentry
[246]1677
[623]1678
1679//////////////////////////////////////////////////////////////////////////////////////////////
1680// This static function scan the pages of a mapper containing a FAT32 directory, identified
1681// by the <mapper> argument, to find the directory entry identified by the <name> argument,
1682// and return a pointer on the directory entry, described as and array of 32 bytes, and the
1683// incex of this entry in the FAT32 mapper, seen as an array of 32 bytes entries.
1684// It is called by the fatfs_new_dentry() and fatfs_update_dentry() functions.
1685// It must be called by a thread running in the cluster containing the mapper.
1686//////////////////////////////////////////////////////////////////////////////////////////////
1687// @ mapper    : [in]  local pointer on directory mapper.
1688// @ name      : [in]  searched directory entry name.
1689// @ entry     : [out] buffer for the pointer on the 32 bytes directory entry (when found).
1690// @ index     : [out] buffer for the directory entry index in mapper.
1691// @ return 0 if found / return 1 if not found / return -1 if mapper access error.
1692//////////////////////////////////////////////////////////////////////////////////////////////
1693error_t fatfs_scan_directory( mapper_t *  mapper,
1694                              char     *  name,
1695                              uint8_t  ** entry,
1696                              uint32_t *  index )
[1]1697{
[610]1698    // Two embedded loops to scan the directory mapper:
[602]1699    // - scan the parent directory mapper pages
[238]1700    // - scan the directory entries in each 4 Kbytes page
[1]1701
[623]1702// check parent_inode and child_inode
1703assert( (mapper != NULL) , "mapper pointer is NULL\n" );
1704assert( (name   != NULL ), "child name is undefined\n" );
1705assert( (entry  != NULL ), "entry buffer undefined\n" );
1706
1707#if DEBUG_FATFS_SCAN_DIRECTORY
[602]1708char       parent_name[CONFIG_VFS_MAX_NAME_LENGTH];
1709uint32_t   cycle = (uint32_t)hal_get_cycles();
1710thread_t * this  = CURRENT_THREAD;
[623]1711vfs_inode_get_name( XPTR( local_cxy , mapper->inode ) , parent_name );
1712if( DEBUG_FATFS_SCAN_DIRECTORY < cycle )
1713printk("\n[%s]  thread[%x,%x] enter to search child <%s> in parent <%s> / cycle %d\n",
[602]1714__FUNCTION__, this->process->pid, this->trdid, name , parent_name , cycle );
[435]1715#endif
[1]1716
[623]1717    char       cname[CONFIG_VFS_MAX_NAME_LENGTH];  // name extracted from each directory entry
[238]1718
1719    char       lfn1[16];         // buffer for one partial cname
1720    char       lfn2[16];         // buffer for one partial cname
1721    char       lfn3[16];         // buffer for one partial cname
[623]1722    xptr_t     mapper_xp;        // extended pointer on mapper descriptor
[602]1723    xptr_t     page_xp;          // extended pointer on page descriptor
1724    xptr_t     base_xp;          // extended pointer on page base
1725    uint8_t  * base;             // local pointer on page base
[614]1726    uint8_t    attr;             // directory entry ATTR field
1727    uint8_t    ord;              // directory entry ORD field
[238]1728    uint32_t   seq;              // sequence index
[602]1729    uint32_t   lfn       = 0;    // LFN entries number
[623]1730    int32_t    found     = 0;    // not yet = 0 / success = 1 / not found = 2 / error = -1
[602]1731    uint32_t   page_id   = 0;    // page index in mapper
1732    uint32_t   offset    = 0;    // byte offset in page
[238]1733
[623]1734    mapper_xp = XPTR( local_cxy , mapper );
1735
1736    // scan the mapper pages
[238]1737    while ( found == 0 )
1738    {
1739        // get one page
[602]1740        page_xp = mapper_remote_get_page( mapper_xp , page_id );
[238]1741
[623]1742        if( page_xp == XPTR_NULL)
1743        {
1744            found = -1;
1745        }
[238]1746
1747        // get page base
[602]1748        base_xp = ppm_page2base( page_xp );
1749        base    = (uint8_t *)GET_PTR( base_xp );
[238]1750
[623]1751#if (DEBUG_FATFS_SCAN_DIRECTORY & 0x1)
1752if( DEBUG_FATFS_SCAN_DIRECTORY < cycle )
[614]1753mapper_display_page( mapper_xp , page_id , 256 );
[265]1754#endif
[238]1755        // scan this page until end of directory, end of page, or name found
1756        while( (offset < 4096) && (found == 0) )
1757        {
[626]1758            attr = fatfs_get_record( DIR_ATTR , base + offset );   
1759            ord  = fatfs_get_record( LDIR_ORD , base + offset );   
[238]1760
1761            if (ord == NO_MORE_ENTRY)                 // no more entry => break
1762            {
[623]1763                found = 2;
[238]1764            }
1765            else if ( ord == FREE_ENTRY )             // free entry => skip
1766            {
1767                offset = offset + 32;
1768            }
[614]1769            else if ( attr == 0x28 )                  // volune_id => skip
1770            {
1771                offset = offset + 32;
1772            }
[238]1773            else if ( attr == ATTR_LONG_NAME_MASK )   // LFN entry => get partial cname
1774            {
1775                seq = ord & 0x3;
1776                lfn = (seq > lfn) ? seq : lfn;   
1777                if      ( seq == 1 ) fatfs_get_name_from_long( base + offset, lfn1 );
1778                else if ( seq == 2 ) fatfs_get_name_from_long( base + offset, lfn2 );
1779                else if ( seq == 3 ) fatfs_get_name_from_long( base + offset, lfn3 );
1780                offset = offset + 32;
1781            }
1782            else                                 // NORMAL entry
1783            {
1784                // build the extracted name
1785                if      ( lfn == 0 )
1786                {
1787                    fatfs_get_name_from_short( base + offset , cname );
1788                }
1789                else if ( lfn == 1 )
1790                {
1791                    strcpy( cname      , lfn1 );
1792                }   
1793                else if ( lfn == 2 ) 
1794                {
1795                    strcpy( cname      , lfn1 );
1796                    strcpy( cname + 13 , lfn2 );
1797                }
1798                else if ( lfn == 3 ) 
1799                {
1800                    strcpy( cname      , lfn1 );
1801                    strcpy( cname + 13 , lfn2 );
1802                    strcpy( cname + 26 , lfn3 );
1803                }
1804
1805                // get dentry arguments if extracted cname == searched name
1806                if ( strcmp( name , cname ) == 0 )
