/* * dqdt.c - Distributed Quaternary Decision Tree implementation. * * Author : Alain Greiner (2016,2017,2018) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include /////////////////////////////////////////////////////////////////////////////////////////// // Extern variables /////////////////////////////////////////////////////////////////////////////////////////// extern chdev_directory_t chdev_dir; // defined in chdev.h / allocated in kernel_init.c /////////////////////////////////////////////////////////////////////////////////////////// // This static recursive function traverse the DQDT quad-tree from root to bottom. /////////////////////////////////////////////////////////////////////////////////////////// static void dqdt_recursive_print( xptr_t node_xp ) { uint32_t x; uint32_t y; dqdt_node_t node; // get node local copy hal_remote_memcpy( XPTR( local_cxy , &node ), node_xp , sizeof(dqdt_node_t) ); // display node content nolock_printk("- level %d / cluster %x : threads = %x / pages = %x / clusters %d / cores %d\n", node.level, GET_CXY( node_xp ), node.threads, node.pages, node.clusters, node.cores ); // recursive call on children if node is not terminal if ( node.level > 0 ) { for ( x = 0 ; x < 2 ; x++ ) { for ( y = 0 ; y < 2 ; y++ ) { xptr_t iter_xp = node.children[x][y]; if ( iter_xp != XPTR_NULL ) dqdt_recursive_print( iter_xp ); } } } } ///////////////////////// void dqdt_display( void ) { // get extended pointer on DQDT root node cluster_t * cluster = &cluster_manager; xptr_t root_xp = cluster->dqdt_root_xp; // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on remote TXT0 lock xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock remote_busylock_acquire( lock_xp ); // print header nolock_printk("\n***** DQDT state\n\n"); // call recursive function dqdt_recursive_print( root_xp ); // release TXT0 lock remote_busylock_release( lock_xp ); } /////////////////////////////////////////////////////////////////////////////////////// // This static function initializes recursively, from top to bottom, the quad-tree // infrastructure. The DQDT nodes are allocated as global variables in each local // cluster manager. At each level in the quad-tree, this function initializes the // node identified by the and arguments, selects in each child // macro-cluster the precise cluster where will be placed the subtree root node, // and call recursively itself to initialize the child node in the selected cluster. /////////////////////////////////////////////////////////////////////////////////////// // @ node cxy : cluster containing the node to initialize // @ level : level of node to be initialised // @ parent_xp : extended pointer on the parent node /////////////////////////////////////////////////////////////////////////////////////// static void dqdt_recursive_build( cxy_t node_cxy, uint32_t level, xptr_t parent_xp ) { assert( (level < 5) , __FUNCTION__, "illegal DQDT level %d\n", level ); uint32_t node_x; // node X coordinate uint32_t node_y; // node Y coordinate uint32_t mask; // to compute associated macro-cluster coordinates uint32_t node_base_x; // associated macro_cluster X coordinate uint32_t node_base_y; // associated macro_cluster y coordinate uint32_t half; // associated macro-cluster half size uint32_t cores; // number of cores in macro cluster uint32_t clusters; // number of clusters in macro cluster // get node cluster coordinates node_x = HAL_X_FROM_CXY( node_cxy ); node_y = HAL_Y_FROM_CXY( node_cxy ); // get macro-cluster mask and half-size mask = (1 << level) - 1; half = (level > 0) ? (1 << (level - 1)) : 0; // get macro-cluster coordinates node_base_x = node_x & ~mask; node_base_y = node_y & ~mask; // get pointer on local cluster manager cluster_t * cluster = LOCAL_CLUSTER; // build local and extended pointer on node to be initialized dqdt_node_t * node_ptr = &cluster->dqdt_tbl[level]; xptr_t node_xp = XPTR( node_cxy , node_ptr ); #if DEBUG_DQDT_INIT printk("\n[DBG] %s : cxy(%d,%d) / level %d / mask %x / half %d / ptr %x\n", __FUNCTION__, node_x, node_y, level, mask, half, node_ptr ); #endif // make remote node default initialisation hal_remote_memset( node_xp , 0 , sizeof( dqdt_node_t ) ); // initialize field hal_remote_s64( XPTR( node_cxy , &node_ptr->parent ) , parent_xp ); // initialize field hal_remote_s32( XPTR( node_cxy , &node_ptr->level ) , level ); // recursive initialisation