source: trunk/kernel/kern/kernel_init.c @ 435

Last change on this file since 435 was 435, checked in by alain, 4 years ago

Fix a bad bug in scheduler...

File size: 53.2 KB
Line 
1/*
2 * kernel_init.c - kernel parallel initialization
3 *
4 * Authors :  Mohamed Lamine Karaoui (2015)
5 *            Alain Greiner  (2016,2017)
6 *
7 * Copyright (c) Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25#include <kernel_config.h>
26#include <errno.h>
27#include <hal_types.h>
28#include <hal_special.h>
29#include <hal_context.h>
30#include <hal_irqmask.h>
31#include <hal_ppm.h>
32#include <barrier.h>
33#include <remote_barrier.h>
34#include <remote_fifo.h>
35#include <core.h>
36#include <list.h>
37#include <xlist.h>
38#include <xhtab.h>
39#include <thread.h>
40#include <scheduler.h>
41#include <kmem.h>
42#include <cluster.h>
43#include <string.h>
44#include <memcpy.h>
45#include <ppm.h>
46#include <page.h>
47#include <chdev.h>
48#include <boot_info.h>
49#include <dqdt.h>
50#include <dev_mmc.h>
51#include <dev_dma.h>
52#include <dev_iob.h>
53#include <dev_ioc.h>
54#include <dev_txt.h>
55#include <dev_pic.h>
56#include <printk.h>
57#include <vfs.h>
58#include <devfs.h>
59#include <mapper.h>
60
61#define KERNEL_INIT_SYNCHRO  0xA5A5B5B5
62
63///////////////////////////////////////////////////////////////////////////////////////////
64// All the following global variables are replicated in all clusters.
65// They are initialised by the kernel_init() function.
66//
67// WARNING : The section names have been defined to control the base addresses of the
68// boot_info structure and the idle thread descriptors, through the kernel.ld script:
69// - the boot_info structure is built by the bootloader, and used by kernel_init.
70//   it must be the first object in the kdata segment.
71// - the array of idle threads descriptors must be placed on the first page boundary after
72//   the boot_info structure in the kdata segment.
73///////////////////////////////////////////////////////////////////////////////////////////
74
75// This variable defines the local boot_info structure
76__attribute__((section(".kinfo")))
77boot_info_t          boot_info;
78
79// This variable defines the "idle" threads descriptors array
80__attribute__((section(".kidle")))
81char                 idle_threads[CONFIG_THREAD_DESC_SIZE *
82                                   CONFIG_MAX_LOCAL_CORES]   CONFIG_PPM_PAGE_ALIGNED;
83
84// This variable defines the local cluster manager
85__attribute__((section(".kdata")))
86cluster_t            cluster_manager                         CONFIG_CACHE_LINE_ALIGNED;
87
88// This variable defines the TXT0 kernel terminal (TX only)
89__attribute__((section(".kdata")))
90chdev_t              txt0_chdev                              CONFIG_CACHE_LINE_ALIGNED;
91
92// This variables define the kernel process0 descriptor
93__attribute__((section(".kdata")))
94process_t            process_zero                            CONFIG_CACHE_LINE_ALIGNED;
95
96// This variable defines extended pointers on the distributed chdevs
97__attribute__((section(".kdata")))
98chdev_directory_t    chdev_dir                               CONFIG_CACHE_LINE_ALIGNED;
99
100// This variable contains the input IRQ indexes for the IOPIC controller
101__attribute__((section(".kdata")))
102iopic_input_t        iopic_input                             CONFIG_CACHE_LINE_ALIGNED;
103
104// This variable contains the input IRQ indexes for the LAPIC controller
105__attribute__((section(".kdata")))
106lapic_input_t        lapic_input                             CONFIG_CACHE_LINE_ALIGNED;
107
108// This variable defines the local cluster identifier
109__attribute__((section(".kdata")))
110cxy_t                local_cxy                               CONFIG_CACHE_LINE_ALIGNED;
111
112// This variable is used for CP0 cores synchronisation in kernel_init()
113__attribute__((section(".kdata")))
114remote_barrier_t     global_barrier                          CONFIG_CACHE_LINE_ALIGNED;
115
116// This variable is used for local cores synchronisation in kernel_init()
117__attribute__((section(".kdata")))
118barrier_t            local_barrier                           CONFIG_CACHE_LINE_ALIGNED;
119
120// This variable defines the array of supported File System contexts
121__attribute__((section(".kdata")))
122vfs_ctx_t            fs_context[FS_TYPES_NR]                 CONFIG_CACHE_LINE_ALIGNED;
123
124
125// these debug variables are used to analyse the sys_read() syscall timing
126
127#if CONFIG_READ_DEBUG   
128uint32_t   enter_sys_read;
129uint32_t   exit_sys_read;
130
131uint32_t   enter_devfs_read;
132uint32_t   exit_devfs_read;
133
134uint32_t   enter_txt_read;
135uint32_t   exit_txt_read;
136
137uint32_t   enter_chdev_cmd_read;
138uint32_t   exit_chdev_cmd_read;
139
140uint32_t   enter_chdev_server_read;
141uint32_t   exit_chdev_server_read;
142
143uint32_t   enter_tty_cmd_read;
144uint32_t   exit_tty_cmd_read;
145
146uint32_t   enter_tty_isr_read;
147uint32_t   exit_tty_isr_read;
148#endif
149
150// these debug variables are used to analyse the sys_write() syscall timing
151
152#if CONFIG_WRITE_DEBUG   
153uint32_t   enter_sys_write;
154uint32_t   exit_sys_write;
155
156uint32_t   enter_devfs_write;
157uint32_t   exit_devfs_write;
158
159uint32_t   enter_txt_write;
160uint32_t   exit_txt_write;
161
162uint32_t   enter_chdev_cmd_write;
163uint32_t   exit_chdev_cmd_write;
164
165uint32_t   enter_chdev_server_write;
166uint32_t   exit_chdev_server_write;
167
168uint32_t   enter_tty_cmd_write;
169uint32_t   exit_tty_cmd_write;
170
171uint32_t   enter_tty_isr_write;
172uint32_t   exit_tty_isr_write;
173#endif
174
175///////////////////////////////////////////////////////////////////////////////////////////
176// This function displays the ALMOS_MKH banner.