1807                {
[623]1808                    *entry = base + offset;
1809                    *index = ((page_id<<12) + offset)>>5; 
[602]1810                    found     = 1;
[238]1811                }
1812                offset = offset + 32;
1813                lfn    = 0;
1814            }
[602]1815        }  // end loop on directory entries in page
1816
1817        page_id++;
[238]1818        offset = 0;
[602]1819
[238]1820    }  // end loop on pages
1821
[623]1822    if( found == 1 )
1823    {
[238]1824
[623]1825#if DEBUG_FATFS_SCAN_DIRECTORY
1826cycle = (uint32_t)hal_get_cycles();
1827if( DEBUG_FATFS_SCAN_DIRECTORY < cycle )
1828printk("\n[%s]  thread[%x,%x] exit / found child <%s> in <%s>\n",
1829__FUNCTION__, this->process->pid, this->trdid, name, parent_name );
1830#endif
1831        return 0;
1832    }
1833    else if( found == 2 )
[238]1834    {
1835
[623]1836#if DEBUG_FATFS_SCAN_DIRECTORY
[435]1837cycle = (uint32_t)hal_get_cycles();
[623]1838if( DEBUG_FATFS_SCAN_DIRECTORY < cycle )
1839printk("\n[%s]  thread[%x,%x] exit / child <%s> in <%s> not found\n",
1840__FUNCTION__, this->process->pid, this->trdid, name, parent_name );
[435]1841#endif
[623]1842        return 1;
1843    }
1844    else
1845    {
1846        printk("\n[ERROR] in %s : cannot get page %d from mapper\n",
1847        __FUNCTION__, page_id );
[407]1848
[602]1849        return -1;
[238]1850    }
[623]1851}  // end fatfs_scan_directory()
[602]1852
1853
[610]1854
[623]1855/////////////////////////////////////////////////////
1856error_t fatfs_new_dentry( vfs_inode_t * parent_inode,
1857                          char        * name,
1858                          xptr_t        child_inode_xp )
1859{
[625]1860    uint8_t      * entry;            // pointer on FAT32 directory entry (array of 32 bytes)
1861    uint32_t       index;            // index of FAT32 directory entry in mapper
1862    mapper_t     * mapper;           // pointer on directory mapper
1863    uint32_t       cluster;          // directory entry cluster
1864    uint32_t       size;             // directory entry size
1865    bool_t         is_dir;           // directory entry type (file/dir)
1866    xptr_t         root_xp;          // extended pointer on root of parent dentries
1867    xptr_t         iter_xp;          // iterator for this list
1868    cxy_t          child_inode_cxy;  // child inode cluster 
1869    vfs_inode_t  * child_inode_ptr;  // child inode local pointer
1870    xptr_t         dentry_xp;        // extended pointer on searched dentry descriptor
1871    cxy_t          dentry_cxy;       // cluster identifier of dentry (must be local_cxy)
1872    vfs_dentry_t * dentry_ptr;       // local pointer
1873    error_t        error;
[623]1874
[628]1875    char           dir_name[CONFIG_VFS_MAX_NAME_LENGTH];
[625]1876
[623]1877// check arguments
[626]1878assert( (parent_inode   != NULL)       , "parent_inode is NULL\n" );
1879assert( (name           != NULL)       , "name is NULL\n" );
1880assert( (child_inode_xp != XPTR_NULL ) , "child_inode is NULL\n" );
[623]1881
[626]1882    // get child inode cluster and local pointer
1883    child_inode_cxy = GET_CXY( child_inode_xp );
1884    child_inode_ptr = GET_PTR( child_inode_xp );
1885
1886    // build extended pointer on root of list of parent dentries
1887    root_xp = XPTR( child_inode_cxy , &child_inode_ptr->parents );
1888
1889// check child inode has at least one parent
1890assert( (xlist_is_empty( root_xp ) == false ), "child inode must have one parent\n");
1891
[623]1892#if DEBUG_FATFS_GET_DENTRY
1893uint32_t   cycle = (uint32_t)hal_get_cycles();
1894thread_t * this  = CURRENT_THREAD;
[625]1895vfs_inode_get_name( XPTR( local_cxy , parent_inode ) , dir_name );
[623]1896if( DEBUG_FATFS_GET_DENTRY < cycle )
1897printk("\n[%s]  thread[%x,%x] enter for child <%s> in parent <%s> / cycle %d\n",
[625]1898__FUNCTION__, this->process->pid, this->trdid, name , dir_name , cycle );
[623]1899#endif
1900
[625]1901    // get local pointer on parent mapper
[623]1902    mapper = parent_inode->mapper;
[625]1903
1904    // get pointer and index in mapper for searched directory entry
[623]1905    error  = fatfs_scan_directory( mapper, name , &entry , &index );
1906
[626]1907    // return non fatal error if not found
1908    if( error ) return -1;
[623]1909
[625]1910    // get relevant infos from FAT32 directory entry
[626]1911    cluster = (fatfs_get_record( DIR_FST_CLUS_HI , entry ) << 16) |
1912              (fatfs_get_record( DIR_FST_CLUS_LO , entry )      ) ;
1913    is_dir  = (fatfs_get_record( DIR_ATTR        , entry ) & ATTR_DIRECTORY);
1914    size    =  fatfs_get_record( DIR_FILE_SIZE   , entry );
[623]1915
[625]1916    // scan list of parent dentries to search the parent_inode
1917    bool_t found = false;
1918    XLIST_FOREACH( root_xp , iter_xp )
1919    {
1920        // get pointers on dentry
1921        dentry_xp  = XLIST_ELEMENT( iter_xp , vfs_dentry_t , parents );
1922        dentry_cxy = GET_CXY( dentry_xp );
1923        dentry_ptr = GET_PTR( dentry_xp );
[602]1924
[625]1925        // get local pointer on current parent directory inode
1926        vfs_inode_t * current = hal_remote_lpt( XPTR( dentry_cxy , &dentry_ptr->parent ) );
[602]1927
[625]1928        // check if current parent is the searched parent
1929        if( XPTR( dentry_cxy , current ) == XPTR( local_cxy , parent_inode ) )
1930        {
1931            found = true;
1932            break;
1933        }
1934    }
[602]1935
[625]1936    if( found == false )
1937    { 
1938        vfs_inode_get_name( XPTR( local_cxy , parent_inode ) , dir_name );
1939        printk("\n[ERROR] in %s : cannot find <%s> directory in list of parents for <%s>\n",
1940        __FUNCTION__, dir_name, name );
[623]1941        return -1;
1942    }
1943
[625]1944    // update the child inode "type", "size", and "extend" fields
1945    vfs_inode_type_t type = (is_dir) ? INODE_TYPE_DIR : INODE_TYPE_FILE;
1946
1947    hal_remote_s32( XPTR( child_inode_cxy , &child_inode_ptr->type   ) , type );
1948    hal_remote_s32( XPTR( child_inode_cxy , &child_inode_ptr->size   ) , size );
1949    hal_remote_s32( XPTR( child_inode_cxy , &child_inode_ptr->extend ) , cluster );
1950
1951    // update the dentry "extend" field
1952    dentry_ptr->extend = (void *)(intptr_t)index;
1953
1954#if DEBUG_FATFS_GET_DENTRY
1955cycle = (uint32_t)hal_get_cycles();
1956if( DEBUG_FATFS_GET_DENTRY < cycle )
1957printk("\n[%s]  thread[%x,%x] exit / intialised inode & dentry for <%s> in <%s> / cycle %d\n",
