source: trunk/kernel/kern/kernel_init.c @ 536

Last change on this file since 536 was 536, checked in by nicolas.van.phan@…, 6 years ago

TTY MUX 1 : Init tty chdevs in internal_devices_init()

File size: 58.0 KB
RevLine 
[1]1/*
2 * kernel_init.c - kernel parallel initialization
[127]3 *
[23]4 * Authors :  Mohamed Lamine Karaoui (2015)
5 *            Alain Greiner  (2016,2017)
[1]6 *
7 * Copyright (c) Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
[14]25#include <kernel_config.h>
[1]26#include <errno.h>
[457]27#include <hal_kernel_types.h>
[1]28#include <hal_special.h>
29#include <hal_context.h>
[279]30#include <hal_irqmask.h>
[296]31#include <hal_ppm.h>
[14]32#include <barrier.h>
[1]33#include <remote_barrier.h>
[407]34#include <remote_fifo.h>
[1]35#include <core.h>
36#include <list.h>
[68]37#include <xlist.h>
[204]38#include <xhtab.h>
[1]39#include <thread.h>
40#include <scheduler.h>
41#include <kmem.h>
42#include <cluster.h>
43#include <string.h>
44#include <memcpy.h>
45#include <ppm.h>
46#include <page.h>
[5]47#include <chdev.h>
[1]48#include <boot_info.h>
49#include <dqdt.h>
50#include <dev_mmc.h>
[5]51#include <dev_dma.h>
52#include <dev_iob.h>
[1]53#include <dev_ioc.h>
[5]54#include <dev_txt.h>
[1]55#include <dev_pic.h>
56#include <printk.h>
57#include <vfs.h>
[23]58#include <devfs.h>
[68]59#include <mapper.h>
[1]60
61///////////////////////////////////////////////////////////////////////////////////////////
[279]62// All the following global variables are replicated in all clusters.
[1]63// They are initialised by the kernel_init() function.
[14]64//
[127]65// WARNING : The section names have been defined to control the base addresses of the
[14]66// boot_info structure and the idle thread descriptors, through the kernel.ld script:
[127]67// - the boot_info structure is built by the bootloader, and used by kernel_init.
68//   it must be the first object in the kdata segment.
[14]69// - the array of idle threads descriptors must be placed on the first page boundary after
70//   the boot_info structure in the kdata segment.
[1]71///////////////////////////////////////////////////////////////////////////////////////////
72
[5]73// This variable defines the local boot_info structure
74__attribute__((section(".kinfo")))
[14]75boot_info_t          boot_info;
[5]76
[14]77// This variable defines the "idle" threads descriptors array
78__attribute__((section(".kidle")))
[381]79char                 idle_threads[CONFIG_THREAD_DESC_SIZE *
[14]80                                   CONFIG_MAX_LOCAL_CORES]   CONFIG_PPM_PAGE_ALIGNED;
81
[127]82// This variable defines the local cluster manager
[5]83__attribute__((section(".kdata")))
[19]84cluster_t            cluster_manager                         CONFIG_CACHE_LINE_ALIGNED;
[1]85
[407]86// This variable defines the TXT0 kernel terminal (TX only)
[188]87__attribute__((section(".kdata")))
88chdev_t              txt0_chdev                              CONFIG_CACHE_LINE_ALIGNED;
89
[14]90// This variables define the kernel process0 descriptor
[5]91__attribute__((section(".kdata")))
[19]92process_t            process_zero                            CONFIG_CACHE_LINE_ALIGNED;
[1]93
[14]94// This variable defines extended pointers on the distributed chdevs
[5]95__attribute__((section(".kdata")))
[14]96chdev_directory_t    chdev_dir                               CONFIG_CACHE_LINE_ALIGNED;
[1]97
[188]98// This variable contains the input IRQ indexes for the IOPIC controller
[5]99__attribute__((section(".kdata")))
[246]100iopic_input_t        iopic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]101
[188]102// This variable contains the input IRQ indexes for the LAPIC controller
[5]103__attribute__((section(".kdata")))
[188]104lapic_input_t        lapic_input                             CONFIG_CACHE_LINE_ALIGNED;
[1]105
[14]106// This variable defines the local cluster identifier
[5]107__attribute__((section(".kdata")))
[14]108cxy_t                local_cxy                               CONFIG_CACHE_LINE_ALIGNED;
[5]109
[127]110// This variable is used for CP0 cores synchronisation in kernel_init()
[5]111__attribute__((section(".kdata")))
[14]112remote_barrier_t     global_barrier                          CONFIG_CACHE_LINE_ALIGNED;
[1]113
[127]114// This variable is used for local cores synchronisation in kernel_init()
[14]115__attribute__((section(".kdata")))
116barrier_t            local_barrier                           CONFIG_CACHE_LINE_ALIGNED;
117
[127]118// This variable defines the array of supported File System contexts
[50]119__attribute__((section(".kdata")))
120vfs_ctx_t            fs_context[FS_TYPES_NR]                 CONFIG_CACHE_LINE_ALIGNED;
121
[490]122// kernel_init is the entry point defined in hal/tsar_mips32/kernel.ld
123// It will be used by the bootloader.
124extern void kernel_init( boot_info_t * info );
[50]125
[435]126// these debug variables are used to analyse the sys_read() syscall timing
[408]127
[438]128#if DEBUG_SYS_READ
[407]129uint32_t   enter_sys_read;
130uint32_t   exit_sys_read;
131
[435]132uint32_t   enter_devfs_read;
133uint32_t   exit_devfs_read;
[407]134
135uint32_t   enter_txt_read;
136uint32_t   exit_txt_read;
137
[435]138uint32_t   enter_chdev_cmd_read;
139uint32_t   exit_chdev_cmd_read;
[407]140
[435]141uint32_t   enter_chdev_server_read;
142uint32_t   exit_chdev_server_read;
[407]143
[435]144uint32_t   enter_tty_cmd_read;
145uint32_t   exit_tty_cmd_read;
[407]146
[435]147uint32_t   enter_tty_isr_read;
148uint32_t   exit_tty_isr_read;
[407]149#endif
150
[435]151// these debug variables are used to analyse the sys_write() syscall timing
152
[438]153#if DEBUG_SYS_WRITE   
[435]154uint32_t   enter_sys_write;
155uint32_t   exit_sys_write;
156
157uint32_t   enter_devfs_write;
158uint32_t   exit_devfs_write;
159
160uint32_t   enter_txt_write;
161uint32_t   exit_txt_write;
162
163uint32_t   enter_chdev_cmd_write;
164uint32_t   exit_chdev_cmd_write;
165
166uint32_t   enter_chdev_server_write;
167uint32_t   exit_chdev_server_write;
168
169uint32_t   enter_tty_cmd_write;
170uint32_t   exit_tty_cmd_write;
171
172uint32_t   enter_tty_isr_write;
173uint32_t   exit_tty_isr_write;
174#endif
175
[1]176///////////////////////////////////////////////////////////////////////////////////////////
[5]177// This function displays the ALMOS_MKH banner.