177///////////////////////////////////////////////////////////////////////////////////////////
178static void print_banner( uint32_t nclusters , uint32_t ncores )
179{
180    printk("\n"
181           "                    _        __    __     _____     ______         __    __    _   __   _     _   \n"
182           "          /\\       | |      |  \\  /  |   / ___ \\   / _____|       |  \\  /  |  | | / /  | |   | |  \n"
183           "         /  \\      | |      |   \\/   |  | /   \\ | | /             |   \\/   |  | |/ /   | |   | |  \n"
184           "        / /\\ \\     | |      | |\\  /| |  | |   | | | |_____   ___  | |\\  /| |  |   /    | |___| |  \n"
185           "       / /__\\ \\    | |      | | \\/ | |  | |   | | \\_____  \\ |___| | | \\/ | |  |   \\    |  ___  |  \n"
186           "      / ______ \\   | |      | |    | |  | |   | |       | |       | |    | |  | |\\ \\   | |   | |  \n"
187           "     / /      \\ \\  | |____  | |    | |  | \\___/ |  _____/ |       | |    | |  | | \\ \\  | |   | |  \n"
188           "    /_/        \\_\\ |______| |_|    |_|   \\_____/  |______/        |_|    |_|  |_|  \\_\\ |_|   |_|  \n"
189           "\n\n\t\t Advanced Locality Management Operating System / Multi Kernel Hybrid\n"
190           "\n\n\t\t Version 0.0 / %d cluster(s) / %d core(s) per cluster / cycle %d\n\n",
191           nclusters , ncores , hal_time_stamp() );
192}
193
194
195///////////////////////////////////////////////////////////////////////////////////////////
196// This function initializes the TXT0 chdev descriptor, that is the "kernel terminal",
197// shared by all kernel instances for debug messages.
198// It is a global variable (replicated in all clusters), because this terminal is used
199// before the kmem allocator initialisation, but only the instance in cluster containing
200// the calling core is registered in the "chdev_dir" directory.
201// As this TXT0 chdev supports only the TXT_SYNC_WRITE command, we don't create
202// a server thread, we don't allocate a WTI, and we don't initialize the waiting queue.
203///////////////////////////////////////////////////////////////////////////////////////////
204// @ info    : pointer on the local boot-info structure.
205///////////////////////////////////////////////////////////////////////////////////////////
206static void txt0_device_init( boot_info_t * info )
207{
208    boot_device_t * dev_tbl;         // pointer on array of devices in boot_info
209    uint32_t        dev_nr;          // actual number of devices in this cluster
210    xptr_t          base;            // remote pointer on segment base
211    uint32_t        func;            // device functional index
212    uint32_t        impl;            // device implementation index
213    uint32_t        i;               // device index in dev_tbl
214    uint32_t        x;               // X cluster coordinate
215    uint32_t        y;               // Y cluster coordinate
216    uint32_t        channels;        // number of channels
217
218    // get number of peripherals and base of devices array from boot_info
219    dev_nr      = info->ext_dev_nr;
220    dev_tbl     = info->ext_dev;
221
222    // loop on external peripherals to find TXT device
223    for( i = 0 ; i < dev_nr ; i++ )
224    {
225        base        = dev_tbl[i].base;
226        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
227        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
228        channels    = dev_tbl[i].channels;
229
230        if (func == DEV_FUNC_TXT )
231        {
232            assert( (channels > 0) , __FUNCTION__ , "number of TXT channels cannot be 0\n");
233
234            // initializes TXT_TX[0] chdev
235            txt0_chdev.func    = func;
236            txt0_chdev.impl    = impl;
237            txt0_chdev.channel = 0;
238            txt0_chdev.base    = base;
239            txt0_chdev.is_rx   = false;
240
241            // initializes lock
242            remote_spinlock_init( XPTR( local_cxy , &txt0_chdev.wait_lock ) );
243           
244            // TXT specific initialisation:
245            // no server thread & no IRQ routing for channel 0
246            dev_txt_init( &txt0_chdev );                 
247
248            // register the TXT0 in all chdev_dir[x][y] structures
249            for( x = 0 ; x < info->x_size ; x++ )
250            {
251                for( y = 0 ; y < info->y_size ; y++ )
252                {
253                    cxy_t  cxy = (x<<info->y_width) + y;
254                    hal_remote_swd( XPTR( cxy , &chdev_dir.txt_tx[0] ) ,
255                                    XPTR( local_cxy , &txt0_chdev ) );
256                }
257            }
258        }
259        } // end loop on devices
260}  // end txt0_device_init()
261
262///////////////////////////////////////////////////////////////////////////////////////////
263// This function allocates memory and initializes the chdev descriptors for the internal
264// peripherals contained in the local cluster, other than the LAPIC, as specified by
265// the boot_info, including the linking with the driver for the specified implementation.
266// The relevant entries in all copies of the devices directory are initialised.
267///////////////////////////////////////////////////////////////////////////////////////////
268// @ info    : pointer on the local boot-info structure.
269///////////////////////////////////////////////////////////////////////////////////////////
270static void internal_devices_init( boot_info_t * info )
271{
272    boot_device_t * dev_tbl;         // pointer on array of internaldevices in boot_info
273        uint32_t        dev_nr;          // actual number of devices in this cluster
274        xptr_t          base;            // remote pointer on segment base
275    uint32_t        func;            // device functionnal index
276    uint32_t        impl;            // device implementation index
277        uint32_t        i;               // device index in dev_tbl
278        uint32_t        x;               // X cluster coordinate
279        uint32_t        y;               // Y cluster coordinate
280        uint32_t        channels;        // number of channels
281        uint32_t        channel;         // channel index
282        chdev_t       * chdev_ptr;       // local pointer on created chdev
283
284    // get number of internal peripherals and base from boot_info
285        dev_nr  = info->int_dev_nr;
286    dev_tbl = info->int_dev;
287
288    // loop on internal peripherals
289        for( i = 0 ; i < dev_nr ; i++ )
290        {
291        base        = dev_tbl[i].base;
292        channels    = dev_tbl[i].channels;
293        func        = FUNC_FROM_TYPE( dev_tbl[i].type );
294        impl        = IMPL_FROM_TYPE( dev_tbl[i].type );
295 
296        //////////////////////////
297        if( func == DEV_FUNC_MMC ) 
298        {
299            assert( (channels == 1) , __FUNCTION__ , 
300                    "MMC device must be single channel\n" );
301
302            // create chdev in local cluster
303            chdev_ptr = chdev_create( func,
304                                      impl,
305                                      0,          // channel
306                                      false,      // direction
307                                      base );
308
309            assert( (chdev_ptr != NULL) , __FUNCTION__ ,
310                    "cannot allocate memory for MMC chdev\n" );
311           
312            // make MMC specific initialisation
313            dev_mmc_init( chdev_ptr );
314
315            // set the MMC field in all chdev_dir[x][y] structures
316            for( x = 0 ; x < info->x_size ; x++ )
317            {
318                for( y = 0 ; y < info->y_size ; y++ )
319                {
320                    cxy_t  cxy = (x<<info->y_width) + y;
321                    hal_remote_swd( XPTR( cxy , &chdev_dir.mmc[local_cxy] ), 
322                                    XPTR( local_cxy , chdev_ptr ) );
323                }
324            }
325
326#if( CONFIG_KINIT_DEBUG & 0x1 )
327if( hal_time_stamp() > CONFIG_KINIT_DEBUG )
328printk("\n[DBG] %s : created MMC in cluster %x / chdev = %x\n",
329__FUNCTION__ , local_cxy , chdev_ptr );
330#endif
331        }
332        ///////////////////////////////
333        else if( func == DEV_FUNC_DMA )
334        {
335            // create one chdev per channel in local cluster
336            for( channel = 0 ; channel < channels ; channel++ )
337            {   
338                // create chdev[channel] in local cluster
339                chdev_ptr = chdev_create( func,
340                                          impl,
341                                          channel,
342                                          false,     // direction
343                                          base );
344
345                assert( (chdev_ptr != NULL) , __FUNCTION__ , 
346                        "cannot allocate memory for DMA chdev" );
347           
348                // make DMA specific initialisation
349                dev_dma_init( chdev_ptr );     
350
351                // initialize only the DMA[channel] field in the local chdev_dir[x][y]
352                // structure because the DMA device is not remotely accessible.
