/* * core.c - core descriptor access function. * * Author Ghassan Almaless (2008,2009,2010,2011,2012) * Alain Greiner (2016,2017) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH.is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include ///////////////////////////////// void core_init( core_t * core, lid_t lid, gid_t gid ) { core->lid = lid; core->gid = gid; core->cycles = 0; core->time_stamp = 0; core->ticks_nr = 0; core->ticks_period = CONFIG_SCHED_TICK_PERIOD; core->usage = 0; core->spurious_irqs = 0; core->rpc_threads = 0; list_root_init( &core->rpc_free_list ); core->thread_rpc = NULL; core->thread_idle = NULL; core->fpu_owner = NULL; core->rand_last = hal_time_stamp() & 0xFFF; sched_init( core ); } ////////////////////////////////////////////// inline uint32_t core_get_rand( core_t * core ) { uint32_t value = ((core->rand_last * CONFIG_RDNG_PARAM_A) + CONFIG_RDNG_PARAM_C) ^ (hal_time_stamp() & 0xFFF); core->rand_last = value; return value; } //////////////////////////////////////////////// inline uint64_t core_get_cycles( core_t * core ) { uint32_t elapsed; uint64_t cycles; uint32_t time_stamp = core->time_stamp; uint32_t time_now = hal_time_stamp(); // compute number of elapsed cycles, taking into account 32 bits register wrap if(time_now < time_stamp) elapsed = (0xFFFFFFFF - time_stamp) + time_now; else elapsed = (time_now - time_stamp); cycles = core->cycles + elapsed; // update core time core->time_stamp = time_now; core->cycles = cycles; hal_wbflush(); return cycles; } //////////////////////////////////// void core_get_time( core_t * core, uint32_t * tm_s, uint32_t * tm_us ) { // uint64_t cycles = core_get_cycles( core ); // TODO ces deux ligne ne compilent pas : "undefined referenc to __udivdi3" // *tm_ms = (cycles / CONFIG_CYCLES_PER_MS); // *tm_us = (cycles % CONFIG_CYCLES_PER_MS) / (CONFIG_CYCLES_PER_MS / 1000000); printk("\n[PANIC] in %s : not implemented yet\n", __FUNCTION__ ); } ////////////////////////////////////// void core_time_update( core_t * core ) { uint32_t elapsed; uint32_t ticks_nr = core->ticks_nr; uint64_t cycles = core->cycles; uint32_t time_stamp = core->time_stamp; uint32_t time_now = hal_time_stamp(); // compute number of elapsed cycles taking into account 32 bits register wrap if( time_now < time_stamp ) elapsed = (0xFFFFFFFF - time_stamp) + time_now; else elapsed = time_now - time_stamp; cycles += elapsed; ticks_nr = elapsed / core->ticks_period; core->time_stamp = time_now; core->cycles = cycles + elapsed; core->ticks_nr = ticks_nr + (elapsed / core->ticks_period); hal_wbflush(); } //////////////////////////////// void core_clock( core_t * core ) { uint32_t ticks; // update cycles and ticks counter core_time_update( core ); // get current ticks number ticks = core->ticks_nr; // handle pending alarms TODO ??? [AG] // alarm_clock( &core->alarm_mgr , ticks ); // handle scheduler TODO improve the scheduling condition ... AG if( (ticks % 10) == 0 ) sched_yield(); // update DQDT TODO This update should depend on the cluster identifier, // to avoid simultaneous updates from various clusters ... AG if( ((ticks % CONFIG_DQDT_PERIOD) == 0) && (core->lid == 0) ) dqdt_global_update(); } //////////////////////////////////////// void core_compute_stats( core_t * core ) { thread_t * idle = core->thread_idle; uint32_t ticks = core->ticks_nr; uint32_t idle_percent; uint32_t busy_percent; uint32_t usage; // compute cumulated usage ticks = (ticks) ? ticks : 1; idle_percent = (idle->ticks_nr * 100) / ticks; idle_percent = (idle_percent > 100) ? 100 : idle_percent; busy_percent = 100 - idle_percent; usage = (busy_percent + core->usage) / 2; // update core descriptor core->usage = usage; hal_wbflush(); #if CONFIG_SHOW_CPU_USAGE printk(INFO, "INFO: core %d in cluster %x : busy_percent = %d / cumulated_usage = %d\n", core->lid, local_cxy , busy_percent , usage ); #endif core->ticks_nr = 0; idle->ticks_nr = 0; } ///////////////////////////////////// void core_reset_stats( core_t * core ) { core_time_update(core); core->ticks_nr = 0; core->usage = 0; core->thread_idle->ticks_nr = 0; hal_wbflush(); } /////////////////////////////////////////////////// void core_set_irq_vector_entry( core_t * core, uint32_t irq_type, uint32_t irq_id, chdev_t * chdev ) { if ( irq_type == WTI_TYPE ) core->wti_vector[irq_id] = chdev; else if( irq_type == HWI_TYPE ) core->hwi_vector[irq_id] = chdev; else core->pti_vector[irq_id] = chdev; }