[1]178///////////////////////////////////////////////////////////////////////////////////////////
[5]179static void print_banner( uint32_t nclusters , uint32_t ncores )
[127]180{
[5]181    printk("\n"
182           "                    _        __    __     _____     ______         __    __    _   __   _     _   \n"
183           "          /\\       | |      |  \\  /  |   / ___ \\   / _____|       |  \\  /  |  | | / /  | |   | |  \n"
184           "         /  \\      | |      |   \\/   |  | /   \\ | | /             |   \\/   |  | |/ /   | |   | |  \n"
185           "        / /\\ \\     | |      | |\\  /| |  | |   | | | |_____   ___  | |\\  /| |  |   /    | |___| |  \n"
186           "       / /__\\ \\    | |      | | \\/ | |  | |   | | \\_____  \\ |___| | | \\/ | |  |   \\    |  ___  |  \n"
187           "      / ______ \\   | |      | |    | |  | |   | |       | |       | |    | |  | |\\ \\   | |   | |  \n"
188           "     / /      \\ \\  | |____  | |    | |  | \\___/ |  _____/ |       | |    | |  | | \\ \\  | |   | |  \n"
189           "    /_/        \\_\\ |______| |_|    |_|   \\_____/  |______/        |_|    |_|  |_|  \\_\\ |_|   |_|  \n"
190           "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n"
[457]191           "\n\n\t\t %s / %d cluster(s) / %d core(s) per cluster\n\n",
192           CONFIG_ALMOS_VERSION , nclusters , ncores );
[5]193}
[1]194
195
[5]196///////////////////////////////////////////////////////////////////////////////////////////
[188]197// This function initializes the TXT0 chdev descriptor, that is the "kernel terminal",
198// shared by all kernel instances for debug messages.
199// It is a global variable (replicated in all clusters), because this terminal is used
200// before the kmem allocator initialisation, but only the instance in cluster containing
201// the calling core is registered in the "chdev_dir" directory.
[127]202// As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create
203// a server thread, we don't allocate a WTI, and we don't initialize the waiting queue.
[5]204///////////////////////////////////////////////////////////////////////////////////////////
205// @ info    : pointer on the local boot-info structure.
206///////////////////////////////////////////////////////////////////////////////////////////
207static void txt0_device_init( boot_info_t * info )
208{
209    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
[127]210    uint32_t        dev_nr;          // actual number of devices in this cluster
211    xptr_t          base;            // remote pointer on segment base
212    uint32_t        func;            // device functional index
[5]213    uint32_t        impl;            // device implementation index
[127]214    uint32_t        i;               // device index in dev_tbl
215    uint32_t        x;               // X cluster coordinate
216    uint32_t        y;               // Y cluster coordinate
[188]217    uint32_t        channels;        // number of channels
[1]218
[5]219    // get number of peripherals and base of devices array from boot_info
[127]220    dev_nr      = info->ext_dev_nr;
[5]221    dev_tbl     = info->ext_dev;
[1]222
[14]223    // loop on external peripherals to find TXT device
[127]224    for( i = 0 ; i < dev_nr ; i++ )
225    {
[5]226        base        = dev_tbl[i].base;
[188]227        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
228        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
229        channels    = dev_tbl[i].channels;
[5]230
[127]231        if (func == DEV_FUNC_TXT )
[5]232        {
[492]233            assert( (channels > 0) , "number of TXT channels cannot be 0\n");
[5]234
[428]235            // initializes TXT_TX[0] chdev
[188]236            txt0_chdev.func    = func;
237            txt0_chdev.impl    = impl;
238            txt0_chdev.channel = 0;
239            txt0_chdev.base    = base;
240            txt0_chdev.is_rx   = false;
241
242            // initializes lock
[14]243            remote_spinlock_init( XPTR( local_cxy , &txt0_chdev.wait_lock ) );
[188]244           
245            // TXT specific initialisation:
246            // no server thread & no IRQ routing for channel 0
247            dev_txt_init( &txt0_chdev );                 
[14]248
[188]249            // register the TXT0 in all chdev_dir[x][y] structures
[5]250            for( x = 0 ; x < info->x_size ; x++ )
251            {
[530]252                for( y = 0 ; y < info->y_max; y++ ) // [FIXME]
[5]253                {
254                    cxy_t  cxy = (x<<info->y_width) + y;
[407]255                    hal_remote_swd( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
[14]256                                    XPTR( local_cxy , &txt0_chdev ) );
[5]257                }
258            }
259        }
[188]260        } // end loop on devices
261}  // end txt0_device_init()
[5]262
[1]263///////////////////////////////////////////////////////////////////////////////////////////
[535]264// This function is the same as txt0_device_init() but uses the internal multi_tty device
265// attached to cluster (0,0) instead of the external tty_tsar.
266// This function is used instead of txt0_device_init() only for TSAR LETI.
267///////////////////////////////////////////////////////////////////////////////////////////
268// @ info    : pointer on the local boot-info structure.
269///////////////////////////////////////////////////////////////////////////////////////////
270static void mtty0_device_init( boot_info_t * info)
271{
272    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
273    uint32_t        dev_nr;          // actual number of devices in this cluster
274    xptr_t          base;            // remote pointer on segment base
275    uint32_t        func;            // device functional index
276    uint32_t        impl;            // device implementation index
277    uint32_t        i;               // device index in dev_tbl
278    uint32_t        x;               // X cluster coordinate
279    uint32_t        y;               // Y cluster coordinate
280
281    dev_nr = info->int_dev_nr;
282    dev_tbl = info->int_dev;
283
284    // Loop on internal peripherals of cluster (0,0) to find MTY0
285    for ( i = 0; i < dev_nr; i++ )
286    {
287        base = dev_tbl[i].base;
288        func = FUNC_FROM_TYPE( dev_tbl[i].type );
289        impl = IMPL_FROM_TYPE( dev_tbl[i].type );
290
291        if ( func == DEV_FUNC_TXT )
292        {
293            txt0_chdev.func     = func;
294            txt0_chdev.impl     = impl;
295            txt0_chdev.channel  = 0;
296            txt0_chdev.base     = base;
297            txt0_chdev.is_rx    = false;
298
299            // Initialize MTY0 chdev lock
300            remote_spinlock_init( XPTR( local_cxy, &txt0_chdev.wait_lock ) );
301
302            // MTY specific initialization
303            dev_txt_init( &txt0_chdev );
304
305            // register the MTY in all chdev_dir[x][y] structures
306            for( x = 0 ; x < info->x_size ; x++ )
307            {
308                for( y = 0 ; y < info->y_max; y++ ) // [FIXME]
309                {
310                    cxy_t  cxy = (x<<info->y_width) + y;
311                    hal_remote_swd( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
312                                    XPTR( local_cxy , &txt0_chdev ) );
313                }
314            }
315        }
316    } // end loop on internal devices
317} // end mty0_device_init()
318
319///////////////////////////////////////////////////////////////////////////////////////////
[188]320// This function allocates memory and initializes the chdev descriptors for the internal
321// peripherals contained in the local cluster, other than the LAPIC, as specified by
322// the boot_info, including the linking with the driver for the specified implementation.
323// The relevant entries in all copies of the devices directory are initialised.
[1]324///////////////////////////////////////////////////////////////////////////////////////////
325// @ info    : pointer on the local boot-info structure.