1958__FUNCTION__, this->process->pid, this->trdid, name, dir_name, cycle );
1959#endif
1960
1961    return 0;
1962
[623]1963}  // end fatfs_new_dentry()
1964
1965//////////////////////////////////////////////////
1966error_t fatfs_update_dentry( vfs_inode_t  * inode,
1967                             vfs_dentry_t * dentry,
1968                             uint32_t       size )
1969{
1970    uint8_t  * entry;    // pointer on FAT32 directory entry (array of 32 bytes)
1971    uint32_t   index;    // index of FAT32 directory entry in mapper
1972    mapper_t * mapper;   // pointer on directory mapper
1973    error_t    error;
1974
[625]1975    char       dir_name[CONFIG_VFS_MAX_NAME_LENGTH];
1976
[623]1977// check arguments
1978assert( (inode  != NULL) , "inode is NULL\n" );
1979assert( (dentry != NULL) , "dentry is NULL\n" );
1980assert( (size   != 0   ) , "size is 0\n" );
1981
1982#if DEBUG_FATFS_UPDATE_DENTRY
1983uint32_t   cycle = (uint32_t)hal_get_cycles();
1984thread_t * this  = CURRENT_THREAD;
1985vfs_inode_get_name( XPTR( local_cxy , inode ) , dir_name );
1986if( DEBUG_FATFS_UPDATE_DENTRY < cycle )
[625]1987printk("\n[%s]  thread[%x,%x] enter for <%s/%s> / size %d / cycle %d\n",
1988__FUNCTION__, this->process->pid, this->trdid, dir_name, dentry->name, size, cycle );
[623]1989#endif
1990
[625]1991    // get local pointer on mapper
[623]1992    mapper = inode->mapper;
[625]1993
1994    // get pointer and index in mapper for searched directory entry
[623]1995    error  = fatfs_scan_directory( mapper, dentry->name , &entry , &index );
1996
[625]1997    if( error )
[623]1998    { 
[625]1999        vfs_inode_get_name( XPTR( local_cxy , inode ) , dir_name );
2000        printk("\n[ERROR] in %s : cannot find <%s> in parent mapper <%s>\n",
2001        __FUNCTION__, dentry->name, dir_name );
2002        return -1;
2003    }
[623]2004
[625]2005    // set size in FAT32 directory entry
[626]2006    fatfs_set_record( DIR_FILE_SIZE , entry , size );
[602]2007
[625]2008    // get local pointer on modified page base
2009    void * base = (void *)((intptr_t)entry & (~CONFIG_PPM_PAGE_MASK)); 
[602]2010
[625]2011    // get extended pointer on modified page descriptor
2012    xptr_t page_xp = ppm_base2page( XPTR( local_cxy , base ) );
[602]2013
[625]2014    // synchronously update the modified page on device
2015    error = fatfs_move_page( page_xp , IOC_SYNC_WRITE );
[623]2016
[625]2017    if( error )
2018    { 
2019        vfs_inode_get_name( XPTR( local_cxy , inode ) , dir_name );
2020        printk("\n[ERROR] in %s : cannot update parent directory <%s> on device\n",
2021        __FUNCTION__, dir_name );
[623]2022        return -1;
2023    }
2024
[625]2025#if DEBUG_FATFS_UPDATE_DENTRY
2026cycle = (uint32_t)hal_get_cycles();
2027if( DEBUG_FATFS_UPDATE_DENTRY < cycle )
2028printk("\n[%s]  thread[%x,%x] exit / updated size for <%s/%s> / cycle %d\n",
2029__FUNCTION__, this->process->pid, this->trdid, dir_name, dentry->name, cycle );
2030#endif
2031
2032    return 0;
2033
[623]2034}  // end fatfs_update_dentry()
2035
[612]2036///////////////////////////////////////////////////////
2037error_t fatfs_get_user_dir( struct vfs_inode_s * inode,
2038                            struct dirent      * array, 
2039                            uint32_t             max_dirent,
2040                            uint32_t             min_dentry,
2041                            bool_t               detailed,
2042                            uint32_t           * entries,
2043                            bool_t             * done )
2044{
2045    // Two embedded loops to scan the directory mapper:
2046    // - scan the parent directory mapper pages starting always from page 0
2047    // - scan the 32 bytes NORMAL/LFN directory entries in each page
2048    // Only valid dentries are copied : dentry_id >= min_dentry && dirent_id < dirent_max
2049
2050#if DEBUG_FATFS_GET_USER_DIR
2051char       inode_name[CONFIG_VFS_MAX_NAME_LENGTH];
2052uint32_t   cycle = (uint32_t)hal_get_cycles();
2053thread_t * this  = CURRENT_THREAD;
2054vfs_inode_get_name( XPTR( local_cxy , inode ) , inode_name );
2055if( DEBUG_FATFS_GET_USER_DIR < cycle )
2056printk("\n[%s]  thread[%x,%x] enter for inode <%s> / cycle %d\n",
2057__FUNCTION__, this->process->pid, this->trdid, inode_name , cycle );
2058#endif
2059
2060    mapper_t * mapper    = inode->mapper;
2061    xptr_t     mapper_xp = XPTR( local_cxy , mapper );
2062
2063// check mapper pointer
2064assert( (mapper != NULL) , "mapper is NULL\n");
2065   
2066// TODO handle the detailed flag
2067assert( (detailed == false), "detailed argument not supported/n");
2068
[614]2069    char       cname[CONFIG_VFS_MAX_NAME_LENGTH];  // name extracted from each dentry
[612]2070
2071    char       lfn1[16];           // buffer for one partial cname
2072    char       lfn2[16];           // buffer for one partial cname
2073    char       lfn3[16];           // buffer for one partial cname
2074    xptr_t     page_xp;            // extended pointer on page descriptor
2075    xptr_t     base_xp;            // extended pointer on page base
2076    uint8_t  * base;               // local pointer on page base
[614]2077    uint8_t    attr;               // directory entry ATTR field
2078    uint8_t    ord;                // directory entry ORD field
[612]2079    uint32_t   seq;                // sequence index
2080    uint32_t   lfn       = 0;      // LFN entries number
2081    uint32_t   offset    = 0;      // byte offset in page
2082    uint32_t   page_id   = 0;      // page index in mapper
2083    uint32_t   dentry_id = 0;      // valid (i.e. copied) dentry index in mapper
2084    uint32_t   dirent_id = 0;      // slot index in dirent array to initialize
2085    bool_t     end       = false;  // true if end of directory found
2086
2087    // loop on mapper pages
2088    while ( (end == false) && (dirent_id < max_dirent) )
2089    {
2090        // get one page from mapper
2091        page_xp = mapper_remote_get_page( mapper_xp , page_id );
2092
2093        if( page_xp == XPTR_NULL) return -1;
2094
2095        // get page base
2096        base_xp = ppm_page2base( page_xp );
2097        base    = (uint8_t *)GET_PTR( base_xp );
2098
2099#if (DEBUG_FATFS_GET_USER_DIR & 0x1)
2100if( DEBUG_FATFS_GET_USER_DIR < cycle )
[614]2101mapper_display_page( mapper_xp , page_id , 256 );
[612]2102#endif
2103        // loop on NORMAL/LFN (32 bytes) directory entries in this page
2104        while( (end == false) && (offset < 4096) )