if( level == 0 ) // terminal case : cluster { // initialize field in node hal_remote_s32( XPTR( node_cxy , &node_ptr->clusters ) , 1 ); // initialize field in node cores = hal_remote_l32( XPTR ( node_cxy , &cluster->cores_nr ) ); hal_remote_s32( XPTR( node_cxy , &node_ptr->cores ) , cores ); } else // non terminal : macro-cluster { bool_t found; uint32_t x; uint32_t y; cxy_t child_cxy; xptr_t child_xp; dqdt_node_t * child_ptr = &cluster->dqdt_tbl[level-1]; // search an active cluster in child[0][0] macro-cluster found = false; for( x = node_base_x ; (x < (node_base_x + half)) && (found == false) ; x++ ) { for( y = node_base_y ; (y < (node_base_y + half)) && (found == false) ; y++ ) { child_cxy = HAL_CXY_FROM_XY( x , y ); if( cluster_is_active( child_cxy ) ) { // initialize recursively selected child[0][0] node dqdt_recursive_build( child_cxy , level-1 , node_xp ); // build extended pointer on child[0][0] node child_xp = XPTR( child_cxy , child_ptr ); // update field in node cores = hal_remote_l32( XPTR ( child_cxy , &child_ptr->cores ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->cores ) , cores ); // update field in node clusters = hal_remote_l32( XPTR ( child_cxy , &child_ptr->clusters ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->clusters ) , clusters ); // update field in node hal_remote_s64( XPTR( node_cxy , &node_ptr->children[0][0] ), child_xp ); // udate field in node hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->arity ) , 1 ); // exit loops found = true; } } } // search an active cluster in child[0][1] macro-cluster found = false; for( x = node_base_x ; (x < (node_base_x + half)) && (found == false) ; x++ ) { for( y = (node_base_y + half) ; (y < (node_base_y + (half<<1))) && (found == false) ; y++ ) { child_cxy = HAL_CXY_FROM_XY( x , y ); if( cluster_is_active( child_cxy ) ) { // initialize recursively selected child[0][1] node dqdt_recursive_build( child_cxy , level-1 , node_xp ); // build extended pointer on child[0][1] node child_xp = XPTR( child_cxy , child_ptr ); // update field in node cores = hal_remote_l32( XPTR ( child_cxy , &child_ptr->cores ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->cores ) , cores ); // update field in node clusters = hal_remote_l32( XPTR ( child_cxy , &child_ptr->clusters ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->clusters ) , clusters ); // update field in node hal_remote_s64( XPTR( node_cxy , &node_ptr->children[0][1] ), child_xp ); // udate field in node hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->arity ) , 1 ); // exit loops found = true; } } } // search an active cluster in child[1][0] macro-cluster found = false; for( x = (node_base_x +half) ; (x < (node_base_x + (half<<1))) && (found == false) ; x++ ) { for( y = node_base_y ; (y < (node_base_y + half)) && (found == false) ; y++ ) { child_cxy = HAL_CXY_FROM_XY( x , y ); if( cluster_is_active( child_cxy ) ) { // initialize recursively selected child[1][0] node dqdt_recursive_build( child_cxy , level-1 , node_xp ); // build extended pointer on child[1][0] node child_xp = XPTR( child_cxy , child_ptr ); // update field in node cores = hal_remote_l32( XPTR ( child_cxy , &child_ptr->cores ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->cores ) , cores ); // update field in node clusters = hal_remote_l32( XPTR ( child_cxy , &child_ptr->clusters ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->clusters ) , clusters ); // update field in node hal_remote_s64( XPTR( node_cxy , &node_ptr->children[1][0] ), child_xp ); // udate field in node hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->arity ) , 1 ); // exit loops found = true; } } } // search an active cluster in child[1][1] macro-cluster found = false; for( x = (node_base_x + half) ; (x < (node_base_x + (half<<1))) && (found == false) ; x++ ) { for( y = (node_base_y + half) ; (y < (node_base_y + (half<<1))) && (found == false) ; y++ ) { child_cxy = HAL_CXY_FROM_XY( x , y ); if( cluster_is_active( child_cxy ) ) { // initialize recursively selected child[1][1] node dqdt_recursive_build( child_cxy , level-1 , node_xp ); // build extended pointer on child[1][1] node child_xp = XPTR( child_cxy , child_ptr ); // update field in node cores = hal_remote_l32( XPTR ( child_cxy , &child_ptr->cores ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->cores ) , cores ); // update field in node clusters = hal_remote_l32( XPTR ( child_cxy , &child_ptr->clusters ) ); hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->clusters ) , clusters ); // update field in node hal_remote_s64( XPTR( node_cxy , &node_ptr->children[1][1] ), child_xp ); // udate field in node hal_remote_atomic_add( XPTR( node_cxy , &node_ptr->arity ) , 1 ); // exit loops found = true; } } } } } // end dqdt_recursive_build() ////////////////////// void dqdt_init( void ) { // get x_size & y_size from cluster manager cluster_t * cluster = &cluster_manager; uint32_t x_size = cluster->x_size; uint32_t y_size = cluster->y_size; assert( ((x_size <= 16) && (y_size <= 16)) , "illegal mesh size\n"); // compute level_max uint32_t x_size_ext = POW2_ROUNDUP( x_size ); uint32_t y_size_ext = POW2_ROUNDUP( y_size ); uint32_t size_ext = MAX( x_size_ext , y_size_ext ); uint32_t level_max = bits_log2( size_ext ); // each CP0 register the DQDT root in local cluster manager cluster->dqdt_root_xp = XPTR( 0 , &cluster->dqdt_tbl[level_max] ); #if DEBUG_DQDT_INIT if( local_cxy == 0 ) printk("\n[DBG] %s : x_size = %d / y_size = %d / level_max = %d\n", __FUNCTION__, x_size, y_size, level_max ); #endif // only CP0 in cluster 0 call the recursive function to build the quad-tree if (local_cxy == 0) dqdt_recursive_build( local_cxy , level_max , XPTR_NULL ); #if DEBUG_DQDT_INIT if( local_cxy == 0 ) dqdt_display(); #endif } // end dqdt_init() /////////////////////////////////////////////////////////////////////////// // This recursive function is called by both the dqdt_increment_pages() // and by the dqdt_decrement_pages() functions. // It traverses the quad tree from clusters to root. /////////////////////////////////////////////////////////////////////////// // @ node : extended pointer on current node // @ increment : number of pages variation /////////////////////////////////////////////////////////////////////////// static void dqdt_propagate_pages( xptr_t node, int32_t increment ) { // get current node cluster identifier and local pointer cxy_t cxy = GET_CXY( node ); dqdt_node_t * ptr = GET_PTR( node ); // update current node pages number hal_remote_atomic_add( XPTR( cxy , &ptr->pages ) , increment ); // get extended pointer on parent node xptr_t parent = (xptr_t)hal_remote_l64( XPTR( cxy , &ptr->parent ) ); // propagate if required if ( parent != XPTR_NULL ) dqdt_propagate_pages( parent, increment ); } /////////////////////////////////////////// void dqdt_increment_pages( uint32_t order ) { cluster_t * cluster = LOCAL_CLUSTER; dqdt_node_t * node = &cluster->dqdt_tbl[0]; // update DQDT node level 0 hal_atomic_add( &node->pages , (1 << order) ); // propagate to DQDT upper levels if( node->parent != XPTR_NULL ) dqdt_propagate_pages( node->parent , (1 << order) ); #if DEBUG_DQDT_UPDATE_PAGES uint32_t cycle = hal_get_cycles(); if( cycle > DEBUG_DQDT_UPDATE_PAGES ) printk("\n[DBG] %s : thread %x in process %x / %x pages in cluster %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, node->pages, local_cxy, cycle ); #endif } /////////////////////////////////////////// void dqdt_decrement_pages( uint32_t order ) { cluster_t * cluster = LOCAL_CLUSTER; dqdt_node_t * node = &cluster->dqdt_tbl[0]; // update DQDT node level 0 hal_atomic_add( &node->pages , -(1 << order) ); // propagate to DQDT upper levels if( node->parent != XPTR_NULL ) dqdt_propagate_pages( node->parent , -(1 << order) ); #if DEBUG_DQDT_UPDATE_PAGES uint32_t cycle = hal_get_cycles(); if( cycle > DEBUG_DQDT_UPDATE_PAGES ) printk("\n[DBG] %s : thread %x in process %x / %x pages in cluster %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, node->pages, local_cxy, cycle ); #endif } /////////////////////////////////////////////////////////////////////////// // This recursive function is called by both the dqdt_increment_threads() // and by the dqdt_decrement_threads functions. // It traverses the quad tree from clusters to root. /////////////////////////////////////////////////////////////////////////// // @ node : extended pointer on current node // @ increment : number of pages variation /////////////////////////////////////////////////////////////////////////// static void dqdt_propagate_threads( xptr_t node, int32_t increment ) { // get current node cluster identifier and local pointer cxy_t cxy = GET_CXY( node ); dqdt_node_t * ptr = GET_PTR( node ); // update current node threads number hal_remote_atomic_add( XPTR( cxy , &ptr->threads ) , increment ); // get extended pointer on parent node xptr_t parent = (xptr_t)hal_remote_l64( XPTR( cxy , &ptr->parent ) ); // propagate if required if ( parent != XPTR_NULL ) dqdt_propagate_threads( parent, increment ); } /////////////////////////////////// void dqdt_increment_threads( void ) { cluster_t * cluster = LOCAL_CLUSTER; dqdt_node_t * node = &cluster->dqdt_tbl[0]; // update DQDT node level 0 hal_atomic_add( &node->threads , 1 ); // propagate to DQDT upper levels if( node->parent != XPTR_NULL ) dqdt_propagate_threads( node->parent , 1 ); #if DEBUG_DQDT_UPDATE_THREADS uint32_t cycle = hal_get_cycles(); if( cycle > DEBUG_DQDT_UPDATE_THREADS ) printk("\n[DBG] %s : thread %x in process %x / %d threads in cluster %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, node->threads, local_cxy, cycle ); #endif } /////////////////////////////////// void dqdt_decrement_threads( void ) { cluster_t * cluster = LOCAL_CLUSTER; dqdt_node_t * node = &cluster->dqdt_tbl[0]; // update DQDT node level 0 hal_atomic_add( &node->threads , -1 ); // propagate to DQDT upper levels if( node->parent != XPTR_NULL ) dqdt_propagate_threads( node->parent , -1 ); #if DEBUG_DQDT_UPDATE_THREADS uint32_t cycle = hal_get_cycles(); if( cycle > DEBUG_DQDT_UPDATE_THREADS ) printk("\n[DBG] %s : thread %x in process %x / %d threads in cluster %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, node->threads, local_cxy, cycle ); #endif } ///////////////////////////////////////////////////////////////////////////////////// // This recursive function is called by both the dqdt_get_cluster_for_process() // and by the dqdt_get_cluster_for_memory() functions to select the cluster with the // smallest number of threads per core, or the smallest number of pages per cluster. // It traverses the quad tree from root to clusters. ///////////////////////////////////////////////////////////////////////////////////// static cxy_t dqdt_select_cluster( xptr_t node, bool_t for_memory ) { dqdt_node_t node_copy; // local copy of the current DQDT node xptr_t child_xp; // extended pointer on a DQDT child node uint32_t x; // child node X coordinate uint32_t y; // child node Y coordinate uint32_t select_x; // selected child X coordinate uint32_t select_y; // selected child Y coordinate uint32_t load; // load of the child (threads or pages) uint32_t load_min; // current value of the minimal load // get DQDT node local copy hal_remote_memcpy( XPTR( local_cxy , &node_copy ), node , sizeof(dqdt_node_t) ); // return cluster identifier for a terminal mode if( node_copy.level == 0 ) return GET_CXY(node); // analyse load for all children in non terminal node load_min = 0xFFFFFFFF; select_x = 0; select_y = 0; for( x = 0 ; x < 2 ; x++ ) { for( y = 0 ; y < 2 ; y++ ) { child_xp = node_copy.children[x][y]; if( child_xp != XPTR_NULL ) { cxy_t cxy = GET_CXY( child_xp ); dqdt_node_t * ptr = GET_PTR( child_xp ); // compute average load for each child if( for_memory ) { load = hal_remote_l32( XPTR( cxy , &ptr->pages ) ) / hal_remote_l32( XPTR( cxy , &ptr->clusters ) ); } else { load = hal_remote_l32( XPTR( cxy , &ptr->threads ) ) / hal_remote_l32( XPTR( cxy , &ptr->cores ) ); } // select children with smallest load if( load <= load_min ) { load_min = load; select_x = x; select_y = y; } } } } // select the child with the lowest load return dqdt_select_cluster( node_copy.children[select_x][select_y], for_memory ); } // end dqdt_select_cluster() ////////////////////////////////////////// cxy_t dqdt_get_cluster_for_process( void ) { // call recursive function cxy_t cxy = dqdt_select_cluster( LOCAL_CLUSTER->dqdt_root_xp , false ); #if DEBUG_DQDT_SELECT_FOR_PROCESS uint32_t cycle = hal_get_cycles(); if( cycle > DEBUG_DQDT_SELECT_FOR_PROCESS ) printk("\n[DBG] %s : thread %x in process %x select cluster %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, cxy, cycle ); #endif return cxy; } ///////////////////////////////////////// cxy_t dqdt_get_cluster_for_memory( void ) { // call recursive function cxy_t cxy = dqdt_select_cluster( LOCAL_CLUSTER->dqdt_root_xp , true ); #if DEBUG_DQDT_SELECT_FOR_MEMORY uint32_t cycle = hal_get_cycles(); if( cycle > DEBUG_DQDT_SELECT_FOR_MEMORY ) printk("\n[DBG] %s : thread %x in process %x select cluster %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD->trdid, CURRENT_THREAD->process->pid, cxy, cycle ); #endif return cxy; }