326///////////////////////////////////////////////////////////////////////////////////////////
[5]327static void internal_devices_init( boot_info_t * info )
[1]328{
[188]329    boot_device_t * dev_tbl;         // pointer on array of internaldevices in boot_info
330        uint32_t        dev_nr;          // actual number of devices in this cluster
331        xptr_t          base;            // remote pointer on segment base
332    uint32_t        func;            // device functionnal index
333    uint32_t        impl;            // device implementation index
334        uint32_t        i;               // device index in dev_tbl
335        uint32_t        x;               // X cluster coordinate
336        uint32_t        y;               // Y cluster coordinate
337        uint32_t        channels;        // number of channels
338        uint32_t        channel;         // channel index
339        chdev_t       * chdev_ptr;       // local pointer on created chdev
[1]340
[188]341    // get number of internal peripherals and base from boot_info
342        dev_nr  = info->int_dev_nr;
343    dev_tbl = info->int_dev;
[1]344
[188]345    // loop on internal peripherals
346        for( i = 0 ; i < dev_nr ; i++ )
347        {
348        base        = dev_tbl[i].base;
349        channels    = dev_tbl[i].channels;
350        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
351        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
[204]352 
[188]353        //////////////////////////
354        if( func == DEV_FUNC_MMC ) 
[5]355        {
[492]356            assert( (channels == 1) , "MMC device must be single channel\n" );
[1]357
[188]358            // create chdev in local cluster
359            chdev_ptr = chdev_create( func,
360                                      impl,
361                                      0,          // channel
362                                      false,      // direction
363                                      base );
[14]364
[492]365            assert( (chdev_ptr != NULL) ,
[188]366                    "cannot allocate memory for MMC chdev\n" );
367           
368            // make MMC specific initialisation
369            dev_mmc_init( chdev_ptr );
[1]370
[188]371            // set the MMC field in all chdev_dir[x][y] structures
372            for( x = 0 ; x < info->x_size ; x++ )
[1]373            {
[530]374                for( y = 0 ; y < info->y_max; y++ ) // [FIXME]
[188]375                {
376                    cxy_t  cxy = (x<<info->y_width) + y;
377                    hal_remote_swd( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), 
378                                    XPTR( local_cxy , chdev_ptr ) );
379                }
[1]380            }
[188]381
[438]382#if( DEBUG_KERNEL_INIT & 0x1 )
383if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]384printk("\n[DBG] %s : created MMC in cluster %x / chdev = %x\n",
385__FUNCTION__ , local_cxy , chdev_ptr );
[389]386#endif
[14]387        }
[188]388        ///////////////////////////////
389        else if( func == DEV_FUNC_DMA )
[127]390        {
[188]391            // create one chdev per channel in local cluster
392            for( channel = 0 ; channel < channels ; channel++ )
393            {   
394                // create chdev[channel] in local cluster
395                chdev_ptr = chdev_create( func,
396                                          impl,
397                                          channel,
398                                          false,     // direction
399                                          base );
[5]400
[492]401                assert( (chdev_ptr != NULL) , "cannot allocate memory for DMA chdev" );
[536]402
[188]403                // make DMA specific initialisation
404                dev_dma_init( chdev_ptr );     
[127]405
[188]406                // initialize only the DMA[channel] field in the local chdev_dir[x][y]
407                // structure because the DMA device is not remotely accessible.
408                chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr );
[5]409
[438]410#if( DEBUG_KERNEL_INIT & 0x1 )
411if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]412printk("\n[DBG] %s : created DMA[%d] in cluster %x / chdev = %x\n",
[389]413__FUNCTION__ , channel , local_cxy , chdev_ptr );
414#endif
[188]415            }
[14]416        }
[536]417
418        else if ( func == DEV_FUNC_TXT && info->use_mty0 == 1 )
419        {
420            assert(impl == IMPL_TXT_MTY,
421                "Internal TTYs should have MTY implementation\n");
422
423            for ( channel = 0; channel < channels; channel++ )
424            {
425                int rx;
426                for ( rx = 0; rx <= 1; rx++ )
427                {
428                    // skip MTY0_TX since it has already been initialized
429                    if ( channel == 0 && rx == 0 ) continue;
430
431                    // create chdev in local cluster
432                    chdev_ptr = chdev_create( func,
433                                              impl,
434                                              channel,
435                                              rx,
436                                              base );
437
438                    assert( (chdev_ptr != NULL) ,
439                        "cannot allocate memory for MTY chdev" );
440
441                    // make MTY specific initialization
442                    dev_txt_init( chdev_ptr );
443
444                    // set the MTY fields in all clusters
445                    xptr_t *chdev_entry;
446                    if ( rx == 1 ) {
447                        chdev_entry = &chdev_dir.txt_rx[channel];
448                    } else {
449                        chdev_entry = &chdev_dir.txt_tx[channel];
450                    }
451                    for ( x = 0; x < info->x_max; x++ )
452                    {
453                        for ( y = 0; y < info->y_max; y++ )
454                        {
455                            cxy_t cxy = (x<<info->y_width) + y;
456                            hal_remote_swd( XPTR( cxy, chdev_entry ),
457                                            XPTR( local_cxy, chdev_ptr ) );
458                        }
459                    }
460                }
461            }
462        }
[127]463    }
[5]464}  // end internal_devices_init()
465
466///////////////////////////////////////////////////////////////////////////////////////////
[188]467// This function allocates memory and initializes the chdev descriptors for the 
[408]468// external (shared) peripherals other than the IOPIC, as specified by the boot_info.
469// This includes the dynamic linking with the driver for the specified implementation.
[188]470// These chdev descriptors are distributed on all clusters, using a modulo on a global
[408]471// index, identically computed in all clusters.
472// This function is executed in all clusters by the CP0 core, that computes a global index
473// for all external chdevs. Each CP0 core creates only the chdevs that must be placed in
474// the local cluster, because the global index matches the local index.
[188]475// The relevant entries in all copies of the devices directory are initialised.
[5]476///////////////////////////////////////////////////////////////////////////////////////////
477// @ info    : pointer on the local boot-info structure.
478///////////////////////////////////////////////////////////////////////////////////////////
479static void external_devices_init( boot_info_t * info )
480{
[188]481    boot_device_t * dev_tbl;         // pointer on array of external devices in boot_info
482        uint32_t        dev_nr;          // actual number of external devices
483        xptr_t          base;            // remote pointer on segment base
[5]484    uint32_t        func;            // device functionnal index
485    uint32_t        impl;            // device implementation index
[188]486        uint32_t        i;               // device index in dev_tbl
487        uint32_t        x;               // X cluster coordinate
488        uint32_t        y;               // Y cluster coordinate
489        uint32_t        channels;        // number of channels
490        uint32_t        channel;         // channel index
491        uint32_t        directions;      // number of directions (1 or 2)
492        uint32_t        rx;              // direction index (0 or 1)
[127]493    chdev_t       * chdev;           // local pointer on one channel_device descriptor
[188]494    uint32_t        ext_chdev_gid;   // global index of external chdev
[5]495
496    // get number of peripherals and base of devices array from boot_info
[127]497    dev_nr      = info->ext_dev_nr;
[5]498    dev_tbl     = info->ext_dev;
499
[188]500    // initializes global index (PIC is already placed in cluster 0
501    ext_chdev_gid = 1;
502
[5]503    // loop on external peripherals
[127]504    for( i = 0 ; i < dev_nr ; i++ )
505    {
[188]506        base     = dev_tbl[i].base;
507        channels = dev_tbl[i].channels;
508        func     = FUNC_FROM_TYPE( dev_tbl[i].type );
509        impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
[5]510
[407]511        // There is one chdev per direction for NIC and for TXT
512        if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2;
513        else                                                 directions = 1;
[5]514
[407]515        // do nothing for ROM, that does not require a device descriptor.