2105        {
2106            // compute condition to copy one dentry to dirent array
2107            bool_t valid = (dentry_id >= min_dentry) && (dirent_id <  max_dirent );
2108
[626]2109            attr = fatfs_get_record( DIR_ATTR , base + offset );   
2110            ord  = fatfs_get_record( LDIR_ORD , base + offset );   
[612]2111
2112            if (ord == NO_MORE_ENTRY)                 // no more entry => break
2113            {
2114                end = true;
2115            }
2116            else if ( ord == FREE_ENTRY )             // free entry => skip
2117            {
2118                offset = offset + 32;
2119            }
[614]2120            else if ( attr == 0x28 )                  // volune_id => skip
2121            {
2122                offset = offset + 32;
2123            }
[612]2124            else if ( attr == ATTR_LONG_NAME_MASK )   // LFN entry
2125            {
2126                if( valid )
2127                {
2128                    // get partial cname
2129                    seq = ord & 0x3;
2130                    lfn = (seq > lfn) ? seq : lfn;   
2131                    if      ( seq == 1 ) fatfs_get_name_from_long( base + offset, lfn1 );
2132                    else if ( seq == 2 ) fatfs_get_name_from_long( base + offset, lfn2 );
2133                    else if ( seq == 3 ) fatfs_get_name_from_long( base + offset, lfn3 );
2134                }
2135                offset = offset + 32;
2136            }
2137            else                                     // NORMAL entry
2138            {
2139                // increment dentry_id
2140                dentry_id++;
2141
2142                if( valid )
2143                {
2144                    // build the complete cname
2145                    if      ( lfn == 0 )
2146                    {
2147                        fatfs_get_name_from_short( base + offset , cname );
2148                    }
2149                    else if ( lfn == 1 )
2150                    {
2151                        strcpy( cname      , lfn1 );
2152                    }   
2153                    else if ( lfn == 2 ) 
2154                    {
2155                        strcpy( cname      , lfn1 );
2156                        strcpy( cname + 13 , lfn2 );
2157                    }
2158                    else if ( lfn == 3 ) 
2159                    {
2160                        strcpy( cname      , lfn1 );
2161                        strcpy( cname + 13 , lfn2 );
2162                        strcpy( cname + 26 , lfn3 );
2163                    }
2164                   
2165                    // copy cname into dirent array
2166                    strcpy( array[dirent_id].d_name , cname ); 
2167
2168                    // increment dirent_id
2169                    dirent_id++;
2170                }
2171                offset = offset + 32;
2172                lfn    = 0;
2173            }
2174        }  // end loop on directory entries in page
2175
2176        page_id++;
2177        offset = 0;
2178
2179    }  // end loop on pages
2180
2181    // return result of scan
2182    *done    = end;
2183    *entries = dirent_id;
2184
2185#if DEBUG_FATFS_GET_USER_DIR
2186cycle = (uint32_t)hal_get_cycles();
2187if( DEBUG_FATFS_GET_USER_DIR < cycle )
2188printk("\n[%s]  thread[%x,%x] exit for inode <%s> / %d entries / cycle %d\n",
[614]2189__FUNCTION__, this->process->pid, this->trdid, inode_name, dirent_id, cycle );
[612]2190#endif
2191
2192    return 0;
2193
2194}  // end fatfs_get_user_dir()
2195
[602]2196///////////////////////////////////////////////
2197error_t fatfs_sync_inode( vfs_inode_t * inode )
2198{
2199
2200// check inode pointer and cluster index
2201assert( (inode != NULL)                  , "inode pointer undefined\n" );
2202assert( (inode->mapper != NULL )         , "mapper pointer undefined\n" );
2203assert( (inode->type == INODE_TYPE_FILE) , "inode must be a file\n" );     
2204
2205#if DEBUG_FATFS_SYNC_INODE
2206char       name[CONFIG_VFS_MAX_NAME_LENGTH];
2207uint32_t   cycle = (uint32_t)hal_get_cycles();
2208thread_t * this  = CURRENT_THREAD;
2209vfs_inode_get_name( XPTR( local_cxy , inode ) , name );
2210if( DEBUG_FATFS_SYNC_INODE < cycle )
2211printk("\n[%s] thread[%x,%x] enter for <%s> / cycle %d\n",
2212__FUNCTION__ , this->process->pid, this->trdid, name, cycle );
2213#endif
2214
2215    error_t    error;
2216    mapper_t * mapper;
2217    page_t   * page;
2218    uint32_t   page_id;
2219
2220    // get mapper from inode
2221    mapper = inode->mapper;
2222
2223    // compute max number of pages in mapper from file size
2224    uint32_t size  = inode->size;
2225    uint32_t pages = size >> CONFIG_PPM_PAGE_SHIFT;
2226    if( size & CONFIG_PPM_PAGE_MASK ) pages++; 
2227         
2228    // get pointer on mapper radix tree
2229    grdxt_t * rt = &mapper->rt;
2230
2231    // scan all pages
2232    for( page_id = 0 ; page_id < pages ; page_id++ )
[238]2233    {
[602]2234        // get page descriptor from mapper
2235        page = grdxt_lookup( rt , page_id );
[238]2236
[602]2237        // check all existing pages
2238        if ( page != NULL )
2239        {
2240            if ( page->flags & PG_DIRTY )
2241            {
[238]2242
[602]2243#if (DEBUG_FATFS_SYNC_INODE & 1)
2244if( DEBUG_FATFS_SYNC_INODE < cycle )
2245printk("\n[%s] thread[%x,%x] synchronizes page %d from <%s> mapper to IOC device\n",
2246__FUNCTION__, page_id, name );
2247#endif
2248                // build extended pointer on page descriptor
2249                xptr_t page_xp = XPTR( local_cxy , page );
[238]2250
[602]2251                // move page from mapper to device
[614]2252                error = fatfs_move_page( page_xp , IOC_WRITE );
[602]2253
2254                if ( error )  return -1;
2255
2256                // reset page dirty flag
2257                ppm_page_undo_dirty( page_xp );
2258            }
2259        }
2260    }  // end loop on pages
2261
2262#if DEBUG_FATFS_SYNC_INODE
[435]2263cycle = (uint32_t)hal_get_cycles();
[602]2264if( DEBUG_FATFS_SYNC_INODE < cycle )
2265printk("\n[%s] thread[%x,%x] exit for <%s> / cycle %d\n",
2266__FUNCTION__ , this->process->pid, this->trdid, name, cycle );
[435]2267#endif
[246]2268
[602]2269    return 0;
2270
2271}  // end fatfs_sync_inode()
2272
[628]2273
2274
2275
2276
2277
[602]2278//////////////////////////////
2279error_t fatfs_sync_fat( void )
2280{
2281
2282#if DEBUG_FATFS_SYNC_FAT
2283uint32_t   cycle = (uint32_t)hal_get_cycles();
2284thread_t * this  = CURRENT_THREAD;
2285if( DEBUG_FATFS_SYNC_FAT < cycle )