353                chdev_dir.dma[channel] = XPTR( local_cxy , chdev_ptr );
354
355#if( CONFIG_KINIT_DEBUG & 0x1 )
356if( hal_time_stamp() > CONFIG_KINIT_DEBUG )
357printk("\n[DBG] %s : created DMA[%d] in cluster %x / chdev = %x\n",
358__FUNCTION__ , channel , local_cxy , chdev_ptr );
359#endif
360            }
361        }
362    }
363}  // end internal_devices_init()
364
365///////////////////////////////////////////////////////////////////////////////////////////
366// This function allocates memory and initializes the chdev descriptors for the 
367// external (shared) peripherals other than the IOPIC, as specified by the boot_info.
368// This includes the dynamic linking with the driver for the specified implementation.
369// These chdev descriptors are distributed on all clusters, using a modulo on a global
370// index, identically computed in all clusters.
371// This function is executed in all clusters by the CP0 core, that computes a global index
372// for all external chdevs. Each CP0 core creates only the chdevs that must be placed in
373// the local cluster, because the global index matches the local index.
374// The relevant entries in all copies of the devices directory are initialised.
375///////////////////////////////////////////////////////////////////////////////////////////
376// @ info    : pointer on the local boot-info structure.
377///////////////////////////////////////////////////////////////////////////////////////////
378static void external_devices_init( boot_info_t * info )
379{
380    boot_device_t * dev_tbl;         // pointer on array of external devices in boot_info
381        uint32_t        dev_nr;          // actual number of external devices
382        xptr_t          base;            // remote pointer on segment base
383    uint32_t        func;            // device functionnal index
384    uint32_t        impl;            // device implementation index
385        uint32_t        i;               // device index in dev_tbl
386        uint32_t        x;               // X cluster coordinate
387        uint32_t        y;               // Y cluster coordinate
388        uint32_t        channels;        // number of channels
389        uint32_t        channel;         // channel index
390        uint32_t        directions;      // number of directions (1 or 2)
391        uint32_t        rx;              // direction index (0 or 1)
392    chdev_t       * chdev;           // local pointer on one channel_device descriptor
393    uint32_t        ext_chdev_gid;   // global index of external chdev
394
395    // get number of peripherals and base of devices array from boot_info
396    dev_nr      = info->ext_dev_nr;
397    dev_tbl     = info->ext_dev;
398
399    // initializes global index (PIC is already placed in cluster 0
400    ext_chdev_gid = 1;
401
402    // loop on external peripherals
403    for( i = 0 ; i < dev_nr ; i++ )
404    {
405        base     = dev_tbl[i].base;
406        channels = dev_tbl[i].channels;
407        func     = FUNC_FROM_TYPE( dev_tbl[i].type );
408        impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
409
410        // There is one chdev per direction for NIC and for TXT
411        if((func == DEV_FUNC_NIC) || (func == DEV_FUNC_TXT)) directions = 2;
412        else                                                 directions = 1;
413
414        // do nothing for ROM, that does not require a device descriptor.
415        if( func == DEV_FUNC_ROM ) continue;
416
417        // do nothing for PIC, that is already initialized
418        if( func == DEV_FUNC_PIC ) continue;
419
420        // check PIC device initialized
421        assert( (chdev_dir.pic != XPTR_NULL ) , __FUNCTION__ ,
422              "PIC device must be initialized before other devices\n" );
423
424        // check external device functionnal type
425        assert( ( (func == DEV_FUNC_IOB) ||
426                  (func == DEV_FUNC_IOC) ||
427                  (func == DEV_FUNC_TXT) ||
428                  (func == DEV_FUNC_NIC) ||
429                  (func == DEV_FUNC_FBF) ) , __FUNCTION__ ,
430                  "undefined external peripheral type\n" );
431
432        // loops on channels
433        for( channel = 0 ; channel < channels ; channel++ )
434        {
435            // loop on directions
436            for( rx = 0 ; rx < directions ; rx++ )
437            {
438                // skip TXT_TX[0] chdev that has already been created & registered
439                if( (func == DEV_FUNC_TXT) && (channel == 0) && (rx == 0) ) continue;
440
441                // compute target cluster for chdev[func,channel,direction]
442                uint32_t offset     = ext_chdev_gid % ( info->x_size * info->y_size );
443                uint32_t cx         = offset / info->y_size;
444                uint32_t cy         = offset % info->y_size;
445                uint32_t target_cxy = (cx<<info->y_width) + cy;
446
447                // allocate and initialize a local chdev
448                // when local cluster matches target cluster
449                if( target_cxy == local_cxy )
450                {
451                    chdev = chdev_create( func,
452                                          impl,
453                                          channel,
454                                          rx,          // direction
455                                          base );
456
457                    assert( (chdev != NULL), __FUNCTION__ ,
458                            "cannot allocate external device" );
459
460                    // make device type specific initialisation
461                    if     ( func == DEV_FUNC_IOB ) dev_iob_init( chdev );
462                    else if( func == DEV_FUNC_IOC ) dev_ioc_init( chdev );
463                    else if( func == DEV_FUNC_TXT ) dev_txt_init( chdev );
464                    else if( func == DEV_FUNC_NIC ) dev_nic_init( chdev );
465                    else if( func == DEV_FUNC_FBF ) dev_fbf_init( chdev );
466
467                    // all external (shared) devices are remotely accessible
468                    // initialize the replicated chdev_dir[x][y] structures
469                    // defining the extended pointers on chdev descriptors
470                    xptr_t * entry;
471
472                    if(func==DEV_FUNC_IOB             ) entry  = &chdev_dir.iob;
473                    if(func==DEV_FUNC_IOC             ) entry  = &chdev_dir.ioc[channel];
474                    if(func==DEV_FUNC_FBF             ) entry  = &chdev_dir.fbf[channel];
475                    if((func==DEV_FUNC_TXT) && (rx==0)) entry  = &chdev_dir.txt_tx[channel];
476                    if((func==DEV_FUNC_TXT) && (rx==1)) entry  = &chdev_dir.txt_rx[channel];
477                    if((func==DEV_FUNC_NIC) && (rx==0)) entry  = &chdev_dir.nic_tx[channel];
478                    if((func==DEV_FUNC_NIC) && (rx==1)) entry  = &chdev_dir.nic_rx[channel];
479
480                    for( x = 0 ; x < info->x_size ; x++ )
481                    {
482                        for( y = 0 ; y < info->y_size ; y++ )
483                        {
484                            cxy_t  cxy = (x<<info->y_width) + y;
485                            hal_remote_swd( XPTR( cxy , entry ),
486                                            XPTR( local_cxy , chdev ) );
487                        }
488                    }
489
490#if( CONFIG_KINIT_DEBUG & 0x1 )
491if( hal_time_stamp() > CONFIG_KINIT_DEBUG )
492printk("\n[DBG] %s : create chdev %s / channel = %d / rx = %d / cluster %x / chdev = %x\n",
493__FUNCTION__ , chdev_func_str( func ), channel , rx , local_cxy , chdev );
494#endif
495                }  // end if match
496
497                // increment chdev global index (matching or not)
498                ext_chdev_gid++;
499
500            } // end loop on directions
501        }  // end loop on channels
502        } // end loop on devices
503}  // end external_devices_init()
504
505///////////////////////////////////////////////////////////////////////////////////////////
506// This function is called by CP0 in cluster 0 to allocate memory and initialize the PIC
507// device, namely the informations attached to the external IOPIC controller, that
508// must be replicated in all clusters (struct iopic_input).