[5]516        if( func == DEV_FUNC_ROM ) continue;
517
[188]518        // do nothing for PIC, that is already initialized
519        if( func == DEV_FUNC_PIC ) continue;
[5]520
[188]521        // check PIC device initialized
[492]522        assert( (chdev_dir.pic != XPTR_NULL ) ,
[188]523              "PIC device must be initialized before other devices\n" );
524
525        // check external device functionnal type
526        assert( ( (func == DEV_FUNC_IOB) ||
527                  (func == DEV_FUNC_IOC) ||
528                  (func == DEV_FUNC_TXT) ||
529                  (func == DEV_FUNC_NIC) ||
[492]530                  (func == DEV_FUNC_FBF) ) ,
[188]531                  "undefined external peripheral type\n" );
532
[127]533        // loops on channels
[428]534        for( channel = 0 ; channel < channels ; channel++ )
[127]535        {
[5]536            // loop on directions
[188]537            for( rx = 0 ; rx < directions ; rx++ )
[1]538            {
[428]539                // skip TXT_TX[0] chdev that has already been created & registered
[536]540                if( info->use_mty0 == 0 && (func == DEV_FUNC_TXT) && (channel == 0) && (rx == 0) )
541                {
542                    continue;
543                }
[428]544
[536]545                // skip TXT chdevs because they are initialized in internal_devices_init()
546                if ( info->use_mty0 == 1 && func == DEV_FUNC_TXT )
547                {
548                    continue;
549                }
550
[188]551                // compute target cluster for chdev[func,channel,direction]
[530]552                uint32_t offset     = ext_chdev_gid % ( info->x_size * (info->y_max) ); // [FIXME]
553                uint32_t cx         = offset / (info->y_max); // [FIXME]
554                uint32_t cy         = offset % (info->y_max); // [FIXME]
[5]555                uint32_t target_cxy = (cx<<info->y_width) + cy;
[1]556
[5]557                // allocate and initialize a local chdev
[407]558                // when local cluster matches target cluster
[5]559                if( target_cxy == local_cxy )
[1]560                {
[5]561                    chdev = chdev_create( func,
562                                          impl,
563                                          channel,
[188]564                                          rx,          // direction
[5]565                                          base );
566
[492]567                    assert( (chdev != NULL),
[5]568                            "cannot allocate external device" );
569
570                    // make device type specific initialisation
571                    if     ( func == DEV_FUNC_IOB ) dev_iob_init( chdev );
572                    else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev );
573                    else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev );
574                    else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev );
[188]575                    else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev );
[5]576
[127]577                    // all external (shared) devices are remotely accessible
[5]578                    // initialize the replicated chdev_dir[x][y] structures
[127]579                    // defining the extended pointers on chdev descriptors
580                    xptr_t * entry;
581
[188]582                    if(func==DEV_FUNC_IOB             ) entry  = &chdev_dir.iob;
583                    if(func==DEV_FUNC_IOC             ) entry  = &chdev_dir.ioc[channel];
584                    if(func==DEV_FUNC_FBF             ) entry  = &chdev_dir.fbf[channel];
[407]585                    if((func==DEV_FUNC_TXT) && (rx==0)) entry  = &chdev_dir.txt_tx[channel];
586                    if((func==DEV_FUNC_TXT) && (rx==1)) entry  = &chdev_dir.txt_rx[channel];
[188]587                    if((func==DEV_FUNC_NIC) && (rx==0)) entry  = &chdev_dir.nic_tx[channel];
588                    if((func==DEV_FUNC_NIC) && (rx==1)) entry  = &chdev_dir.nic_rx[channel];
[127]589
[1]590                    for( x = 0 ; x < info->x_size ; x++ )
591                    {
[530]592                        for( y = 0 ; y < info->y_max; y++ ) // [FIXME]
[1]593                        {
594                            cxy_t  cxy = (x<<info->y_width) + y;
[188]595                            hal_remote_swd( XPTR( cxy , entry ),
596                                            XPTR( local_cxy , chdev ) );
[5]597                        }
[1]598                    }
599
[438]600#if( DEBUG_KERNEL_INIT & 0x1 )
601if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]602printk("\n[DBG] %s : create chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n",
603__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev );
[389]604#endif
[5]605                }  // end if match
606
[19]607                // increment chdev global index (matching or not)
[188]608                ext_chdev_gid++;
[5]609
610            } // end loop on directions
611        }  // end loop on channels
[188]612        } // end loop on devices
613}  // end external_devices_init()
[5]614
[188]615///////////////////////////////////////////////////////////////////////////////////////////
616// This function is called by CP0 in cluster 0 to allocate memory and initialize the PIC
[407]617// device, namely the informations attached to the external IOPIC controller, that
618// must be replicated in all clusters (struct iopic_input).
[188]619// This initialisation must be done before other devices initialisation because the IRQ
[407]620// routing infrastructure is required for both internal and external devices init.
[188]621///////////////////////////////////////////////////////////////////////////////////////////
622// @ info    : pointer on the local boot-info structure.
623///////////////////////////////////////////////////////////////////////////////////////////
624static void iopic_init( boot_info_t * info )
625{
626    boot_device_t * dev_tbl;         // pointer on boot_info external devices array
627        uint32_t        dev_nr;          // actual number of external devices
628        xptr_t          base;            // remote pointer on segment base
629    uint32_t        func;            // device functionnal index
630    uint32_t        impl;            // device implementation index
631        uint32_t        i;               // device index in dev_tbl
632    uint32_t        x;               // cluster X coordinate
633    uint32_t        y;               // cluster Y coordinate
634    bool_t          found;           // IOPIC found
635        chdev_t       * chdev;           // pointer on PIC chdev descriptor
636
637    // get number of external peripherals and base of array from boot_info
638        dev_nr      = info->ext_dev_nr;
639    dev_tbl     = info->ext_dev;
640
641    // loop on external peripherals to get the IOPIC 
642        for( i = 0 , found = false ; i < dev_nr ; i++ )
643        {
644        func = FUNC_FROM_TYPE( dev_tbl[i].type );
645
[127]646        if( func == DEV_FUNC_PIC )
[1]647        {
[188]648            base     = dev_tbl[i].base;
649            impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
650            found    = true;
651            break;
652        }
653    }
[5]654
[492]655    assert( found , "PIC device not found\n" );
[1]656
[407]657    // allocate and initialize the PIC chdev in cluster 0
658    chdev = chdev_create( DEV_FUNC_PIC,
[188]659                          impl,
660                          0,      // channel
661                          0,      // direction,
662                          base );
[5]663
[492]664    assert( (chdev != NULL), "no memory for PIC chdev\n" );
[5]665
[188]666    // make PIC device type specific initialisation
667    dev_pic_init( chdev );
[1]668
[407]669    // register, in all clusters, the extended pointer
670    // on PIC chdev in "chdev_dir" array
[188]671    xptr_t * entry = &chdev_dir.pic;   
672               
673    for( x = 0 ; x < info->x_size ; x++ )
674    {
[530]675        for( y = 0 ; y < info->y_max; y++ ) // [FIXME]
[188]676        {
677            cxy_t  cxy = (x<<info->y_width) + y;
678            hal_remote_swd( XPTR( cxy , entry ) , 
679                            XPTR( local_cxy , chdev ) );
680        }
681    }
[1]682
[407]683    // initialize, in all clusters, the "iopic_input" structure
[188]684    // defining how external IRQs are connected to IOPIC
685
[407]686    // register default value for unused inputs
687    for( x = 0 ; x < info->x_size ; x++ )
688    {
[530]689        for( y = 0 ; y < info->y_max; y++ ) // [FIXME]
[407]690        {
691            cxy_t  cxy = (x<<info->y_width) + y;
692            hal_remote_memset( XPTR( cxy , &iopic_input ) , 0xFF , sizeof(iopic_input_t) );
693        }
694    }
695
696    // register input IRQ index for valid inputs
697    uint32_t   id;         // input IRQ index
698    uint8_t    valid;      // input IRQ is connected
699    uint32_t   type;       // source device type
700    uint8_t    channel;    // source device channel
701    uint8_t    is_rx;      // source device direction
702    uint32_t * ptr;        // local pointer on one field in iopic_input stucture
703
[188]704    for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ )
705    {
706        valid   = dev_tbl[i].irq[id].valid;
707        type    = dev_tbl[i].irq[id].dev_type;
708        channel = dev_tbl[i].irq[id].channel;
709        is_rx   = dev_tbl[i].irq[id].is_rx;
[407]710        func    = FUNC_FROM_TYPE( type );
[188]711
[407]712        // get pointer on relevant field in iopic_input
713        if( valid )
[188]714        {
[407]715            if     ( func == DEV_FUNC_IOC )                 ptr = &iopic_input.ioc[channel]; 
716            else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel];
717            else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel];
[492]718            else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel];
719            else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel];
720            else if( func == DEV_FUNC_IOB )                 ptr = &iopic_input.iob;
721            else     assert( false , "illegal source device for IOPIC input" );
[188]722
[407]723            // set one entry in all "iopic_input" structures
724            for( x = 0 ; x < info->x_size ; x++ )
725            {
[530]726                for( y = 0 ; y < info->y_max; y++ ) // [FIXME]
[407]727                {
728                    cxy_t  cxy = (x<<info->y_width) + y;
729                    hal_remote_swd( XPTR( cxy , ptr ) , id ); 
730                }
731            }
[188]732        }
733    } 
734
[438]735#if( DEBUG_KERNEL_INIT & 0x1 )
736if( hal_time_stamp() > DEBUG_KERNEL_INIT )
[407]737{
738    printk("\n[DBG] %s created PIC chdev in cluster %x at cycle %d\n",
739    __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() );
740    dev_pic_inputs_display();
741}
[389]742#endif
[188]743   
744}  // end iopic_init()
745
[1]746///////////////////////////////////////////////////////////////////////////////////////////
[188]747// This function is called by all CP0s in all cluster to complete the PIC device
748// initialisation, namely the informations attached to the LAPIC controller.
