/* * chdev.c - channel device descriptor operations implementation. * * Authors Alain Greiner (2016) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH.is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH.is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH.; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include ////////////////////////////////////////////////////////////////////////////////////// // Extern global variables ////////////////////////////////////////////////////////////////////////////////////// extern chdev_directory_t chdev_dir; // allocated in kernel_init.c #if (DEBUG_SYS_READ & 1) extern uint32_t enter_chdev_cmd_read; extern uint32_t exit_chdev_cmd_read; extern uint32_t enter_chdev_server_read; extern uint32_t exit_chdev_server_read; #endif #if (DEBUG_SYS_WRITE & 1) extern uint32_t enter_chdev_cmd_write; extern uint32_t exit_chdev_cmd_write; extern uint32_t enter_chdev_server_write; extern uint32_t exit_chdev_server_write; #endif //////////////////////////////////////////// char * chdev_func_str( uint32_t func_type ) { switch ( func_type ) { case DEV_FUNC_RAM: return "RAM"; case DEV_FUNC_ROM: return "ROM"; case DEV_FUNC_FBF: return "FBF"; case DEV_FUNC_IOB: return "IOB"; case DEV_FUNC_IOC: return "IOC"; case DEV_FUNC_MMC: return "MMC"; case DEV_FUNC_DMA: return "DMA"; case DEV_FUNC_NIC: return "NIC"; case DEV_FUNC_TIM: return "TIM"; case DEV_FUNC_TXT: return "TXT"; case DEV_FUNC_ICU: return "ICU"; case DEV_FUNC_PIC: return "PIC"; default: return "undefined"; } } ///////////////////////////////////////// chdev_t * chdev_create( uint32_t func, uint32_t impl, uint32_t channel, uint32_t is_rx, xptr_t base ) { chdev_t * chdev; kmem_req_t req; // allocate memory for chdev req.type = KMEM_DEVICE; req.flags = AF_ZERO; chdev = (chdev_t *)kmem_alloc( &req ); if( chdev == NULL ) return NULL; // initialize lock remote_busylock_init( XPTR( local_cxy , &chdev->wait_lock ), LOCK_CHDEV_QUEUE ); // initialise waiting queue xlist_root_init( XPTR( local_cxy , &chdev->wait_root ) ); // initialize attributes chdev->func = func; chdev->impl = impl; chdev->channel = channel; chdev->is_rx = is_rx; chdev->base = base; return chdev; } // end chdev_create() /////////////////////////////////// void chdev_print( chdev_t * chdev ) { printk("\n - func = %s" "\n - channel = %d" "\n - base = %l" "\n - cmd = %x" "\n - isr = %x" "\n - chdev = %x\n", chdev_func_str(chdev->func), chdev->channel, chdev->base, chdev->cmd, chdev->isr, chdev ); } ////////////////////////////////////////////////// void chdev_register_command( xptr_t chdev_xp ) { thread_t * server_ptr; // local pointer on server thread associated to chdev xptr_t server_xp; // extended pointer on server thread core_t * core_ptr; // local pointer on core running the server thread uint32_t server_lid; // core running the server thread local index xptr_t lock_xp; // extended pointer on lock protecting the chdev state uint32_t save_sr; // for critical section #if (DEBUG_SYS_READ & 1) enter_chdev_cmd_read = (uint32_t)hal_get_cycles(); #endif #if (DEBUG_SYS_WRITE & 1) enter_chdev_cmd_write = (uint32_t)hal_get_cycles(); #endif thread_t * this = CURRENT_THREAD; // get chdev cluster and local pointer cxy_t chdev_cxy = GET_CXY( chdev_xp ); chdev_t * chdev_ptr = GET_PTR( chdev_xp ); // check calling thread can yield thread_assert_can_yield( this , __FUNCTION__ ); // get local and extended pointers on server thread server_ptr = (thread_t *)hal_remote_lpt( XPTR( chdev_cxy , &chdev_ptr->server) ); server_xp = XPTR( chdev_cxy , server_ptr ); // get local pointer on core running the server thread core_ptr = (core_t *)hal_remote_lpt( XPTR( chdev_cxy , &server_ptr->core ) ); // get server core local index server_lid = hal_remote_l32( XPTR( chdev_cxy , &core_ptr->lid ) ); #if (DEBUG_CHDEV_CMD_RX || DEBUG_CHDEV_CMD_TX) bool_t is_rx = hal_remote_l32( XPTR( chdev_cxy , &chdev_ptr->is_rx ) ); trdid_t server_trdid = hal_remote_l32( XPTR( chdev_cxy , &server_ptr->trdid ) ); process_t * process_ptr = hal_remote_lpt( XPTR( chdev_cxy , &server_ptr->process ) ); pid_t server_pid = hal_remote_l32( XPTR( chdev_cxy , &process_ptr->pid ) ); #endif #if DEBUG_CHDEV_CMD_RX uint32_t rx_cycle = (uint32_t)hal_get_cycles(); if( (is_rx) && (DEBUG_CHDEV_CMD_RX < rx_cycle) ) printk("\n[%s] client[%x,%x] enter for RX / server[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, server_pid, server_trdid, rx_cycle ); #endif #if DEBUG_CHDEV_CMD_TX uint32_t tx_cycle = (uint32_t)hal_get_cycles(); if( (is_rx == 0) && (DEBUG_CHDEV_CMD_TX < tx_cycle) ) printk("\n[%s] client[%x,%x] enter for TX / server[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, server_pid, server_trdid, tx_cycle ); #endif // build extended pointer on client thread xlist xptr_t list_xp = XPTR( local_cxy , &this->wait_list ); // build extended pointer on chdev waiting queue root xptr_t root_xp = XPTR( chdev_cxy , &chdev_ptr->wait_root ); // build extended pointer on server thread blocked state xptr_t blocked_xp = XPTR( chdev_cxy , &server_ptr->blocked ); // build extended pointer on lock protecting chdev waiting queue lock_xp = XPTR( chdev_cxy , &chdev_ptr->wait_lock ); // TODO the hal_disable_irq() / hal_restore_irq() // in the sequence below is probably useless, as it is // already done by the busylock_acquire() / busylock_release() // => remove it [AG] october 2018 // critical section for the following sequence: // (1) take the lock protecting the chdev state // (2) block the client thread // (3) unblock the server thread if required // (4) register client thread in server queue // (5) send IPI to force server scheduling // (6) release the lock protecting waiting queue // (7) deschedule // enter critical section hal_disable_irq( &save_sr ); // take the lock protecting chdev queue remote_busylock_acquire( lock_xp ); // block current thread thread_block( XPTR( local_cxy , CURRENT_THREAD ) , THREAD_BLOCKED_IO ); #if (DEBUG_CHDEV_CMD_TX & 1) if( (is_rx == 0) && (DEBUG_CHDEV_CMD_TX < tx_cycle) ) printk("\n[%s] client thread[%x,%x] blocked\n", __FUNCTION__, this->process->pid, this->trdid ); #endif #if (DEBUG_CHDEV_CMD_RX & 1) if( (is_rx) && (DEBUG_CHDEV_CMD_RX < rx_cycle) ) printk("\n[%s] client thread[%x,%x] blocked\n", __FUNCTION__, this->process_pid, this->trdid ); #endif // unblock server thread if required if( hal_remote_l32( blocked_xp ) & THREAD_BLOCKED_IDLE ) thread_unblock( server_xp , THREAD_BLOCKED_IDLE ); #if (DEBUG_CHDEV_CMD_TX & 1) if( (is_rx == 0) && (DEBUG_CHDEV_CMD_TX < tx_cycle) ) printk("\n[%s] TX server thread[%x,%x] unblocked\n", __FUNCTION__, server_pid, server_trdid ); #endif #if (DEBUG_CHDEV_CMD_RX & 1) if( (is_rx) && (DEBUG_CHDEV_CMD_RX < rx_cycle) ) printk("\n[%s] RX server thread[%x,%x] unblocked\n", __FUNCTION__, server_pid, server_trdid ); #endif // register client thread in waiting queue xlist_add_last( root_xp , list_xp ); #if (DEBUG_CHDEV_CMD_TX & 1) if( (is_rx == 0) && (DEBUG_CHDEV_CMD_TX < tx_cycle) ) printk("\n[%s] client thread[%x,%x] registered write request in chdev\n", __FUNCTION__, this->process->pid, this->trdid ); #endif #if (DEBUG_CHDEV_CMD_RX & 1) if( (is_rx) && (DEBUG_CHDEV_CMD_RX < rx_cycle) ) printk("\n[%s] client thread[%x,%x] registered read request in chdev\n", __FUNCTION__, this->process->pid, this->trdid ); #endif // send IPI to core running the server thread when server core != client core if( (server_lid != this->core->lid) || (local_cxy != chdev_cxy) ) { dev_pic_send_ipi( chdev_cxy , server_lid ); #if (DEBUG_CHDEV_CMD_TX & 1) if( (is_rx == 0) && (DEBUG_CHDEV_CMD_TX < tx_cycle) ) printk("\n[%s] client thread[%x,%x] sent IPI to TX server