509// This initialisation must be done before other devices initialisation because the IRQ
510// routing infrastructure is required for both internal and external devices init.
511///////////////////////////////////////////////////////////////////////////////////////////
512// @ info    : pointer on the local boot-info structure.
513///////////////////////////////////////////////////////////////////////////////////////////
514static void iopic_init( boot_info_t * info )
515{
516    boot_device_t * dev_tbl;         // pointer on boot_info external devices array
517        uint32_t        dev_nr;          // actual number of external devices
518        xptr_t          base;            // remote pointer on segment base
519    uint32_t        func;            // device functionnal index
520    uint32_t        impl;            // device implementation index
521        uint32_t        i;               // device index in dev_tbl
522    uint32_t        x;               // cluster X coordinate
523    uint32_t        y;               // cluster Y coordinate
524    bool_t          found;           // IOPIC found
525        chdev_t       * chdev;           // pointer on PIC chdev descriptor
526
527    // get number of external peripherals and base of array from boot_info
528        dev_nr      = info->ext_dev_nr;
529    dev_tbl     = info->ext_dev;
530
531    // loop on external peripherals to get the IOPIC 
532        for( i = 0 , found = false ; i < dev_nr ; i++ )
533        {
534        func = FUNC_FROM_TYPE( dev_tbl[i].type );
535
536        if( func == DEV_FUNC_PIC )
537        {
538            base     = dev_tbl[i].base;
539            impl     = IMPL_FROM_TYPE( dev_tbl[i].type );
540            found    = true;
541            break;
542        }
543    }
544
545    assert( found , __FUNCTION__ , "PIC device not found\n" );
546
547    // allocate and initialize the PIC chdev in cluster 0
548    chdev = chdev_create( DEV_FUNC_PIC,
549                          impl,
550                          0,      // channel
551                          0,      // direction,
552                          base );
553
554    assert( (chdev != NULL), __FUNCTION__ , "no memory for PIC chdev\n" );
555
556    // make PIC device type specific initialisation
557    dev_pic_init( chdev );
558
559    // register, in all clusters, the extended pointer
560    // on PIC chdev in "chdev_dir" array
561    xptr_t * entry = &chdev_dir.pic;   
562               
563    for( x = 0 ; x < info->x_size ; x++ )
564    {
565        for( y = 0 ; y < info->y_size ; y++ )
566        {
567            cxy_t  cxy = (x<<info->y_width) + y;
568            hal_remote_swd( XPTR( cxy , entry ) , 
569                            XPTR( local_cxy , chdev ) );
570        }
571    }
572
573    // initialize, in all clusters, the "iopic_input" structure
574    // defining how external IRQs are connected to IOPIC
575
576    // register default value for unused inputs
577    for( x = 0 ; x < info->x_size ; x++ )
578    {
579        for( y = 0 ; y < info->y_size ; y++ )
580        {
581            cxy_t  cxy = (x<<info->y_width) + y;
582            hal_remote_memset( XPTR( cxy , &iopic_input ) , 0xFF , sizeof(iopic_input_t) );
583        }
584    }
585
586    // register input IRQ index for valid inputs
587    uint32_t   id;         // input IRQ index
588    uint8_t    valid;      // input IRQ is connected
589    uint32_t   type;       // source device type
590    uint8_t    channel;    // source device channel
591    uint8_t    is_rx;      // source device direction
592    uint32_t * ptr;        // local pointer on one field in iopic_input stucture
593
594    for( id = 0 ; id < CONFIG_MAX_EXTERNAL_IRQS ; id++ )
595    {
596        valid   = dev_tbl[i].irq[id].valid;
597        type    = dev_tbl[i].irq[id].dev_type;
598        channel = dev_tbl[i].irq[id].channel;
599        is_rx   = dev_tbl[i].irq[id].is_rx;
600        func    = FUNC_FROM_TYPE( type );
601
602        // get pointer on relevant field in iopic_input
603        if( valid )
604        {
605            if     ( func == DEV_FUNC_IOC )                 ptr = &iopic_input.ioc[channel]; 
606            else if((func == DEV_FUNC_TXT) && (is_rx == 0)) ptr = &iopic_input.txt_tx[channel];
607            else if((func == DEV_FUNC_TXT) && (is_rx != 0)) ptr = &iopic_input.txt_rx[channel];
608            else if((func == DEV_FUNC_NIC) && (is_rx == 0)) ptr = &iopic_input.nic_tx[channel]; 
609            else if((func == DEV_FUNC_NIC) && (is_rx != 0)) ptr = &iopic_input.nic_rx[channel]; 
610            else if( func == DEV_FUNC_IOB )                 ptr = &iopic_input.iob; 
611            else     assert( false , __FUNCTION__ , "illegal source device for IOPIC input" );
612
613            // set one entry in all "iopic_input" structures
614            for( x = 0 ; x < info->x_size ; x++ )
615            {
616                for( y = 0 ; y < info->y_size ; y++ )
617                {
618                    cxy_t  cxy = (x<<info->y_width) + y;
619                    hal_remote_swd( XPTR( cxy , ptr ) , id ); 
620                }
621            }
622        }
623    } 
624
625#if( CONFIG_KINIT_DEBUG & 0x1 )
626if( hal_time_stamp() > CONFIG_KINIT_DEBUG )
627{
628    printk("\n[DBG] %s created PIC chdev in cluster %x at cycle %d\n",
629    __FUNCTION__ , local_cxy , (uint32_t)hal_time_stamp() );
630    dev_pic_inputs_display();
631}
632#endif
633   
634}  // end iopic_init()
635
636///////////////////////////////////////////////////////////////////////////////////////////
637// This function is called by all CP0s in all cluster to complete the PIC device
638// initialisation, namely the informations attached to the LAPIC controller.