749// This initialisation must be done after the IOPIC initialisation, but before other
750// devices initialisation because the IRQ routing infrastructure is required for both
751// internal and external devices initialisation.
752///////////////////////////////////////////////////////////////////////////////////////////
753// @ info    : pointer on the local boot-info structure.
754///////////////////////////////////////////////////////////////////////////////////////////
755static void lapic_init( boot_info_t * info )
756{
757    boot_device_t * dev_tbl;      // pointer on boot_info internal devices array
758    uint32_t        dev_nr;       // number of internal devices
759    uint32_t        i;            // device index in dev_tbl
760        xptr_t          base;         // remote pointer on segment base
761    uint32_t        func;         // device functionnal type in boot_info
762    bool_t          found;        // LAPIC found
763
764    // get number of internal peripherals and base
765        dev_nr      = info->int_dev_nr;
766    dev_tbl     = info->int_dev;
767
768    // loop on internal peripherals to get the lapic device
769        for( i = 0 , found = false ; i < dev_nr ; i++ )
770        {
771        func = FUNC_FROM_TYPE( dev_tbl[i].type );
772
773        if( func == DEV_FUNC_ICU )
774        {
775            base     = dev_tbl[i].base;
776            found    = true;
777            break;
778        }
779    }
780
781    // if the LAPIC controller is not defined in the boot_info,
782    // we simply don't initialize the PIC extensions in the kernel,
783    // making the assumption that the LAPIC related informations
784    // are hidden in the hardware specific PIC driver.
785    if( found )
786    {
787        // initialise the PIC extensions for
788        // the core descriptor and core manager extensions
789        dev_pic_extend_init( (uint32_t *)GET_PTR( base ) );
790
791        // initialize the "lapic_input" structure
792        // defining how internal IRQs are connected to LAPIC
793        uint32_t        id;
794        uint8_t         valid;
795        uint8_t         channel;
796        uint32_t        func;
797
798        for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ )
799        {
800            valid    = dev_tbl[i].irq[id].valid;
801            func     = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type );
802            channel  = dev_tbl[i].irq[id].channel;
803
804            if( valid ) // only valid local IRQs are registered
805            {
806                if     ( func == DEV_FUNC_MMC ) lapic_input.mmc = id;
807                else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id;
[534]808                else if( func == DEV_FUNC_TXT ) lapic_input.mtty = id;
[492]809                else assert( false , "illegal source device for LAPIC input" );
[188]810            }
811        }
812    }
813}  // end lapic_init()
814
815///////////////////////////////////////////////////////////////////////////////////////////
[14]816// This static function returns the identifiers of the calling core.
817///////////////////////////////////////////////////////////////////////////////////////////
818// @ info    : pointer on boot_info structure.
819// @ lid     : [out] core local index in cluster.
820// @ cxy     : [out] cluster identifier.
821// @ lid     : [out] core global identifier (hardware).
822// @ return 0 if success / return EINVAL if not found.
823///////////////////////////////////////////////////////////////////////////////////////////
[23]824static error_t get_core_identifiers( boot_info_t * info,
825                                     lid_t       * lid,
[14]826                                     cxy_t       * cxy,
827                                     gid_t       * gid )
828{
[127]829    uint32_t   i;
[14]830    gid_t      global_id;
[19]831
[14]832    // get global identifier from hardware register
[127]833    global_id = hal_get_gid();
[14]834
835    // makes an associative search in boot_info to get (cxy,lid) from global_id
836    for( i = 0 ; i < info->cores_nr ; i++ )
837    {
838        if( global_id == info->core[i].gid )
839        {
840            *lid = info->core[i].lid;
841            *cxy = info->core[i].cxy;
842            *gid = global_id;
843            return 0;
844        }
845    }
846    return EINVAL;
[19]847}
[14]848
849///////////////////////////////////////////////////////////////////////////////////////////
[1]850// This function is the entry point for the kernel initialisation.
[19]851// It is executed by all cores in all clusters, but only core[0], called CP0,
[14]852// initializes the shared resources such as the cluster manager, or the local peripherals.
[19]853// To comply with the multi-kernels paradigm, it accesses only local cluster memory, using
854// only information contained in the local boot_info_t structure, set by the bootloader.
[103]855// Only CP0 in cluster 0 print the log messages.
[1]856///////////////////////////////////////////////////////////////////////////////////////////
857// @ info    : pointer on the local boot-info structure.
858///////////////////////////////////////////////////////////////////////////////////////////
859void kernel_init( boot_info_t * info )
860{
[204]861    lid_t        core_lid = -1;             // running core local index
862    cxy_t        core_cxy = -1;             // running core cluster identifier
863    gid_t        core_gid;                  // running core hardware identifier
864    cluster_t  * cluster;                   // pointer on local cluster manager
865    core_t     * core;                      // pointer on running core descriptor
866    thread_t   * thread;                    // pointer on idle thread descriptor
867
868    xptr_t       vfs_root_inode_xp;         // extended pointer on VFS root inode
869    xptr_t       devfs_dev_inode_xp;        // extended pointer on DEVFS dev inode   
870    xptr_t       devfs_external_inode_xp;   // extended pointer on DEVFS external inode       
871    xptr_t       devfs_internal_inode_xp;   // extended pointer on DEVFS internal inode       
872
[1]873    error_t      error;
[285]874    reg_t        status;                    // running core status register
[1]875
[188]876    /////////////////////////////////////////////////////////////////////////////////
877    // STEP 0 : Each core get its core identifier from boot_info, and makes
878    //          a partial initialisation of its private idle thread descriptor.