thread[%x,%x]\n", __FUNCTION__, this->process->pid, this->trdid, server_pid, server_trdid ); #endif #if (DEBUG_CHDEV_CMD_RX & 1) if( (is_rx) && (DEBUG_CHDEV_CMD_RX < rx_cycle) ) printk("\n[%s] client thread[%x,%x] sent IPI to RX server thread[%x,%x]\n", __FUNCTION__, this->process->pid, this->trdid, server_pid, server_trdid ); #endif } // release lock protecting chdev queue remote_busylock_release( lock_xp ); // deschedule sched_yield("blocked on I/O"); // exit critical section hal_restore_irq( save_sr ); #if DEBUG_CHDEV_CMD_RX rx_cycle = (uint32_t)hal_get_cycles(); if( (is_rx) && (DEBUG_CHDEV_CMD_RX < rx_cycle) ) printk("\n[%s] client_thread[%x,%x] exit for RX / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, rx_cycle ); #endif #if DEBUG_CHDEV_CMD_TX tx_cycle = (uint32_t)hal_get_cycles(); if( (is_rx == 0) && (DEBUG_CHDEV_CMD_TX < tx_cycle) ) printk("\n[%s] client_thread[%x,%x] exit for TX / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, tx_cycle ); #endif #if (DEBUG_SYS_READ & 1) exit_chdev_cmd_read = (uint32_t)hal_get_cycles(); #endif #if (DEBUG_SYS_WRITE & 1) exit_chdev_cmd_write = (uint32_t)hal_get_cycles(); #endif } // end chdev_register_command() ///////////////////////////////////////// void chdev_server_func( chdev_t * chdev ) { xptr_t client_xp; // extended pointer on waiting thread cxy_t client_cxy; // cluster of client thread thread_t * client_ptr; // local pointer on client thread thread_t * server; // local pointer on server thread xptr_t root_xp; // extended pointer on device waiting queue root xptr_t lock_xp; // extended pointer on lock ptotecting chdev queue server = CURRENT_THREAD; // build extended pointer on root of client threads queue root_xp = XPTR( local_cxy , &chdev->wait_root ); // build extended pointer on lock protecting client threads queue lock_xp = XPTR( local_cxy , &chdev->wait_lock ); // This infinite loop is executed by the DEV thread // to handle commands registered in the chdev queue. while( 1 ) { #if( DEBUG_CHDEV_SERVER_RX || DEBUG_CHDEV_SERVER_TX ) uint32_t rx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx) && (DEBUG_CHDEV_SERVER_RX < rx_cycle) ) printk("\n[%s] DEV thread[%x,%x] check TXT_RX channel %d / cycle %d\n", __FUNCTION__ , server->process->pid, server->trdid, chdev->channel, rx_cycle ); #endif #if DEBUG_CHDEV_SERVER_TX uint32_t tx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx == 0) && (DEBUG_CHDEV_SERVER_TX < tx_cycle) ) printk("\n[%s] thread[%x,%x] check TXT_TX channel %d / cycle %d\n", __FUNCTION__ , server->process->pid, server->trdid, chdev->channel, tx_cycle ); #endif // check server thread can yield thread_assert_can_yield( server , __FUNCTION__ ); // get the lock protecting the waiting queue remote_busylock_acquire( lock_xp ); // check waiting queue state if( xlist_is_empty( root_xp ) ) // waiting queue empty { // release lock protecting the waiting queue remote_busylock_release( lock_xp ); #if DEBUG_CHDEV_SERVER_RX rx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx) && (DEBUG_CHDEV_SERVER_RX < rx_cycle) ) printk("\n[%s] thread[%x,%x] found RX queue empty => blocks / cycle %d\n", __FUNCTION__ , server->process->pid, server->trdid, rx_cycle ); #endif #if DEBUG_CHDEV_SERVER_TX tx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx == 0) && (DEBUG_CHDEV_SERVER_TX < tx_cycle) ) printk("\n[%s] thread[%x,%x] found TX queue empty => blocks / cycle %d\n", __FUNCTION__ , server->process->pid, server->trdid, tx_cycle ); #endif // block thread_block( XPTR( local_cxy , server ) , THREAD_BLOCKED_IDLE ); // deschedule sched_yield("I/O queue empty"); } else // waiting queue not empty { // release lock protecting the waiting queue remote_busylock_release( lock_xp ); // get extended pointer on first client thread client_xp = XLIST_FIRST( root_xp , thread_t , wait_list ); // get client thread cluster and local pointer client_cxy = GET_CXY( client_xp ); client_ptr = GET_PTR( client_xp ); #if( DEBUG_CHDEV_SERVER_TX || DEBUG_CHDEV_SERVER_RX ) process_t * process = hal_remote_lpt( XPTR( client_cxy , &client_ptr->process ) ); pid_t client_pid = hal_remote_l32( XPTR( client_cxy , &process->pid ) ); trdid_t client_trdid = hal_remote_l32( XPTR( client_cxy , &client_ptr->trdid ) ); #endif #if DEBUG_CHDEV_SERVER_RX rx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx) && (DEBUG_CHDEV_SERVER_RX < rx_cycle) ) printk("\n[%s] thread[%x,%x] for RX get client thread[%x,%x] / cycle %d\n", __FUNCTION__, server->process->pid, server->trdid, client_pid, client_trdid, rx_cycle ); #endif #if DEBUG_CHDEV_SERVER_TX tx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx == 0) && (DEBUG_CHDEV_SERVER_TX < tx_cycle) ) printk("\n[%s] thread[%x,%x] for TX get client thread[%x,%x] / cycle %d\n", __FUNCTION__, server->process->pid, server->trdid, client_pid, client_trdid, tx_cycle ); #endif #if (DEBUG_SYS_READ & 1) enter_chdev_server_read = (uint32_t)hal_get_cycles(); #endif #if (DEBUG_SYS_WRITE & 1) enter_chdev_server_write = (uint32_t)hal_get_cycles(); #endif // call the (blocking) driver command function // to launch I/O operation AND wait completion chdev->cmd( client_xp ); // unblock client thread when driver returns thread_unblock( client_xp , THREAD_BLOCKED_IO ); // get the lock protecting the waiting queue remote_busylock_acquire( lock_xp ); // remove this client thread from chdev waiting queue xlist_unlink( XPTR( client_cxy , &client_ptr->wait_list ) ); // release lock protecting the waiting queue remote_busylock_release( lock_xp ); #if DEBUG_CHDEV_SERVER_RX rx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx) && (DEBUG_CHDEV_SERVER_RX < rx_cycle) ) printk("\n[%s] thread[%x,%x] completes RX for client thread[%x,%x] / cycle %d\n", __FUNCTION__, server->process->pid, server->trdid, client_pid, client_trdid, rx_cycle ); #endif #if DEBUG_CHDEV_SERVER_TX tx_cycle = (uint32_t)hal_get_cycles(); if( (chdev->is_rx == 0) && (DEBUG_CHDEV_SERVER_TX < tx_cycle) ) printk("\n[%s] thread[%x,%x] completes TX for client thread[%x,%x] / cycle %d\n", __FUNCTION__, server->process->pid, server->trdid, client_pid, client_trdid, tX_cycle ); #endif #if (DEBUG_SYS_READ & 1) exit_chdev_server_read = (uint32_t)hal_get_cycles(); #endif #if (DEBUG_SYS_WRITE & 1) exit_chdev_server_write = (uint32_t)hal_get_cycles(); #endif } } // end while } // end chdev_server_func() //////////////////////////////////////// xptr_t chdev_from_file( xptr_t file_xp ) { cxy_t file_cxy; vfs_file_t * file_ptr; uint32_t inode_type; vfs_inode_t * inode_ptr; chdev_t * chdev_ptr; assert( (file_xp != XPTR_NULL) , "file_xp == XPTR_NULL\n" ); // get cluster and local pointer on remote file descriptor // associated inode and chdev are stored in same cluster as the file desc. file_cxy = GET_CXY( file_xp ); file_ptr = (vfs_file_t *)GET_PTR( file_xp ); // get inode type from file descriptor inode_type = hal_remote_l32( XPTR( file_cxy , &file_ptr->type ) ); inode_ptr = (vfs_inode_t *)hal_remote_lpt( XPTR( file_cxy , &file_ptr->inode ) ); assert( (inode_type == INODE_TYPE_DEV) , "inode type %d is not INODE_TYPE_DEV\n", inode_type ); // get chdev local pointer from inode extension chdev_ptr = (chdev_t *)hal_remote_lpt( XPTR( file_cxy , &inode_ptr->extend ) ); return XPTR( file_cxy , chdev_ptr ); } // end chdev_from_file() ////////////////////////////// void chdev_dir_display( void ) { uint32_t i; cxy_t cxy; chdev_t * ptr; uint32_t base; // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on TXT0 lock xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock remote_busylock_acquire( lock_xp ); // header nolock_printk("\n***** external chdevs directory *****\n"); // IOB if (chdev_dir.iob != XPTR_NULL ) { cxy = GET_CXY( chdev_dir.iob ); ptr = GET_PTR( chdev_dir.iob ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - iob : cxy = %X / ptr = %X / base = %X\n", cxy, ptr, base); } // PIC cxy = GET_CXY( chdev_dir.pic ); ptr = GET_PTR( chdev_dir.pic ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - pic : cxy = %X / ptr = %X / base = %X\n", cxy, ptr, base); // TXT for( i = 0 ; i < LOCAL_CLUSTER->nb_txt_channels ; i++ ) { cxy = GET_CXY( chdev_dir.txt_rx[i] ); ptr = GET_PTR( chdev_dir.txt_rx[i] ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - txt_rx[%d] : cxy = %X / ptr = %X / base = %X\n", i, cxy, ptr, base); cxy = GET_CXY( chdev_dir.txt_tx[i] ); ptr = GET_PTR( chdev_dir.txt_tx[i] ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - txt_tx[%d] : cxy = %X / ptr = %X / base = %X\n", i, cxy, ptr, base); } // IOC for( i = 0 ; i < LOCAL_CLUSTER->nb_ioc_channels ; i++ ) { cxy = GET_CXY( chdev_dir.ioc[i] ); ptr = GET_PTR( chdev_dir.ioc[i] ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - ioc[%d] : cxy = %X / ptr = %X / base = %X\n", i, cxy, ptr, base); } // FBF for( i = 0 ; i < LOCAL_CLUSTER->nb_fbf_channels ; i++ ) { cxy = GET_CXY( chdev_dir.fbf[i] ); ptr = GET_PTR( chdev_dir.fbf[i] ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - fbf[%d] : cxy = %X / ptr = %X / base = %X\n", i, cxy, ptr, base); } // NIC for( i = 0 ; i < LOCAL_CLUSTER->nb_nic_channels ; i++ ) { cxy = GET_CXY( chdev_dir.nic_rx[i] ); ptr = GET_PTR( chdev_dir.nic_rx[i] ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - nic_rx[%d] : cxy = %X / ptr = %X / base = %X\n", i, cxy, ptr, base); cxy = GET_CXY( chdev_dir.nic_tx[i] ); ptr = GET_PTR( chdev_dir.nic_tx[i] ); base = (uint32_t)hal_remote_l64( XPTR( cxy , &ptr->base ) ); nolock_printk(" - nic_tx[%d] : cxy = %X / ptr = %X / base = %X\n", i, cxy, ptr, base); } // release lock remote_busylock_release( lock_xp ); } // end chdev_dir_display() /////////////////////////////////////////// void chdev_queue_display( xptr_t chdev_xp ) { cxy_t chdev_cxy; // chdev cluster chdev_t * chdev_ptr; // chdev local pointer xptr_t root_xp; // extended pointer on waiting queuue root char name[16]; // local copie of chdev name xptr_t iter_xp; // extended pointer on xlist_t field in waiting thread xptr_t thread_xp; // extended pointer on thread registered in queue cxy_t thread_cxy; // cluster identifier for waiting thread thread_t * thread_ptr; // local pointer on waiting thread trdid_t trdid; // waiting thread identifier process_t * process; // waiting thread process descriptor pid_t pid; // waiting thread process identifier // get cluster and local pointer on chdev chdev_cxy = GET_CXY( chdev_xp ); chdev_ptr = GET_PTR( chdev_xp ); // get extended pointer on root of requests queue root_xp = XPTR( chdev_cxy , &chdev_ptr->wait_root ); // get chdev name hal_remote_strcpy( XPTR( local_cxy , name ), XPTR( chdev_cxy , chdev_ptr->name ) ); // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on TXT0 lock xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock remote_busylock_acquire( lock_xp ); // check queue empty if( xlist_is_empty( root_xp ) ) { nolock_printk("\n***** Waiting queue empty for chdev %s\n", name ); } else { nolock_printk("\n***** Waiting queue for chdev %s\n", name ); // scan the waiting queue XLIST_FOREACH( root_xp , iter_xp ) { thread_xp = XLIST_ELEMENT( iter_xp , thread_t , wait_list ); thread_cxy = GET_CXY( thread_xp ); thread_ptr = GET_PTR( thread_xp ); trdid = hal_remote_l32 ( XPTR( thread_cxy , &thread_ptr->trdid ) ); process = hal_remote_lpt( XPTR( thread_cxy , &thread_ptr->process ) ); pid = hal_remote_l32 ( XPTR( thread_cxy , &process->pid ) ); nolock_printk("- thread[%x,%x]\n", pid, trdid ); } } // release TXT0 lock remote_busylock_release( lock_xp ); } // end chdev_queue_display()