639// This initialisation must be done after the IOPIC initialisation, but before other
640// devices initialisation because the IRQ routing infrastructure is required for both
641// internal and external devices initialisation.
642///////////////////////////////////////////////////////////////////////////////////////////
643// @ info    : pointer on the local boot-info structure.
644///////////////////////////////////////////////////////////////////////////////////////////
645static void lapic_init( boot_info_t * info )
646{
647    boot_device_t * dev_tbl;      // pointer on boot_info internal devices array
648    uint32_t        dev_nr;       // number of internal devices
649    uint32_t        i;            // device index in dev_tbl
650        xptr_t          base;         // remote pointer on segment base
651    uint32_t        func;         // device functionnal type in boot_info
652    bool_t          found;        // LAPIC found
653
654    // get number of internal peripherals and base
655        dev_nr      = info->int_dev_nr;
656    dev_tbl     = info->int_dev;
657
658    // loop on internal peripherals to get the lapic device
659        for( i = 0 , found = false ; i < dev_nr ; i++ )
660        {
661        func = FUNC_FROM_TYPE( dev_tbl[i].type );
662
663        if( func == DEV_FUNC_ICU )
664        {
665            base     = dev_tbl[i].base;
666            found    = true;
667            break;
668        }
669    }
670
671    // if the LAPIC controller is not defined in the boot_info,
672    // we simply don't initialize the PIC extensions in the kernel,
673    // making the assumption that the LAPIC related informations
674    // are hidden in the hardware specific PIC driver.
675    if( found )
676    {
677        // initialise the PIC extensions for
678        // the core descriptor and core manager extensions
679        dev_pic_extend_init( (uint32_t *)GET_PTR( base ) );
680
681        // initialize the "lapic_input" structure
682        // defining how internal IRQs are connected to LAPIC
683        uint32_t        id;
684        uint8_t         valid;
685        uint8_t         channel;
686        uint32_t        func;
687
688        for( id = 0 ; id < CONFIG_MAX_INTERNAL_IRQS ; id++ )
689        {
690            valid    = dev_tbl[i].irq[id].valid;
691            func     = FUNC_FROM_TYPE( dev_tbl[i].irq[id].dev_type );
692            channel  = dev_tbl[i].irq[id].channel;
693
694            if( valid ) // only valid local IRQs are registered
695            {
696                if     ( func == DEV_FUNC_MMC ) lapic_input.mmc = id;
697                else if( func == DEV_FUNC_DMA ) lapic_input.dma[channel] = id;
698                else assert( false , __FUNCTION__ , "illegal source device for LAPIC input" );
699            }
700        }
701    }
702}  // end lapic_init()
703
704///////////////////////////////////////////////////////////////////////////////////////////
705// This static function returns the identifiers of the calling core.
706///////////////////////////////////////////////////////////////////////////////////////////
707// @ info    : pointer on boot_info structure.
708// @ lid     : [out] core local index in cluster.
709// @ cxy     : [out] cluster identifier.
710// @ lid     : [out] core global identifier (hardware).
711// @ return 0 if success / return EINVAL if not found.
712///////////////////////////////////////////////////////////////////////////////////////////
713static error_t get_core_identifiers( boot_info_t * info,
714                                     lid_t       * lid,
715                                     cxy_t       * cxy,
716                                     gid_t       * gid )
717{
718    uint32_t   i;
719    gid_t      global_id;
720
721    // get global identifier from hardware register
722    global_id = hal_get_gid();
723
724    // makes an associative search in boot_info to get (cxy,lid) from global_id
725    for( i = 0 ; i < info->cores_nr ; i++ )
726    {
727        if( global_id == info->core[i].gid )
728        {
729            *lid = info->core[i].lid;
730            *cxy = info->core[i].cxy;
731            *gid = global_id;
732            return 0;
733        }
734    }
735    return EINVAL;
736}
737
738///////////////////////////////////////////////////////////////////////////////////////////
739// This function is the entry point for the kernel initialisation.
740// It is executed by all cores in all clusters, but only core[0], called CP0,
741// initializes the shared resources such as the cluster manager, or the local peripherals.
742// To comply with the multi-kernels paradigm, it accesses only local cluster memory, using
743// only information contained in the local boot_info_t structure, set by the bootloader.
744// Only CP0 in cluster 0 print the log messages.
745///////////////////////////////////////////////////////////////////////////////////////////
746// @ info    : pointer on the local boot-info structure.
747///////////////////////////////////////////////////////////////////////////////////////////
748void kernel_init( boot_info_t * info )
749{
750    lid_t        core_lid = -1;             // running core local index
751    cxy_t        core_cxy = -1;             // running core cluster identifier
752    gid_t        core_gid;                  // running core hardware identifier
753    cluster_t  * cluster;                   // pointer on local cluster manager
754    core_t     * core;                      // pointer on running core descriptor
755    thread_t   * thread;                    // pointer on idle thread descriptor
756
757    xptr_t       vfs_root_inode_xp;         // extended pointer on VFS root inode
758    xptr_t       devfs_dev_inode_xp;        // extended pointer on DEVFS dev inode   
759    xptr_t       devfs_external_inode_xp;   // extended pointer on DEVFS external inode       
760    xptr_t       devfs_internal_inode_xp;   // extended pointer on DEVFS internal inode       
761
762    error_t      error;
763    reg_t        status;                    // running core status register
764
765    cxy_t        io_cxy = info->io_cxy;
766
767    assert( (io_cxy == ((info->x_size - 1)<<(info->y_width)) + (info->y_size - 1)) ,
768    __FUNCTION__ , "illegal IO cluter identifier\n" );
769
770    /////////////////////////////////////////////////////////////////////////////////
771    // STEP 0 : Each core get its core identifier from boot_info, and makes
772    //          a partial initialisation of its private idle thread descriptor.
773    //          CP0 initializes the "local_cxy" global variable.
774    //          CP0 in cluster IO initializes the TXT0 chdev to print log messages.