879    //          CP0 initializes the "local_cxy" global variable.
880    //          CP0 in cluster IO initializes the TXT0 chdev to print log messages.
881    /////////////////////////////////////////////////////////////////////////////////
882
[23]883    error = get_core_identifiers( info,
[14]884                                  &core_lid,
885                                  &core_cxy,
886                                  &core_gid );
[1]887
[127]888    // CP0 initializes cluster identifier
[14]889    if( core_lid == 0 ) local_cxy = info->cxy;
[1]890
[127]891    // each core gets a pointer on its private idle thread descriptor
892    thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) );
[68]893
[127]894    // each core registers this thread pointer in hardware register
[68]895    hal_set_current_thread( thread );
[71]896
[407]897    // each core register core descriptor pointer in idle thread descriptor
898    thread->core = &LOCAL_CLUSTER->core_tbl[core_lid];
899
[437]900    // each core initializes the idle thread lists of locks
[124]901    list_root_init( &thread->locks_root );
[188]902    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
[437]903    thread->local_locks = 0;
904    thread->remote_locks = 0;
[124]905
[528]906    // CP0 in cluster 0 initializes TXT0 chdev descriptor
[535]907    if( core_cxy == 0 && core_lid == 0 ) // [MODIF]
908    {
909        if( info->use_mty0 == 1 ) {
910            mtty0_device_init( info );
911        } else {
912            txt0_device_init( info );
913        }
914    }
[528]915    // [FIXME]
[14]916
917    /////////////////////////////////////////////////////////////////////////////////
[528]918    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]919                                        (info->x_size * (info->y_max)) );
[14]920    barrier_wait( &local_barrier , info->cores_nr );
[437]921    /////////////////////////////////////////////////////////////////////////////////
[14]922
[438]923#if DEBUG_KERNEL_INIT
924if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]925printk("\n[DBG] %s : exit barrier 0 : TXT0 initialized / cycle %d\n",
926__FUNCTION__, (uint32_t)hal_get_cycles() );
927#endif
[14]928
[188]929    /////////////////////////////////////////////////////////////////////////////
[407]930    // STEP 1 : all cores check core identifier.
[188]931    //          CP0 initializes the local cluster manager.
932    //          This includes the memory allocators.
933    /////////////////////////////////////////////////////////////////////////////
934
935    // all cores check identifiers
[14]936    if( error )
[1]937    {
[492]938        assert( false ,
[428]939        "illegal core identifiers gid = %x / cxy = %x / lid = %d",
940        core_lid , core_cxy , core_lid );
[1]941    }
942
[188]943    // CP0 initializes cluster manager
[14]944    if( core_lid == 0 )
[1]945    {
946        error = cluster_init( info );
947
[14]948        if( error )
949        {
[492]950            assert( false ,
[428]951            "cannot initialise cluster %x", local_cxy );
[14]952        }
953    }
[5]954
[14]955    /////////////////////////////////////////////////////////////////////////////////
[528]956    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]957                                        (info->x_size * (info->y_max)) );
[14]958    barrier_wait( &local_barrier , info->cores_nr );
959    /////////////////////////////////////////////////////////////////////////////////
[1]960
[438]961#if DEBUG_KERNEL_INIT
962if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]963printk("\n[DBG] %s : exit barrier 1 : clusters initialised / cycle %d\n",
964__FUNCTION__, (uint32_t)hal_get_cycles() );
965#endif
[1]966
[188]967    /////////////////////////////////////////////////////////////////////////////////
[407]968    // STEP 2 : CP0 initializes the process_zero descriptor.
[296]969    //          CP0 in cluster 0 initializes the IOPIC device.
[188]970    /////////////////////////////////////////////////////////////////////////////////
971
972    // all cores get pointer on local cluster manager & core descriptor
[14]973    cluster = &cluster_manager;
[127]974    core    = &cluster->core_tbl[core_lid];
[1]975
[188]976    // all CP0s initialize the process_zero descriptor
[428]977    if( core_lid == 0 ) process_zero_create( &process_zero );
[5]978
[188]979    // CP0 in cluster 0 initializes the PIC chdev,
980    if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info );
981   
982    ////////////////////////////////////////////////////////////////////////////////
[528]983    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]984                                        (info->x_size * (info->y_max)) );
[188]985    barrier_wait( &local_barrier , info->cores_nr );
986    ////////////////////////////////////////////////////////////////////////////////
[127]987
[438]988#if DEBUG_KERNEL_INIT
989if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]990printk("\n[DBG] %s : exit barrier 2 : PIC initialised / cycle %d\n",
991__FUNCTION__, (uint32_t)hal_get_cycles() );
992#endif
[1]993
[188]994    ////////////////////////////////////////////////////////////////////////////////
[407]995    // STEP 3 : CP0 initializes the distibuted LAPIC descriptor.
996    //          CP0 initializes the internal chdev descriptors
997    //          CP0 initialize the local external chdev descriptors
[188]998    ////////////////////////////////////////////////////////////////////////////////
[5]999
[279]1000    // all CP0s initialize their local LAPIC extension,
1001    if( core_lid == 0 ) lapic_init( info );
1002
[188]1003    // CP0 scan the internal (private) peripherals,
1004    // and allocates memory for the corresponding chdev descriptors.
1005    if( core_lid == 0 ) internal_devices_init( info );
1006       
[1]1007
[50]1008    // All CP0s contribute to initialise external peripheral chdev descriptors.
[14]1009    // Each CP0[cxy] scan the set of external (shared) peripherals (but the TXT0),
1010    // and allocates memory for the chdev descriptors that must be placed
[127]1011    // on the (cxy) cluster according to the global index value.
[188]1012
[14]1013    if( core_lid == 0 ) external_devices_init( info );
[1]1014
[14]1015    /////////////////////////////////////////////////////////////////////////////////
[528]1016    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]1017                                        (info->x_size * (info->y_max)) );
[14]1018    barrier_wait( &local_barrier , info->cores_nr );
1019    /////////////////////////////////////////////////////////////////////////////////
[5]1020
[438]1021#if DEBUG_KERNEL_INIT
1022if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1023printk("\n[DBG] %s : exit barrier 3 : all chdev initialised / cycle %d\n",
1024__FUNCTION__, (uint32_t)hal_get_cycles() );
1025#endif
[1]1026
[438]1027#if( DEBUG_KERNEL_INIT & 1 )
[443]1028if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1029chdev_dir_display();
1030#endif
1031   
[188]1032    /////////////////////////////////////////////////////////////////////////////////
[279]1033    // STEP 4 : All cores enable IPI (Inter Procesor Interrupt),
1034    //          Alh cores initialize IDLE thread.
[188]1035    //          Only CP0 in cluster 0 creates the VFS root inode.
1036    //          It access the boot device to initialize the file system context.