2286printk("\n[%s] thread[%x,%x] enter / cycle %d\n",
2287__FUNCTION__ , this->process->pid, this->trdid, cycle );
2288#endif
2289
2290    uint32_t   page_id;
2291    error_t    error;
2292
2293    // get FAT mapper pointers an cluster
2294    fatfs_ctx_t * fatfs_ctx  = fs_context[FS_TYPE_FATFS].extend;
2295    xptr_t        mapper_xp  = fatfs_ctx->fat_mapper_xp;
2296    cxy_t         mapper_cxy = GET_CXY( mapper_xp );
2297    mapper_t    * mapper_ptr = GET_PTR( mapper_xp );
2298
2299    // compute max number of 4 Kbytes pages in FAT mapper
2300    // TODO : this could be improved (see fatfs.h) [AG]
2301    uint32_t   pages = fatfs_ctx->fat_sectors_count >> 3;
2302         
2303    // get pointers on remote FAT mapper radix tree
2304    grdxt_t  * rt_ptr = &mapper_ptr->rt;
2305    xptr_t     rt_xp  = XPTR( mapper_cxy , rt_ptr );
2306
2307    // scan all pages
2308    for( page_id = 0 ; page_id < pages ; page_id++ )
2309    {
2310        // get extended pointer on page descriptor from FAT mapper
2311        xptr_t page_xp = grdxt_remote_lookup( rt_xp , page_id );
2312
2313        // check all existing pages
2314        if ( page_xp != XPTR_NULL )
2315        {
2316            page_t * page_ptr = GET_PTR( page_xp );
2317            uint32_t flags    = hal_remote_l32( XPTR( mapper_cxy , &page_ptr->flags ) );
2318
2319            if ( flags & PG_DIRTY )
2320            {
2321
2322#if (DEBUG_FATFS_SYNC_FAT & 1)
2323if( DEBUG_FATFS_SYNC_FAT < cycle )
2324printk("\n[%s] thread[%x,%x] synchronizes page %d from FAT mapper to IOC device\n",
2325__FUNCTION__, page_id );
2326#endif
2327                // move page from mapper to device
[614]2328                error = fatfs_move_page( page_xp , IOC_SYNC_WRITE );
[602]2329
2330                if ( error )  return -1;
2331
2332                // reset page dirty flag
2333                ppm_page_undo_dirty( page_xp );
2334            }
2335        }
2336    }  // end loop on pages
2337
2338#if DEBUG_FATFS_SYNC_FAT
2339cycle = (uint32_t)hal_get_cycles();
2340if( DEBUG_FATFS_SYNC_FAT < cycle )
2341printk("\n[%s] thread[%x,%x] exit / cycle %d\n",
2342__FUNCTION__ , this->process->pid, this->trdid, cycle );
2343#endif
2344
2345    return 0;
2346
2347}  // end fatfs_sync_fat()
2348
2349////////////////////////////////////
2350error_t fatfs_sync_free_info( void )
2351{
[626]2352    error_t       error;
2353    fatfs_ctx_t * fatfs_ctx_ptr;              // local pointer on fatfs context in cluster 0
2354    uint32_t      ctx_free_clusters;          // number of free clusters from fatfs context
2355    uint32_t      ctx_free_cluster_hint;      // free cluster hint from fatfs context
2356    uint32_t      ioc_free_clusters;          // number of free clusters from fatfs context
2357    uint32_t      ioc_free_cluster_hint;      // free cluster hint from fatfs context
2358    uint32_t      fs_info_lba;                // lba of FS_INFO sector on IOC device
2359    uint8_t     * fs_info_buffer;             // local pointer on FS_INFO buffer in cluster 0
2360    xptr_t        fs_info_buffer_xp;          // extended pointer on FS_INFO buffer in cluster 0
2361    uint8_t       tmp_buf[512];               // 512 bytes temporary buffer
2362    xptr_t        tmp_buf_xp;                 // extended pointer on temporary buffer
[602]2363
2364#if DEBUG_FATFS_SYNC_FSINFO
2365uint32_t   cycle = (uint32_t)hal_get_cycles();
2366thread_t * this  = CURRENT_THREAD;
2367if( DEBUG_FATFS_SYNC_FSINFO < cycle )
2368printk("\n[%s] thread[%x,%x] enter / cycle %d\n",
2369__FUNCTION__ , this->process->pid, this->trdid, cycle );
2370#endif
2371
[626]2372    // get pointer on fatfs context in cluster 0
2373    fatfs_ctx_ptr = hal_remote_lpt( XPTR( 0 , &fs_context[FS_TYPE_FATFS].extend ) );
[602]2374
[626]2375    // get "free_clusters" and "free_cluster_hint" from fatfs context in cluster 0
2376    ctx_free_clusters     = hal_remote_l32( XPTR( 0 , &fatfs_ctx_ptr->free_clusters ) );
2377    ctx_free_cluster_hint = hal_remote_l32( XPTR( 0 , &fatfs_ctx_ptr->free_cluster_hint ) );
[602]2378
[626]2379    // get fs_info_lba
2380    fs_info_lba = hal_remote_l32( XPTR( 0 , &fatfs_ctx_ptr->fs_info_lba ) );
2381
2382    // build extended pointer on temporary buffer
2383    tmp_buf_xp = XPTR( local_cxy , tmp_buf );
2384
2385    // copy FS_INFO sector from IOC to local buffer
2386    error = dev_ioc_sync_read( tmp_buf_xp , fs_info_lba , 1 );
2387
[602]2388    if ( error )
2389    {
[626]2390        printk("\n[ERROR] in %s : cannot access FS_INFO on IOC device\n", __FUNCTION__ );
2391        return -1;
[602]2392    }
2393
[626]2394    // get current values of "free_clusters" and "free_cluster_hint" from FS_INFO on IOC
2395    ioc_free_clusters     = fatfs_get_remote_record( FS_FREE_CLUSTERS     , tmp_buf_xp );
2396    ioc_free_cluster_hint = fatfs_get_remote_record( FS_FREE_CLUSTER_HINT , tmp_buf_xp );
[602]2397
[628]2398#if DEBUG_FATFS_SYNC_FSINFO
2399if( DEBUG_FATFS_SYNC_FSINFO < cycle )
2400printk("\n[%s] thread[%x,%x] / ctx_free %x / ioc_free %x / ctx_hint %x / ioc_hint %x\n",
2401__FUNCTION__ , this->process->pid, this->trdid, 
2402ctx_free_clusters, ioc_free_clusters, ctx_free_cluster_hint, ioc_free_cluster_hint );
2403#endif
2404
[626]2405    // check values
2406    if( (ioc_free_clusters     != ctx_free_clusters) || 
2407        (ioc_free_cluster_hint != ctx_free_cluster_hint) )
[602]2408    {
[626]2409        printk("\n[WARNING] in %s : unconsistent free clusters info\n"
2410        " ioc_free %x / ctx_free %x / ioc_hint %x / ctx_hint %x\n",
2411        __FUNCTION__, ioc_free_clusters, ctx_free_clusters,
2412        ioc_free_cluster_hint, ctx_free_cluster_hint );
2413
2414        // get pointers on FS_INFO buffer in cluster 0
2415        fs_info_buffer    = hal_remote_lpt( XPTR( 0 , &fatfs_ctx_ptr->fs_info_buffer ) );
2416        fs_info_buffer_xp = XPTR( 0 , fs_info_buffer );
2417
2418        // update FS_INFO buffer in cluster 0
2419        fatfs_set_remote_record(FS_FREE_CLUSTERS    ,fs_info_buffer_xp,ctx_free_clusters );
2420        fatfs_set_remote_record(FS_FREE_CLUSTER_HINT,fs_info_buffer_xp,ctx_free_cluster_hint);
2421
2422        // update the FS_INFO sector on IOC device
2423        error = dev_ioc_sync_write( fs_info_buffer_xp , fs_info_lba , 1 );
2424
2425        if ( error )
2426        {
2427            printk("\n[ERROR] in %s : cannot update FS_INFO on IOC device\n", __FUNCTION__ );
2428            return -1;
2429        }
[602]2430    }
2431
2432#if DEBUG_FATFS_SYNC_FSINFO