775    /////////////////////////////////////////////////////////////////////////////////
776
777    error = get_core_identifiers( info,
778                                  &core_lid,
779                                  &core_cxy,
780                                  &core_gid );
781
782    // CP0 initializes cluster identifier
783    if( core_lid == 0 ) local_cxy = info->cxy;
784
785    // each core gets a pointer on its private idle thread descriptor
786    thread = (thread_t *)( idle_threads + (core_lid * CONFIG_THREAD_DESC_SIZE) );
787
788    // each core registers this thread pointer in hardware register
789    hal_set_current_thread( thread );
790
791    // each core register core descriptor pointer in idle thread descriptor
792    thread->core = &LOCAL_CLUSTER->core_tbl[core_lid];
793
794#if CONFIG_LOCKS_DEBUG
795    list_root_init( &thread->locks_root );
796    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
797#endif
798
799    // CP0 in I/O cluster initialises TXT0 chdev descriptor
800    if( (core_lid == 0) && (core_cxy == io_cxy) ) txt0_device_init( info );
801
802    /////////////////////////////////////////////////////////////////////////////////
803    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
804                                        (info->x_size * info->y_size) );
805    barrier_wait( &local_barrier , info->cores_nr );
806
807    if( (core_lid ==  0) && (local_cxy == 0) ) 
808    kinit_dmsg("\n[DBG] %s : exit barrier 0 : TXT0 initialized / cycle %d\n",
809    __FUNCTION__, hal_time_stamp() );
810
811    /////////////////////////////////////////////////////////////////////////////
812    // STEP 1 : all cores check core identifier.
813    //          CP0 initializes the local cluster manager.
814    //          This includes the memory allocators.
815    /////////////////////////////////////////////////////////////////////////////
816
817    // all cores check identifiers
818    if( error )
819    {
820        assert( false , __FUNCTION__ ,
821        "illegal core identifiers gid = %x / cxy = %x / lid = %d",
822        core_lid , core_cxy , core_lid );
823    }
824
825    // CP0 initializes cluster manager
826    if( core_lid == 0 )
827    {
828        error = cluster_init( info );
829
830        if( error )
831        {
832            assert( false , __FUNCTION__ ,
833            "cannot initialise cluster %x", local_cxy );
834        }
835    }
836
837    /////////////////////////////////////////////////////////////////////////////////
838    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
839                                        (info->x_size * info->y_size) );
840    barrier_wait( &local_barrier , info->cores_nr );
841    /////////////////////////////////////////////////////////////////////////////////
842
843    if( (core_lid ==  0) && (local_cxy == 0) ) 
844    kinit_dmsg("\n[DBG] %s : exit barrier 1 : clusters initialised / cycle %d\n",
845    __FUNCTION__, hal_time_stamp() );
846
847    /////////////////////////////////////////////////////////////////////////////////
848    // STEP 2 : CP0 initializes the process_zero descriptor.
849    //          CP0 in cluster 0 initializes the IOPIC device.
850    /////////////////////////////////////////////////////////////////////////////////
851
852    // all cores get pointer on local cluster manager & core descriptor
853    cluster = &cluster_manager;
854    core    = &cluster->core_tbl[core_lid];
855
856    // all CP0s initialize the process_zero descriptor
857    if( core_lid == 0 ) process_zero_create( &process_zero );
858
859    // CP0 in cluster 0 initializes the PIC chdev,
860    if( (core_lid == 0) && (local_cxy == 0) ) iopic_init( info );
861   
862    ////////////////////////////////////////////////////////////////////////////////
863    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
864                                        (info->x_size * info->y_size) );
865    barrier_wait( &local_barrier , info->cores_nr );
866    ////////////////////////////////////////////////////////////////////////////////
867
868    if( (core_lid ==  0) && (local_cxy == 0) ) 
869    kinit_dmsg("\n[DBG] %s : exit barrier 2 : PIC initialised / cycle %d\n",
870    __FUNCTION__, hal_time_stamp() );
871
872    ////////////////////////////////////////////////////////////////////////////////
873    // STEP 3 : CP0 initializes the distibuted LAPIC descriptor.
874    //          CP0 initializes the internal chdev descriptors
875    //          CP0 initialize the local external chdev descriptors
876    ////////////////////////////////////////////////////////////////////////////////
877
878    // all CP0s initialize their local LAPIC extension,
879    if( core_lid == 0 ) lapic_init( info );
880
881    // CP0 scan the internal (private) peripherals,
882    // and allocates memory for the corresponding chdev descriptors.
883    if( core_lid == 0 ) internal_devices_init( info );
884       
885
886    // All CP0s contribute to initialise external peripheral chdev descriptors.
887    // Each CP0[cxy] scan the set of external (shared) peripherals (but the TXT0),
888    // and allocates memory for the chdev descriptors that must be placed
889    // on the (cxy) cluster according to the global index value.
890
891    if( core_lid == 0 ) external_devices_init( info );
892
893    /////////////////////////////////////////////////////////////////////////////////
894    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
895                                        (info->x_size * info->y_size) );
896    barrier_wait( &local_barrier , info->cores_nr );
897    /////////////////////////////////////////////////////////////////////////////////
898
899    if( (core_lid ==  0) && (local_cxy == 0) ) 
900    kinit_dmsg("\n[DBG] %s : exit barrier 3 : all chdev initialised / cycle %d\n",
901               __FUNCTION__, hal_time_stamp());
902
903    /////////////////////////////////////////////////////////////////////////////////
904    // STEP 4 : All cores enable IPI (Inter Procesor Interrupt),
905    //          Alh cores initialize IDLE thread.
906    //          Only CP0 in cluster 0 creates the VFS root inode.
907    //          It access the boot device to initialize the file system context.
