/* * dqdt.c - Distributed Quaternary Decision Tree implementation. * * Author : Alain Greiner (2016) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include /////////////////////////////////////////// void dqdt_local_print( dqdt_node_t * node ) { printk("DQDT node : level = %d / cluster = %x / threads = %x / pages = %x\n", node->level, local_cxy, node->threads, node->pages ); } ///////////////////////////////////////// void dqdt_global_print( xptr_t node_xp ) { uint32_t i; dqdt_node_t local_node; // get root node local copy hal_remote_memcpy( XPTR( local_cxy , &local_node ), node_xp , sizeof(dqdt_node_t) ); // display DQDT node content dqdt_local_print( &local_node ); // recursive call on children if node is not terminal if ( local_node.level > 0 ) { for ( i = 0 ; i < 4 ; i++ ) { if ( local_node.children[i] != XPTR_NULL ) dqdt_global_print( local_node.children[i] ); } } } //////////////////////////////////// uint32_t dqdt_init( uint32_t x_size, uint32_t y_size, uint32_t y_width ) { if( (x_size > 32) || (y_size > 32) ) { printk("\n[PANIC] in %s : illegal mesh size for DQDT support\n", __FUNCTION__ ); hal_core_sleep(); } dqdt_node_t * node; cxy_t p_cxy; // cluster coordinates for parent node cxy_t c_cxy; // cluster coordinates for child node uint32_t level; // node level in quad tree uint32_t mask; // mask on node coordinates to compute existence condition uint32_t pmask; // mask to compute parent coordinates from child coordinates cluster_t * cluster; // pointer on local cluster cluster = LOCAL_CLUSTER; // compute level_max uint32_t x_size_ext = POW2_ROUNDUP( x_size ); uint32_t y_size_ext = POW2_ROUNDUP( y_size ); uint32_t size_ext = MAX(x_size_ext , y_size_ext); uint32_t level_max = (bits_log2(size_ext * size_ext) >> 1) + 1; // get cluster coordinates uint32_t x = local_cxy >> y_width; uint32_t y = local_cxy & ((1<dqdt_tbl[level]; // set default values node->level = level; node->arity = 0; node->threads = 0; node->pages = 0; node->parent = XPTR_NULL; node->children[0] = XPTR_NULL; node->children[1] = XPTR_NULL; node->children[2] = XPTR_NULL; node->children[3] = XPTR_NULL; // compute masks depending on level : 0x1, 0x3, 0x7, 0xF, 0x1F etc. mask = (1<parent = XPTR( p_cxy , &cluster->dqdt_tbl[level+1] ); // set child[0] extended pointer (same [x,y] coordinates) if ( level > 0 ) { c_cxy = local_cxy; node->children[0] = XPTR( c_cxy , &cluster->dqdt_tbl[level-1]); node->arity++; } // set child[1] extended pointer (coordinates may overflow) if ( (level > 0) && ((y + (1<<(level-1))) < y_size) ) { c_cxy = local_cxy + (1<<(level-1)); node->children[1] = XPTR( c_cxy , &cluster->dqdt_tbl[level-1] ); node->arity++; } // set child[2] extended pointer (coordinates may overflow) if ( (level > 0) && ((x + (1<<(level-1))) < x_size) ) { c_cxy = local_cxy + ((1<<(level-1))<children[2] = XPTR( c_cxy , &cluster->dqdt_tbl[level-1]); node->arity++; } // set child[3] extended pointer (coordinates may overflow) if ( (level > 0) && ((x + (1<<(level-1))) < x_size) && ((y + (1<<(level-1))) < y_size) ) { c_cxy = local_cxy + ((1<<(level-1))<children[3] = XPTR( c_cxy , &cluster->dqdt_tbl[level-1]); node->arity++; } } // end if existence condition } // end for level return level_max; } // end dqdt_init() /////////////////////////////////////////////////////////////////////////// // This recursive function is called by the dqdt_global_update() function. // It traverses the quad tree from clusters to root. /////////////////////////////////////////////////////////////////////////// static void dqdt_propagate( xptr_t node, // extended pointer on current node int32_t threads_var, // number of threads variation int32_t pages_var ) // number of pages variation { // get current node cluster identifier and local pointer cxy_t cxy = (cxy_t)GET_CXY( node ); dqdt_node_t * ptr = (dqdt_node_t *)GET_PTR( node ); // update current node threads number hal_remote_atomic_add( XPTR( cxy , &ptr->threads ) , threads_var ); // update current node pages number hal_remote_atomic_add( XPTR( cxy , &ptr->pages ) , pages_var ); // get extended pointer on parent node xptr_t parent = (xptr_t)hal_remote_lwd( XPTR( cxy , &ptr->parent ) ); // propagate if required if ( parent != XPTR_NULL ) { dqdt_propagate( parent, threads_var, pages_var ); } } ///////////////////////// void dqdt_global_update() { cluster_t * cluster = LOCAL_CLUSTER; dqdt_node_t * node = &cluster->dqdt_tbl[0]; // get variations int32_t threads_var = cluster->threads_var; int32_t pages_var = cluster->pages_var; // propagate this variation to DQDT upper levels if( (threads_var || pages_var) && (node->parent != XPTR_NULL) ) { dqdt_propagate( node->parent, threads_var, pages_var ); } // update variations hal_atomic_add( &cluster->threads_var , -threads_var ); hal_atomic_add( &cluster->pages_var , -pages_var ); } /////////////////////////////////////////////////// void dqdt_local_update_threads( int32_t increment ) { cluster_t * cluster = LOCAL_CLUSTER; // register change for future propagation in DQDT hal_atomic_add( &cluster->threads_var , increment ); // update DQDT node level 0 hal_atomic_add( &cluster->dqdt_tbl[0].threads , increment ); } ///////////////////////////////////////////////// void dqdt_local_update_pages( int32_t increment ) { cluster_t * cluster = LOCAL_CLUSTER; // register change for future propagation in DQDT hal_atomic_add( &cluster->pages_var , increment ); // update DQDT node level 0 hal_atomic_add( &cluster->dqdt_tbl[0].pages , increment ); } //////////////////////////////////////////////////////////////////////////////// // This recursive function is called by both the dqdt_get_cluster_for_process() // and by the dqdt_get_cluster_for_memory() functions to select the cluster // with smallest number of thread, or smallest number of allocated pages. // It traverses the quad tree from root to clusters. /////////////////////////////////////////////////////////////////////////////// static cxy_t dqdt_select_cluster( xptr_t node, bool_t for_memory ) { dqdt_node_t node_copy; // local copy of the current DQDT node uint32_t i; // index in the loop on children uint32_t select; // index of selected child xptr_t child; // extended pointer on a DQDT child node cxy_t cxy; // DQDT child node cluster identifier dqdt_node_t * ptr; // pointer on a DQDT child node uint32_t load; // load of the child (threads or pages) uint32_t load_min; // current value of the minimal load // get DQDT node local copy hal_remote_memcpy( XPTR( local_cxy , &node_copy ), node , sizeof(dqdt_node_t) ); // return cluster identifier for a terminal mode if( node_copy.level == 0 ) return GET_CXY(node); // analyse load for all children in non terminal node load_min = 0xFFFFFFFF; select = 0; for( i = 0 ; i < 4 ; i++ ) { child = node_copy.children[i]; if( child != XPTR_NULL ) { cxy = (cxy_t)GET_CXY( child ); ptr = (dqdt_node_t *)GET_PTR( child ); if( for_memory ) load = hal_remote_lw( XPTR( cxy , &ptr->pages ) ); else load = hal_remote_lw( XPTR( cxy , &ptr->threads ) ); if( load < load_min ) { load_min = load; select = i; } } } // select the child with the lowest load return dqdt_select_cluster( node_copy.children[select], for_memory ); } //////////////////////////////////// cxy_t dqdt_get_cluster_for_process() { // build extended pointer on DQDT root node cluster_t * cluster = LOCAL_CLUSTER; uint32_t level = cluster->dqdt_root_level; xptr_t root = XPTR( 0 , &cluster->dqdt_tbl[level] ); // call recursive function return dqdt_select_cluster( root , false ); } //////////////////////////////////// cxy_t dqdt_get_cluster_for_memory() { // build extended pointer on DQDT root node cluster_t * cluster = LOCAL_CLUSTER; uint32_t level = cluster->dqdt_root_level; xptr_t root = XPTR( 0 , &cluster->dqdt_tbl[level] ); // call recursive function return dqdt_select_cluster( root , true ); }