2433cycle = (uint32_t)hal_get_cycles();
2434if( DEBUG_FATFS_SYNC_FSINFO < cycle )
2435printk("\n[%s] thread[%x,%x] exit / cycle %d\n",
2436__FUNCTION__ , this->process->pid, this->trdid, cycle );
2437#endif
2438
2439    return 0;
2440
[626]2441}  // end fatfs_sync_free_info()
[602]2442
2443//////////////////////////////////////////////////////////
2444error_t fatfs_cluster_alloc( uint32_t * searched_cluster )
2445{
[626]2446    error_t       error;
[625]2447    uint32_t      page_id;        // page index in FAT mapper
[602]2448    uint32_t      slot_id;        // slot index in page (1024 slots per page)
[625]2449    uint32_t      cluster;        // first free cluster index in FAT
[602]2450    uint32_t      free_clusters;  // total number of free clusters
2451    vfs_ctx_t   * vfs_ctx;        // local pointer on VFS context (same in all clusters)
2452    fatfs_ctx_t * loc_fatfs_ctx;  // local pointer on local FATFS context
2453    fatfs_ctx_t * fat_fatfs_ctx;  // local pointer on FATFS context in FAT cluster
[628]2454    xptr_t        fat_mapper_xp;  // extended pointer on FAT mapper
[626]2455    cxy_t         fat_cxy;        // Fat mapper cluster identifier
[602]2456    xptr_t        page_xp;        // extended pointer on current page descriptor in mapper
2457    xptr_t        slot_xp;        // extended pointer on FAT slot defined by hint
2458    xptr_t        lock_xp;        // extended pointer on lock protecting free clusters info
2459    xptr_t        hint_xp;        // extended pointer on free_cluster_hint in FAT cluster
[626]2460    xptr_t        free_xp;        // extended pointer on free_clusters_number in FAT cluster
[602]2461
2462#if DEBUG_FATFS_CLUSTER_ALLOC
2463uint32_t   cycle = (uint32_t)hal_get_cycles();
2464thread_t * this  = CURRENT_THREAD;
2465if( DEBUG_FATFS_CLUSTER_ALLOC < cycle )
2466printk("\n[%s] thread[%x,%x] enter / cycle = %d\n",
2467__FUNCTION__, this->process->pid, this->trdid, cycle );
2468#endif
2469
2470    // get local pointer on VFS context (same in all clusters)
2471    vfs_ctx = &fs_context[FS_TYPE_FATFS];
2472
2473    // get local pointer on local FATFS context
2474    loc_fatfs_ctx = vfs_ctx->extend;
2475
[626]2476    // get extended pointer on FAT mapper
[628]2477    fat_mapper_xp  = loc_fatfs_ctx->fat_mapper_xp;
[626]2478
2479    // get FAT cluster
[628]2480    fat_cxy = GET_CXY( fat_mapper_xp );
[602]2481   
2482    // get local pointer on FATFS context in FAT cluster
[626]2483    fat_fatfs_ctx = hal_remote_lpt( XPTR( fat_cxy , &vfs_ctx->extend ) );
[602]2484
[625]2485    // build relevant extended pointers on free clusters info in mapper cluster
[627]2486    lock_xp = XPTR( fat_cxy , &fat_fatfs_ctx->lock );
[626]2487    hint_xp = XPTR( fat_cxy , &fat_fatfs_ctx->free_cluster_hint );
2488    free_xp = XPTR( fat_cxy , &fat_fatfs_ctx->free_clusters );
[602]2489
[627]2490    // take the FAT lock in write mode
2491    remote_rwlock_wr_acquire( lock_xp );
[602]2492
[626]2493    // get hint and free_clusters values from FATFS context in FAT cluster
[625]2494    cluster       = hal_remote_l32( hint_xp ) + 1;
[626]2495    free_clusters = hal_remote_l32( free_xp );
[602]2496       
2497#if (DEBUG_FATFS_CLUSTER_ALLOC & 1)
2498if( DEBUG_FATFS_CLUSTER_ALLOC < cycle )
[625]2499printk("\n[%s] thread[%x,%x] get free info : hint %x / free_clusters %x\n",
2500__FUNCTION__, this->process->pid, this->trdid, (cluster - 1), free_clusters );
[602]2501#endif
2502
2503    // check "free_clusters"
2504    if ( free_clusters == 0 )
2505    {
2506        printk("\n[ERROR] in %s : no more free FATFS clusters\n", __FUNCTION__ );
[627]2507        remote_rwlock_wr_release( lock_xp );
[602]2508        return -1;
2509    }
2510    else if ( free_clusters < CONFIG_VFS_FREE_CLUSTERS_MIN )
2511    {
2512        printk("\n[WARNING] in %s : only %n free FATFS clusters\n", 
2513        __FUNCTION__, CONFIG_VFS_FREE_CLUSTERS_MIN );
2514    }
2515
[625]2516    // get page index & slot index for selected cluster
2517    page_id  = cluster >> 10;
2518    slot_id  = cluster & 0x3FF;
2519
[626]2520    // get relevant page descriptor from FAT mapper
[628]2521    page_xp = mapper_remote_get_page( fat_mapper_xp , page_id );
[625]2522
2523    if( page_xp == XPTR_NULL )
2524    {
2525        printk("\n[ERROR] in %s : cannot acces FAT mapper\n", __FUNCTION__ );
[627]2526        remote_rwlock_wr_release( lock_xp );
[625]2527        return -1;
2528    }
2529
2530    // build extended pointer on selected cluster slot in FAT mapper
2531    slot_xp = ppm_page2base( page_xp ) + (slot_id << 2);
2532         
2533    // check selected cluster actually free
[602]2534    if( hal_remote_l32( slot_xp ) != FREE_CLUSTER )
2535    { 
[625]2536        printk("\n[ERROR] in %s : selected cluster %x not free\n", __FUNCTION__, cluster );
[627]2537        remote_rwlock_wr_release( lock_xp );
[602]2538        return -1;
2539    }
2540
[626]2541    // update free cluster info in FATFS context and in FS_INFO sector
2542    error = fatfs_free_clusters_decrement( XPTR( fat_cxy , fat_fatfs_ctx ) , cluster );
[602]2543
[626]2544    if( error )
2545    { 
2546        printk("\n[ERROR] in %s : cannot update free cluster info\n", __FUNCTION__ );
[627]2547        remote_rwlock_wr_release( lock_xp );
[626]2548        return -1;
2549    }
[602]2550
[625]2551    // update FAT mapper
2552    hal_remote_s32( slot_xp , END_OF_CHAIN_CLUSTER_MAX );
2553
[628]2554    // we don't mark the FAT mapper page as dirty,
2555    // because we synchronously update FAT on IOC device
[626]2556    error = fatfs_move_page( page_xp , IOC_SYNC_WRITE );
[625]2557
[626]2558    if( error )
2559    { 
2560        printk("\n[ERROR] in %s : cannot update FAT on IOC device\n", __FUNCTION__ );
[627]2561        remote_rwlock_wr_release( lock_xp );
[626]2562        return -1;
2563    }
2564
[627]2565    // release FAT lock
2566    remote_rwlock_wr_release( lock_xp );
[626]2567
[602]2568#if DEBUG_FATFS_CLUSTER_ALLOC
2569cycle = (uint32_t)hal_get_cycles();
2570if( DEBUG_FATFS_CLUSTER_ALLOC < cycle )
[626]2571printk("\n[%s] thread[%x,%x] exit / allocated cluster %x in FAT / cycle %d\n",
[625]2572__FUNCTION__, this->process->pid, this->trdid, cluster, cycle );
[602]2573#endif
2574
[625]2575    *searched_cluster = cluster;
[602]2576    return 0;
2577
2578}  // end fat_cluster_alloc()
2579
2580//////////////////////////////////////////////
2581error_t fatfs_release_inode( xptr_t inode_xp )
2582{
2583    vfs_ctx_t   * vfs_ctx;        // local pointer on VFS context (same in all clusters).