908    /////////////////////////////////////////////////////////////////////////////////
909
910#if CONFIG_KINIT_DEBUG
911chdev_dir_display();
912#endif
913   
914    // All cores enable the shared IPI channel
915    dev_pic_enable_ipi();
916    hal_enable_irq( &status );
917
918    // all cores initialize the idle thread descriptor
919    error = thread_kernel_init( thread,
920                                THREAD_IDLE,
921                                &thread_idle_func,
922                                NULL,
923                                core_lid );
924    if( error )
925    {
926        assert( false , __FUNCTION__ ,
927        "core[%x][%d] cannot initialize idle thread", local_cxy , core_lid );
928    }
929
930    // all cores unblock idle thread, and register it in scheduler
931    thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_GLOBAL );
932    core->scheduler.idle = thread;
933
934#if CONFIG_KINIT_DEBUG
935sched_display( core_lid );
936#endif
937
938    // CPO in cluster 0 creates the VFS root
939    if( (core_lid ==  0) && (local_cxy == 0 ) ) 
940    {
941        vfs_root_inode_xp = XPTR_NULL;
942
943        // File System must be FATFS in this implementation,
944        // but other File System can be introduced here
945        if( CONFIG_VFS_ROOT_IS_FATFS )
946        {
947            // 1. allocate memory for FATFS context in cluster 0
948            fatfs_ctx_t * fatfs_ctx = fatfs_ctx_alloc();
949
950            assert( (fatfs_ctx != NULL) , __FUNCTION__ ,
951                    "cannot create FATFS context in cluster 0\n" );
952
953            // 2. access boot device to initialize FATFS context
954            fatfs_ctx_init( fatfs_ctx );
955 
956            // 3. get various informations from FATFS context
957            uint32_t root_dir_cluster = fatfs_ctx->root_dir_cluster;
958            uint32_t cluster_size     = fatfs_ctx->bytes_per_sector * 
959                                        fatfs_ctx->sectors_per_cluster;
960            uint32_t total_clusters   = fatfs_ctx->fat_sectors_count << 7;
961 
962            // 4. create VFS root inode in cluster 0
963            error = vfs_inode_create( XPTR_NULL,                           // dentry_xp
964                                      FS_TYPE_FATFS,                       // fs_type
965                                      INODE_TYPE_DIR,                      // inode_type
966                                      (void *)(intptr_t)root_dir_cluster,  // extend
967                                      0,                                   // attr
968                                      0,                                   // rights
969                                      0,                                   // uid
970                                      0,                                   // gid
971                                      &vfs_root_inode_xp );                // return
972
973            assert( (error == 0) , __FUNCTION__ , 
974                    "cannot create VFS root inode\n" );
975
976            // 5. initialize VFS context for FAT in cluster 0
977            vfs_ctx_init( FS_TYPE_FATFS,                 // file system type
978                          0,                             // attributes
979                              total_clusters,               
980                              cluster_size,
981                              vfs_root_inode_xp,             // VFS root
982                          fatfs_ctx );                   // extend
983
984            // 6. check initialisation
985            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
986            assert( (((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster == 8),
987            __FUNCTION__ , "illegal value for FATFS context in cluster %x\n", local_cxy );
988        }
989        else
990        {
991            assert( false , __FUNCTION__ ,
992            "root FS must be FATFS" );
993        }
994
995        // register VFS root inode in process_zero descriptor of cluster 0
996        process_zero.vfs_root_xp = vfs_root_inode_xp;
997        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
998    }
999
1000    /////////////////////////////////////////////////////////////////////////////////
1001    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
1002                                        (info->x_size * info->y_size) );
1003    barrier_wait( &local_barrier , info->cores_nr );
1004    /////////////////////////////////////////////////////////////////////////////////
1005
1006    if( (core_lid ==  0) && (local_cxy == 0) ) 
1007    kinit_dmsg("\n[DBG] %s : exit barrier 4 : VFS_root = %l in cluster 0 / cycle %d\n",
1008               __FUNCTION__, vfs_root_inode_xp , hal_time_stamp());
1009
1010    /////////////////////////////////////////////////////////////////////////////////
1011    // STEP 5 : Other CP0s allocate memory for the selected FS context,
1012    //          and initialise both the local FS context and the local VFS context
1013    //          from values stored in cluster 0.
1014    //          They get the VFS root inode extended pointer from cluster 0.
1015    /////////////////////////////////////////////////////////////////////////////////
1016
1017    if( (core_lid ==  0) && (local_cxy != 0) ) 
1018    {
1019        // File System must be FATFS in this implementation,
1020        // but other File System can be introduced here
1021        if( CONFIG_VFS_ROOT_IS_FATFS )
1022        {
1023            // 1. allocate memory for local FATFS context
1024            fatfs_ctx_t * local_fatfs_ctx = fatfs_ctx_alloc();
1025
1026            assert( (local_fatfs_ctx != NULL) , __FUNCTION__ ,
1027            "cannot create FATFS context in cluster %x\n", local_cxy );
1028
1029            // 2. get local pointer on VFS context for FATFS
1030            vfs_ctx_t   * vfs_ctx = &fs_context[FS_TYPE_FATFS];
1031
1032            // 3. get local pointer on FATFS context in cluster 0
1033            fatfs_ctx_t * remote_fatfs_ctx = hal_remote_lpt( XPTR( 0 , &vfs_ctx->extend ) );
1034
1035            // 4. copy FATFS context from cluster 0 to local cluster
1036            hal_remote_memcpy( XPTR( local_cxy , local_fatfs_ctx ), 
1037                               XPTR( 0 ,         remote_fatfs_ctx ), sizeof(fatfs_ctx_t) );
1038
1039            // 5. copy VFS context from cluster 0 to local cluster
1040            hal_remote_memcpy( XPTR( local_cxy , vfs_ctx ), 
1041                               XPTR( 0 ,         vfs_ctx ), sizeof(vfs_ctx_t) );
1042
1043            // 6. update extend field in local copy of VFS context
1044            vfs_ctx->extend = local_fatfs_ctx;
1045
1046            // 7. check initialisation
1047            assert( (((fatfs_ctx_t *)vfs_ctx->extend)->sectors_per_cluster == 8),
1048            __FUNCTION__ , "illegal value for FATFS context in cluster %x\n", local_cxy );
1049        }
1050
1051        // get extended pointer on VFS root inode from cluster 0
1052        vfs_root_inode_xp = hal_remote_lwd( XPTR( 0 , &process_zero.vfs_root_xp ) );
1053
1054        // update local process_zero descriptor
1055        process_zero.vfs_root_xp = vfs_root_inode_xp;
1056        process_zero.vfs_cwd_xp  = vfs_root_inode_xp;
1057    }
1058
1059    /////////////////////////////////////////////////////////////////////////////////
1060    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
1061                                        (info->x_size * info->y_size) );
1062    barrier_wait( &local_barrier , info->cores_nr );
1063    /////////////////////////////////////////////////////////////////////////////////
1064
1065    if( (core_lid ==  0) && (local_cxy == 0) ) 
1066    kinit_dmsg("\n[DBG] %s : exit barrier 5 : VFS_root = %l in cluster IO / cycle %d\n",
1067    __FUNCTION__, vfs_root_inode_xp , hal_time_stamp() );
1068
1069    /////////////////////////////////////////////////////////////////////////////////
1070    // STEP 6 : CP0 in cluster IO makes the global DEVFS tree initialisation:
1071    //          It creates the DEVFS directory "dev", and the DEVFS "external"
1072    //          directory in cluster IO and mount these inodes into VFS.
1073    /////////////////////////////////////////////////////////////////////////////////
1074
1075    if( (core_lid ==  0) && (local_cxy == io_cxy) ) 
1076    {
1077        // create "dev" and "external" directories.