1037    /////////////////////////////////////////////////////////////////////////////////
1038
[279]1039    // All cores enable the shared IPI channel
1040    dev_pic_enable_ipi();
1041    hal_enable_irq( &status );
1042
[532]1043#if DEBUG_KERNEL_INIT
1044printk("\n[DBG] %s: IPI enabled for core %d cluster %d\n", __FUNCTION__,
1045  core_lid, local_cxy);
1046#endif
1047
[296]1048    // all cores initialize the idle thread descriptor
[457]1049    thread_idle_init( thread,
1050                      THREAD_IDLE,
1051                      &thread_idle_func,
1052                      NULL,
1053                      core_lid );
[1]1054
[296]1055    // all cores unblock idle thread, and register it in scheduler
1056    thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
[103]1057    core->scheduler.idle = thread;
[1]1058
[438]1059#if( DEBUG_KERNEL_INIT & 1 )
[407]1060sched_display( core_lid );
[389]1061#endif
[14]1062
[188]1063    // CPO in cluster 0 creates the VFS root
1064    if( (core_lid ==  0) && (local_cxy == 0 ) ) 
[14]1065    {
[188]1066        vfs_root_inode_xp = XPTR_NULL;
[23]1067
[188]1068        // File System must be FATFS in this implementation,
1069        // but other File System can be introduced here
[23]1070        if( CONFIG_VFS_ROOT_IS_FATFS )
1071        {
[389]1072            // 1. allocate memory for FATFS context in cluster 0
[188]1073            fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc();
1074
[492]1075            assert( (fatfs_ctx != NULL) ,
[279]1076                    "cannot create FATFS context in cluster 0\n" );
[188]1077
1078            // 2. access boot device to initialize FATFS context
1079            fatfs_ctx_init( fatfs_ctx );
1080 
1081            // 3. get various informations from FATFS context
1082            uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster;
1083            uint32_t cluster_size     = fatfs_ctx->bytes_per_sector * 
1084                                        fatfs_ctx->sectors_per_cluster;
1085            uint32_t total_clusters   = fatfs_ctx->fat_sectors_count << 7;
1086 
1087            // 4. create VFS root inode in cluster 0
1088            error = vfs_inode_create( XPTR_NULL,                           // dentry_xp
1089                                      FS_TYPE_FATFS,                       // fs_type
1090                                      INODE_TYPE_DIR,                      // inode_type
1091                                      (void *)(intptr_t)root_dir_cluster,  // extend
1092                                      0,                                   // attr
1093                                      0,                                   // rights
1094                                      0,                                   // uid
1095                                      0,                                   // gid
1096                                      &vfs_root_inode_xp );                // return
1097
[492]1098            assert( (error == 0) ,
[279]1099                    "cannot create VFS root inode\n" );
[188]1100
1101            // 5. initialize VFS context for FAT in cluster 0
1102            vfs_ctx_init( FS_TYPE_FATFS,                 // file system type
1103                          0,                             // attributes
1104                              total_clusters,               
1105                              cluster_size,
1106                              vfs_root_inode_xp,             // VFS root
1107                          fatfs_ctx );                   // extend
[389]1108
1109            // 6. check initialisation
1110            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1111            assert( (((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster == 8),
[492]1112             "illegal value for FATFS context in cluster %x\n", local_cxy );
[23]1113        }
1114        else
1115        {
[492]1116            assert( false ,
[428]1117            "root FS must be FATFS" );
[23]1118        }
1119
[389]1120        // register VFS root inode in process_zero descriptor of cluster 0
[188]1121        process_zero.vfs_root_xp = vfs_root_inode_xp;
1122        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
1123    }
1124
1125    /////////////////////////////////////////////////////////////////////////////////
[528]1126    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]1127                                        (info->x_size * (info->y_max)) );
[188]1128    barrier_wait( &local_barrier , info->cores_nr );
1129    /////////////////////////////////////////////////////////////////////////////////
1130
[438]1131#if DEBUG_KERNEL_INIT
1132if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1133printk("\n[DBG] %s : exit barrier 4 : VFS_root = %l in cluster 0 / cycle %d\n",
1134__FUNCTION__, vfs_root_inode_xp , (uint32_t)hal_get_cycles());
1135#endif
[188]1136
1137    /////////////////////////////////////////////////////////////////////////////////
1138    // STEP 5 : Other CP0s allocate memory for the selected FS context,
1139    //          and initialise both the local FS context and the local VFS context
1140    //          from values stored in cluster 0.
1141    //          They get the VFS root inode extended pointer from cluster 0.
1142    /////////////////////////////////////////////////////////////////////////////////
1143
1144    if( (core_lid ==  0) && (local_cxy != 0) ) 
1145    {
1146        // File System must be FATFS in this implementation,
1147        // but other File System can be introduced here
1148        if( CONFIG_VFS_ROOT_IS_FATFS )
[23]1149        {
[389]1150            // 1. allocate memory for local FATFS context
1151            fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc();
[188]1152
[492]1153            assert( (local_fatfs_ctx != NULL) ,
[389]1154            "cannot create FATFS context in cluster %x\n", local_cxy );
[188]1155
[389]1156            // 2. get local pointer on VFS context for FATFS
[188]1157            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1158
[389]1159            // 3. get local pointer on FATFS context in cluster 0
1160            fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) );
1161
1162            // 4. copy FATFS context from cluster 0 to local cluster
1163            hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), 
1164                               XPTR( 0 ,         remote_fatfs_ctx ), sizeof(fatfs_ctx_t) );
1165
1166            // 5. copy VFS context from cluster 0 to local cluster
[188]1167            hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), 
[389]1168                               XPTR( 0 ,         vfs_ctx ), sizeof(vfs_ctx_t) );
[188]1169
[389]1170            // 6. update extend field in local copy of VFS context
1171            vfs_ctx->extend = local_fatfs_ctx;
[188]1172
[389]1173            // 7. check initialisation
1174            assert( (((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster == 8),
[492]1175            "illegal value for FATFS context in cluster %x\n", local_cxy );
[23]1176        }
1177
[188]1178        // get extended pointer on VFS root inode from cluster 0
[296]1179        vfs_root_inode_xp = hal_remote_lwd( XPTR( 0 , &process_zero.vfs_root_xp ) );
[101]1180
[188]1181        // update local process_zero descriptor
1182        process_zero.vfs_root_xp = vfs_root_inode_xp;
1183        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
[14]1184    }
1185
[188]1186    /////////////////////////////////////////////////////////////////////////////////
[528]1187    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]1188                                        (info->x_size * (info->y_max)) );
[188]1189    barrier_wait( &local_barrier , info->cores_nr );
[204]1190    /////////////////////////////////////////////////////////////////////////////////
[101]1191
[438]1192#if DEBUG_KERNEL_INIT
1193if( (core_lid ==  0) & (local_cxy == 0) ) 
[457]1194printk("\n[DBG] %s : exit barrier 5 : VFS_root = %l in cluster 0 / cycle %d\n",
1195__FUNCTION__, vfs_root_inode_xp , (uint32_t)hal_get_cycles());
[437]1196#endif
[188]1197
1198    /////////////////////////////////////////////////////////////////////////////////
1199    // STEP 6 : CP0 in cluster IO makes the global DEVFS tree initialisation:
[204]1200    //          It creates the DEVFS directory "dev", and the DEVFS "external"
1201    //          directory in cluster IO and mount these inodes into VFS.
[188]1202    /////////////////////////////////////////////////////////////////////////////////
1203
[528]1204    if( (core_lid ==  0) && (local_cxy == 0) )  // [FIXME]
[1]1205    {
[188]1206        // create "dev" and "external" directories.