2584    fatfs_ctx_t * loc_fatfs_ctx;  // local pointer on local FATFS context
[628]2585    cxy_t         fat_cxy;        // FAT cluster identifier
2586    xptr_t        fatfs_ctx_xp;   // extended pointer on FATFS context in FAT cluster
2587    fatfs_ctx_t * fatfs_ctx_ptr;  // local pointer on FATFS context in FAT cluster
2588    xptr_t        fat_mapper_xp;  // extended pointer on FAT mapper
2589    mapper_t    * fat_mapper_ptr; // local pointer on FAT mapper
2590    xptr_t        lock_xp;        // extended pointer on lock protecting FAT.
[602]2591    xptr_t        first_xp;       // extended pointer on inode extension
2592    uint32_t      first_cluster;  // first cluster index for released inode
[626]2593    vfs_inode_t * inode_ptr;      // local pointer on target inode
2594    cxy_t         inode_cxy;      // target inode cluster identifier
[628]2595    error_t       error;
[602]2596
2597// check inode pointer
2598assert( (inode_xp != XPTR_NULL) , "inode pointer is NULL\n" );
2599
[623]2600    // get inode cluster and local pointer
[602]2601    inode_ptr     = GET_PTR( inode_xp );
2602    inode_cxy     = GET_CXY( inode_xp );
[623]2603
2604    // get first_cluster from inode extension
[602]2605    first_xp      = XPTR( inode_cxy , &inode_ptr->extend );
2606    first_cluster = (uint32_t)(intptr_t)hal_remote_lpt( first_xp );
2607
2608// check first cluster index
2609assert( (first_cluster != 0) , "inode extend is NULL\n" );
2610
2611#if DEBUG_FATFS_RELEASE_INODE
2612char       name[CONFIG_VFS_MAX_NAME_LENGTH];
2613uint32_t   cycle = (uint32_t)hal_get_cycles();
2614thread_t * this  = CURRENT_THREAD;
2615vfs_inode_get_name( inode_xp , name );
2616if( DEBUG_FATFS_RELEASE_INODE < cycle )
2617printk("\n[%s] thread[%x,%x] enter for <%s> / first_cluster %x / cycle %d\n",
2618__FUNCTION__ , this->process->pid, this->trdid, name, first_cluster, cycle );
2619#endif
2620
2621    // get local pointer on VFS context (same in all clusters)
2622    vfs_ctx = &fs_context[FS_TYPE_FATFS];
2623
2624    // get local pointer on local FATFS context
2625    loc_fatfs_ctx = vfs_ctx->extend;
2626
[628]2627    // get pointers on FAT mapper
2628    fat_mapper_xp  = loc_fatfs_ctx->fat_mapper_xp;
2629    fat_cxy        = GET_CXY( fat_mapper_xp );
2630    fat_mapper_ptr = GET_PTR( fat_mapper_xp );
[602]2631   
[628]2632    // get pointers on FATFS context in FAT cluster
2633    fatfs_ctx_ptr  = hal_remote_lpt( XPTR( fat_cxy , &vfs_ctx->extend ) );
2634    fatfs_ctx_xp   = XPTR( fat_cxy , fatfs_ctx_ptr );
[602]2635
[627]2636    // get extended pointer on FAT lock in FAT cluster
[628]2637    lock_xp = XPTR( fat_cxy , &fatfs_ctx_ptr->lock );
[602]2638
[627]2639    // take FAT lock in write mode
2640    remote_rwlock_wr_acquire( lock_xp );
[602]2641
[628]2642#if (DEBUG_FATFS_RELEASE_INODE & 0x11 == 0x11)
2643mapper_display_page( fat_mapper_xp , 0 , 4096 );
2644#endif
2645
[602]2646    // call the recursive function to release all clusters from FAT mapper
[628]2647    uint32_t dirty_page_min = 0xFFFFFFFF;
2648    uint32_t dirty_page_max = 0;
2649
2650    if ( fatfs_recursive_release( fat_mapper_xp,
2651                                  fatfs_ctx_xp,
2652                                  first_cluster,
2653                                  &dirty_page_min,
2654                                  &dirty_page_max ) )
[602]2655    {
2656        printk("\n[ERROR] in %s : cannot update FAT mapper\n", __FUNCTION__ );
[627]2657        remote_rwlock_wr_release( lock_xp );
[602]2658        return -1;
2659    }
2660
2661#if (DEBUG_FATFS_RELEASE_INODE & 1)
2662if( DEBUG_FATFS_RELEASE_INODE < cycle )
2663printk("\n[%s] inode <%s> removed from FAT mapper\n", __FUNCTION__, name );
2664#endif
2665
[628]2666#if (DEBUG_FATFS_RELEASE_INODE & 0x11 == 0x11)
2667mapper_display_page( fat_mapper_xp , 0 , 4096 );
2668#endif
2669
[602]2670    // update FAT on IOC device (from FAT mapper)
[628]2671    error = fatfs_update_ioc_fat( fatfs_ctx_xp,
2672                                  dirty_page_min,
2673                                  dirty_page_max );
2674
2675    if( error )
[602]2676    {
[628]2677        printk("\n[ERROR] in %s : cannot update FAT on IOC device\n", __FUNCTION__ );
[627]2678        remote_rwlock_wr_release( lock_xp );
[602]2679        return -1;
2680    }
2681
2682#if (DEBUG_FATFS_RELEASE_INODE & 1)
2683if( DEBUG_FATFS_RELEASE_INODE < cycle )
2684printk("\n[%s] inode <%s> removed from FAT on IOC device\n", __FUNCTION__, name );
2685#endif
2686
[628]2687    // update FS-INFO on IOC device (from FATFS context)
2688    error = fatfs_update_ioc_fsinfo( fatfs_ctx_xp );
2689
2690    if( error )
[602]2691    {
[628]2692        printk("\n[ERROR] in %s: cannot update FSINFO on IOC device\n", __FUNCTION__ );
[627]2693        remote_rwlock_wr_release( lock_xp );
[602]2694        return -1;
2695    }
2696
[628]2697#if (DEBUG_FATFS_RELEASE_INODE & 1)
2698if( DEBUG_FATFS_RELEASE_INODE < cycle )
2699printk("\n[%s] updated FS_INFO on IOC device for >%s>\n", __FUNCTION__, name );
2700#endif
2701
[627]2702    // release FAT lock
2703    remote_rwlock_wr_release( lock_xp );
2704
[602]2705#if DEBUG_FATFS_RELEASE_INODE
2706cycle = (uint32_t)hal_get_cycles();
2707if( DEBUG_FATFS_RELEASE_INODE < cycle )
2708printk("\n[%s] thread[%x,%x] removed <%s> inode from FATFS / cycle %d\n",
2709__FUNCTION__ , this->process->pid, this->trdid, name, cycle );
2710#endif
2711
2712    return 0;
2713
2714}  // end fatfs_release_inode()
2715
[614]2716////////////////////////////////////////////
2717error_t fatfs_move_page( xptr_t     page_xp,
2718                         cmd_type_t cmd_type )
[602]2719{
2720    error_t       error;