1078        devfs_global_init( process_zero.vfs_root_xp,
1079                           &devfs_dev_inode_xp,
1080                           &devfs_external_inode_xp );
1081
1082        // creates the DEVFS context in cluster IO
1083        devfs_ctx_t * devfs_ctx = devfs_ctx_alloc();
1084
1085        assert( (devfs_ctx != NULL) , __FUNCTION__ ,
1086                "cannot create DEVFS context in cluster IO\n");
1087
1088        // register DEVFS root and external directories
1089        devfs_ctx_init( devfs_ctx, devfs_dev_inode_xp, devfs_external_inode_xp );
1090    }   
1091
1092    /////////////////////////////////////////////////////////////////////////////////
1093    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
1094                                        (info->x_size * info->y_size) );
1095    barrier_wait( &local_barrier , info->cores_nr );
1096    /////////////////////////////////////////////////////////////////////////////////
1097
1098    if( (core_lid ==  0) && (local_cxy == 0) ) 
1099    kinit_dmsg("\n[DBG] %s : exit barrier 6 : dev_root = %l in cluster IO / cycle %d\n",
1100    __FUNCTION__, devfs_dev_inode_xp , hal_time_stamp() );
1101
1102    /////////////////////////////////////////////////////////////////////////////////
1103    // STEP 7 : All CP0s complete in parallel the DEVFS tree initialization.
1104    //          Each CP0 get the "dev" and "external" extended pointers from
1105    //          values stored in cluster IO.
1106    //          Then each CP0 in cluster(i) creates the DEVFS "internal directory,
1107    //          and creates the pseudo-files for all chdevs in cluster (i).
1108    /////////////////////////////////////////////////////////////////////////////////
1109
1110    if( core_lid == 0 )
1111    {
1112        // get extended pointer on "extend" field of VFS context for DEVFS in cluster IO
1113        xptr_t  extend_xp = XPTR( io_cxy , &fs_context[FS_TYPE_DEVFS].extend );
1114
1115        // get pointer on DEVFS context in cluster IO
1116        devfs_ctx_t * devfs_ctx = hal_remote_lpt( extend_xp );
1117       
1118        devfs_dev_inode_xp      = hal_remote_lwd( XPTR( io_cxy ,
1119                                                        &devfs_ctx->dev_inode_xp ) );
1120        devfs_external_inode_xp = hal_remote_lwd( XPTR( io_cxy , 
1121                                                        &devfs_ctx->external_inode_xp ) );
1122
1123        // populate DEVFS in all clusters
1124        devfs_local_init( devfs_dev_inode_xp,
1125                          devfs_external_inode_xp,
1126                          &devfs_internal_inode_xp );
1127    }
1128
1129    /////////////////////////////////////////////////////////////////////////////////
1130    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ), 
1131                                        (info->x_size * info->y_size) );
1132    barrier_wait( &local_barrier , info->cores_nr );
1133    /////////////////////////////////////////////////////////////////////////////////
1134
1135    if( (core_lid ==  0) && (local_cxy == 0) ) 
1136    kinit_dmsg("\n[DBG] %s : exit barrier 7 : dev_root = %l in cluster 0 / cycle %d\n",
1137    __FUNCTION__, devfs_dev_inode_xp , hal_time_stamp() );
1138
1139    /////////////////////////////////////////////////////////////////////////////////
1140    // STEP 8 : CP0 in cluster 0 creates the first user process (process_init)
1141    /////////////////////////////////////////////////////////////////////////////////
1142
1143    if( (core_lid ==  0) && (local_cxy == 0) ) 
1144    {
1145
1146#if CONFIG_KINIT_DEBUG
1147vfs_display( vfs_root_inode_xp );
1148#endif
1149
1150       process_init_create();
1151    }
1152
1153    /////////////////////////////////////////////////////////////////////////////////
1154    if( core_lid == 0 ) remote_barrier( XPTR( io_cxy , &global_barrier ),
1155                                        (info->x_size * info->y_size) );
1156    barrier_wait( &local_barrier , info->cores_nr );
1157    /////////////////////////////////////////////////////////////////////////////////
1158
1159    if( (core_lid ==  0) && (local_cxy == 0) ) 
1160    kinit_dmsg("\n[DBG] %s : exit barrier 8 : process init created / cycle %d\n", 
1161    __FUNCTION__ , hal_time_stamp() );
1162
1163    /////////////////////////////////////////////////////////////////////////////////
1164    // STEP 9 : CP0 in cluster 0 print banner
1165    /////////////////////////////////////////////////////////////////////////////////
1166   
1167    if( (core_lid ==  0) && (local_cxy == io_cxy) ) 
1168    {
1169        print_banner( (info->x_size * info->y_size) , info->cores_nr );
1170
1171#if CONFIG_KINIT_DEBUG
1172
1173        printk("\n\n***** memory fooprint for main kernel objects\n\n"
1174                   " - thread descriptor  : %d bytes\n"
1175                   " - process descriptor : %d bytes\n"
1176                   " - cluster manager    : %d bytes\n"
1177                   " - chdev descriptor   : %d bytes\n"
1178                   " - core descriptor    : %d bytes\n"
1179                   " - scheduler          : %d bytes\n"
1180                   " - rpc fifo           : %d bytes\n"
1181                   " - page descriptor    : %d bytes\n"
1182                   " - mapper root        : %d bytes\n"
1183                   " - ppm manager        : %d bytes\n"
1184                   " - kcm manager        : %d bytes\n"
1185                   " - khm manager        : %d bytes\n"
1186                   " - vmm manager        : %d bytes\n"
1187                   " - gpt root           : %d bytes\n"
1188                   " - list item          : %d bytes\n"
1189                   " - xlist item         : %d bytes\n"
1190                   " - spinlock           : %d bytes\n"
1191                   " - remote spinlock    : %d bytes\n"
1192                   " - rwlock             : %d bytes\n"
1193                   " - remote rwlock      : %d bytes\n",
1194                   sizeof( thread_t          ),
1195                   sizeof( process_t         ),
1196                   sizeof( cluster_t         ),
1197                   sizeof( chdev_t           ),
1198                   sizeof( core_t            ),
1199                   sizeof( scheduler_t       ),
1200                   sizeof( remote_fifo_t     ),
1201                   sizeof( page_t            ),
1202                   sizeof( mapper_t          ),
1203                   sizeof( ppm_t             ),
1204                   sizeof( kcm_t             ),
1205                   sizeof( khm_t             ),
1206                   sizeof( vmm_t             ),
1207                   sizeof( gpt_t             ),
1208                   sizeof( list_entry_t      ),
1209                   sizeof( xlist_entry_t     ),
1210                   sizeof( spinlock_t        ),
1211                   sizeof( remote_spinlock_t ),
1212                   sizeof( rwlock_t          ),
1213                   sizeof( remote_rwlock_t   ));
1214#endif
1215
1216    }
1217
1218    // each core activates its private TICK IRQ
1219    dev_pic_enable_timer( CONFIG_SCHED_TICK_MS_PERIOD );
1220
1221    // each core jump to thread_idle_func
1222    thread_idle_func();
1223}
1224
Note: See TracBrowser for help on using the repository browser.