1207        devfs_global_init( process_zero.vfs_root_xp,
[204]1208                           &devfs_dev_inode_xp,
[188]1209                           &devfs_external_inode_xp );
1210
1211        // creates the DEVFS context in cluster IO
1212        devfs_ctx_t * devfs_ctx = devfs_ctx_alloc();
1213
[492]1214        assert( (devfs_ctx != NULL) ,
[279]1215                "cannot create DEVFS context in cluster IO\n");
[188]1216
1217        // register DEVFS root and external directories
[204]1218        devfs_ctx_init( devfs_ctx, devfs_dev_inode_xp, devfs_external_inode_xp );
[188]1219    }   
1220
1221    /////////////////////////////////////////////////////////////////////////////////
[528]1222    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]1223                                        (info->x_size * (info->y_max)) );
[188]1224    barrier_wait( &local_barrier , info->cores_nr );
[204]1225    /////////////////////////////////////////////////////////////////////////////////
[188]1226
[438]1227#if DEBUG_KERNEL_INIT
1228if( (core_lid ==  0) & (local_cxy == 0) ) 
[457]1229printk("\n[DBG] %s : exit barrier 6 : dev_root = %l in cluster 0 / cycle %d\n",
1230__FUNCTION__, devfs_dev_inode_xp , (uint32_t)hal_get_cycles() );
[437]1231#endif
[188]1232
1233    /////////////////////////////////////////////////////////////////////////////////
1234    // STEP 7 : All CP0s complete in parallel the DEVFS tree initialization.
1235    //          Each CP0 get the "dev" and "external" extended pointers from
[204]1236    //          values stored in cluster IO.
[337]1237    //          Then each CP0 in cluster(i) creates the DEVFS "internal directory,
[204]1238    //          and creates the pseudo-files for all chdevs in cluster (i).
[188]1239    /////////////////////////////////////////////////////////////////////////////////
1240
1241    if( core_lid == 0 )
1242    {
[528]1243        // get extended pointer on "extend" field of VFS context for DEVFS in cluster IO
1244        xptr_t  extend_xp = XPTR( 0 , &fs_context[FS_TYPE_DEVFS].extend ); // [FIXME]
[188]1245
[457]1246        // get pointer on DEVFS context in cluster 0
[188]1247        devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp );
1248       
[457]1249        devfs_dev_inode_xp      = hal_remote_lwd( XPTR( 0 , &devfs_ctx->dev_inode_xp ) );
1250        devfs_external_inode_xp = hal_remote_lwd( XPTR( 0 , &devfs_ctx->external_inode_xp ) );
[188]1251
[204]1252        // populate DEVFS in all clusters
1253        devfs_local_init( devfs_dev_inode_xp,
1254                          devfs_external_inode_xp,
1255                          &devfs_internal_inode_xp );
[188]1256    }
1257
1258    /////////////////////////////////////////////////////////////////////////////////
[528]1259    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]1260                                        (info->x_size * (info->y_max)) );
[188]1261    barrier_wait( &local_barrier , info->cores_nr );
[204]1262    /////////////////////////////////////////////////////////////////////////////////
[188]1263
[438]1264#if DEBUG_KERNEL_INIT
1265if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1266printk("\n[DBG] %s : exit barrier 7 : dev_root = %l in cluster 0 / cycle %d\n",
1267__FUNCTION__, devfs_dev_inode_xp , (uint32_t)hal_get_cycles() );
1268#endif
[188]1269
1270    /////////////////////////////////////////////////////////////////////////////////
[428]1271    // STEP 8 : CP0 in cluster 0 creates the first user process (process_init)
[188]1272    /////////////////////////////////////////////////////////////////////////////////
1273
[457]1274    if( (core_lid == 0) && (local_cxy == 0) ) 
[188]1275    {
[428]1276
[438]1277#if( DEBUG_KERNEL_INIT & 1 )
[428]1278vfs_display( vfs_root_inode_xp );
1279#endif
1280
1281       process_init_create();
[188]1282    }
[101]1283
[188]1284    /////////////////////////////////////////////////////////////////////////////////
[528]1285    if( core_lid == 0 ) remote_barrier( XPTR( 0 , &global_barrier ), // [FIXME]
[530]1286                                        (info->x_size * (info->y_max)) );
[188]1287    barrier_wait( &local_barrier , info->cores_nr );
[204]1288    /////////////////////////////////////////////////////////////////////////////////
[188]1289
[438]1290#if DEBUG_KERNEL_INIT
1291if( (core_lid ==  0) & (local_cxy == 0) ) 
[437]1292printk("\n[DBG] %s : exit barrier 8 : process init created / cycle %d\n", 
1293__FUNCTION__ , (uint32_t)hal_get_cycles() );
1294#endif
[188]1295
[443]1296#if (DEBUG_KERNEL_INIT & 1)
1297if( (core_lid ==  0) & (local_cxy == 0) ) 
1298sched_display( 0 );
1299#endif
1300
[188]1301    /////////////////////////////////////////////////////////////////////////////////
1302    // STEP 9 : CP0 in cluster 0 print banner
1303    /////////////////////////////////////////////////////////////////////////////////
1304   
[528]1305    if( (core_lid ==  0) && (local_cxy == 0) ) // [FIXME]
[188]1306    {
[5]1307        print_banner( (info->x_size * info->y_size) , info->cores_nr );
[68]1308
[438]1309#if( DEBUG_KERNEL_INIT & 1 )
[437]1310printk("\n\n***** memory fooprint for main kernel objects\n\n"
[68]1311                   " - thread descriptor  : %d bytes\n"
1312                   " - process descriptor : %d bytes\n"
1313                   " - cluster manager    : %d bytes\n"
1314                   " - chdev descriptor   : %d bytes\n"
1315                   " - core descriptor    : %d bytes\n"
1316                   " - scheduler          : %d bytes\n"
1317                   " - rpc fifo           : %d bytes\n"
1318                   " - page descriptor    : %d bytes\n"
1319                   " - mapper root        : %d bytes\n"
1320                   " - ppm manager        : %d bytes\n"
1321                   " - kcm manager        : %d bytes\n"
1322                   " - khm manager        : %d bytes\n"
1323                   " - vmm manager        : %d bytes\n"
1324                   " - gpt root           : %d bytes\n"
1325                   " - list item          : %d bytes\n"
1326                   " - xlist item         : %d bytes\n"
1327                   " - spinlock           : %d bytes\n"
1328                   " - remote spinlock    : %d bytes\n"
1329                   " - rwlock             : %d bytes\n"
1330                   " - remote rwlock      : %d bytes\n",
[127]1331                   sizeof( thread_t          ),
[68]1332                   sizeof( process_t         ),
1333                   sizeof( cluster_t         ),
1334                   sizeof( chdev_t           ),
1335                   sizeof( core_t            ),
1336                   sizeof( scheduler_t       ),
[407]1337                   sizeof( remote_fifo_t     ),
[68]1338                   sizeof( page_t            ),
1339                   sizeof( mapper_t          ),
1340                   sizeof( ppm_t             ),
1341                   sizeof( kcm_t             ),
1342                   sizeof( khm_t             ),
1343                   sizeof( vmm_t             ),
1344                   sizeof( gpt_t             ),
1345                   sizeof( list_entry_t      ),
1346                   sizeof( xlist_entry_t     ),
1347                   sizeof( spinlock_t        ),
1348                   sizeof( remote_spinlock_t ),
1349                   sizeof( rwlock_t          ),
1350                   sizeof( remote_rwlock_t   ));
[406]1351#endif
1352
[1]1353    }
1354
[398]1355    // each core activates its private TICK IRQ
1356    dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD );
[14]1357
[440]1358#if DEBUG_KERNEL_INIT
1359printk("\n[DBG] %s : thread %x on core[%x,%d] jumps to thread_idle_func() / cycle %d\n",
1360__FUNCTION__ , CURRENT_THREAD , local_cxy , core_lid , (uint32_t)hal_get_cycles() );
1361#endif
1362
[407]1363    // each core jump to thread_idle_func
[50]1364    thread_idle_func();
[127]1365}
[14]1366
Note: See TracBrowser for help on using the repository browser.