2721    vfs_inode_t * inode_ptr;
2722    mapper_t    * mapper_ptr;     
2723    uint32_t      page_id;     // page index in mapper
2724
2725#if DEBUG_FATFS_MOVE_PAGE
2726uint32_t   cycle = (uint32_t)hal_get_cycles();
2727thread_t * this  = CURRENT_THREAD;
2728char       name[CONFIG_VFS_MAX_NAME_LENGTH];
2729#endif
2730
2731    // get page cluster an local pointer
2732    cxy_t    page_cxy = GET_CXY( page_xp );
2733    page_t * page_ptr = GET_PTR( page_xp );
2734
2735    // get mapper pointer and page index from page descriptor
2736    mapper_ptr = hal_remote_lpt( XPTR( page_cxy , &page_ptr->mapper ) );
2737    page_id    = hal_remote_l32( XPTR( page_cxy , &page_ptr->index ) );
2738
2739    // get pointer on local FATFS context
[611]2740    fatfs_ctx_t * fatfs_ctx = fs_context[FS_TYPE_FATFS].extend;
[602]2741
2742    // get page base address
[626]2743    xptr_t    buffer_xp  = ppm_page2base( page_xp );
2744    uint8_t * buffer_ptr = (uint8_t *)GET_PTR( buffer_xp );
[602]2745 
2746    // get inode pointer from mapper
2747    inode_ptr  = hal_remote_lpt( XPTR( page_cxy , &mapper_ptr->inode ) );
2748
[626]2749#if DEBUG_FATFS_MOVE_PAGE
2750if( DEBUG_FATFS_MOVE_PAGE < cycle )
2751printk("\n[%s] thread[%x,%x] enters : %s / cxy %x / mapper %x / inode %x / page %x\n",
2752__FUNCTION__, this->process->pid, this->trdid,
2753dev_ioc_cmd_str( cmd_type ), page_cxy, mapper_ptr, inode_ptr, buffer_ptr );
2754#endif
2755
2756    //////////////////////////////  FAT mapper
[602]2757    if( inode_ptr == NULL )
2758    {
2759        // get lba from FATFS context and page_id
[625]2760        uint32_t      lba = fatfs_ctx->fat_begin_lba + (page_id << 3);
[602]2761 
2762        // access device
[626]2763        if     (cmd_type == IOC_SYNC_READ ) error = dev_ioc_sync_read ( buffer_xp  , lba , 8 );
2764        else if(cmd_type == IOC_SYNC_WRITE) error = dev_ioc_sync_write( buffer_xp  , lba , 8 );
2765        else if(cmd_type == IOC_READ      ) error = dev_ioc_read      ( buffer_ptr , lba , 8 );
2766        else if(cmd_type == IOC_WRITE     ) error = dev_ioc_write     ( buffer_ptr , lba , 8 );
2767        else                                error = -1;
[602]2768
[626]2769        if( error )
2770        {
2771            printk("\n[ERROR] in %s : cannot access device\n", __FUNCTION__ );
2772            return -1;
2773        }
[602]2774
2775#if DEBUG_FATFS_MOVE_PAGE
2776if( DEBUG_FATFS_MOVE_PAGE < cycle )
2777{
[614]2778    if ( (cmd_type == IOC_READ) || (cmd_type == IOC_SYNC_READ) )
[626]2779        printk("\n[%s] thread[%x,%x] load FAT mapper page %d from IOC / cycle %d\n",
2780        __FUNCTION__, this->process->pid, this->trdid, page_id, cycle );
[602]2781    else
[626]2782        printk("\n[%s] thread[%x,%x] sync FAT mapper page %d to IOC / cycle %d\n",
[602]2783        __FUNCTION__, this->process->pid, this->trdid, page_id, cycle );
2784}
2785#endif
2786
2787    }
[626]2788    /////////////////////////  inode mapper
[602]2789    else                       
2790    {
2791
2792#if DEBUG_FATFS_MOVE_PAGE
2793vfs_inode_get_name( XPTR( page_cxy , inode_ptr ) , name );
2794#endif
2795
2796        uint32_t  searched_cluster;
2797        uint32_t  first_cluster;
2798
2799        // get first_cluster from inode extension
2800        void * extend = hal_remote_lpt( XPTR( page_cxy , &inode_ptr->extend ) );
2801        first_cluster = (uint32_t)(intptr_t)extend;
2802
2803        // compute searched_cluster
2804        if( page_id == 0 )            // no need to access FAT mapper
2805        {
2806            // searched cluster is first cluster
2807            searched_cluster = first_cluster;
2808        }
2809        else                        // FAT mapper access required
2810        {
2811            // access FAT mapper to get searched cluster
2812            error = fatfs_get_cluster( first_cluster,
2813                                       page_id,
2814                                       &searched_cluster );
[625]2815            if( error )
2816            {
2817                printk("\n[ERROR] in %s : cannot access FAT mapper\n", __FUNCTION__ );
2818                return -1;
2819            }
[602]2820        }
2821
[626]2822        // get lba for searched_cluster
[602]2823        uint32_t lba = fatfs_lba_from_cluster( fatfs_ctx , searched_cluster );
2824
[626]2825        // access device
2826        if     (cmd_type == IOC_SYNC_READ ) error = dev_ioc_sync_read ( buffer_xp  , lba , 8 );
2827        else if(cmd_type == IOC_SYNC_WRITE) error = dev_ioc_sync_write( buffer_xp  , lba , 8 );
2828        else if(cmd_type == IOC_READ      ) error = dev_ioc_read      ( buffer_ptr , lba , 8 );
2829        else if(cmd_type == IOC_WRITE     ) error = dev_ioc_write     ( buffer_ptr , lba , 8 );
2830        else                                error = -1;
2831
2832        if( error )
2833        {
2834            printk("\n[ERROR] in %s : cannot access device\n", __FUNCTION__ );
2835            return -1;
2836        }
2837
[625]2838#if DEBUG_FATFS_MOVE_PAGE
2839if( DEBUG_FATFS_MOVE_PAGE < cycle )
2840{
2841    if ( (cmd_type == IOC_READ) || (cmd_type == IOC_SYNC_READ) )
2842    printk("\n[%s] thread[%x,%x] load page %d of <%s> / cluster_id %x / cycle %d\n",
2843    __FUNCTION__, this->process->pid, this->trdid, page_id, name, searched_cluster, cycle );
2844    else
2845    printk("\n[%s] thread[%x,%x] sync page %d of <%s> / cluster_id %x / cycle %d\n",
2846    __FUNCTION__, this->process->pid, this->trdid, page_id, name, searched_cluster, cycle );
2847}
2848#endif
2849
[602]2850    }
2851
2852    return 0;
2853
2854}  // end fatfs_move_page()
2855
2856
Note: See TracBrowser for help on using the repository browser.