source: trunk/kernel/kern/scheduler.c

Last change on this file was 683, checked in by alain, 3 years ago

All modifications required to support the <tcp_chat> application
including error recovery in case of packet loss.A

File size: 23.6 KB
RevLine 
[1]1/*
2 * scheduler.c - Core scheduler implementation.
3 *
[683]4 * Author    Alain Greiner       (2016,2017,2018,2019,2020)
[1]5 *
6 * Copyright (c)  UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH. is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH. is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH.; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
[14]24#include <kernel_config.h>
[457]25#include <hal_kernel_types.h>
[407]26#include <hal_switch.h>
[1]27#include <hal_irqmask.h>
28#include <hal_context.h>
29#include <printk.h>
30#include <list.h>
[619]31#include <rpc.h>
[1]32#include <core.h>
33#include <thread.h>
[296]34#include <chdev.h>
[1]35#include <scheduler.h>
36
[443]37
[296]38///////////////////////////////////////////////////////////////////////////////////////////
[564]39//         global variables
[296]40///////////////////////////////////////////////////////////////////////////////////////////
[1]41
[564]42extern chdev_directory_t    chdev_dir;          // allocated in kernel_init.c
[583]43extern process_t            process_zero;       // allocated in kernel_init.c
[296]44
[564]45///////////////////////////////////////////////////////////////////////////////////////////
46//         private functions
47///////////////////////////////////////////////////////////////////////////////////////////
[443]48
[1]49
[564]50////////////////////////////////////////////////////////////////////////////////////////////
51// This static function does NOT modify the scheduler state.
52// It just select a thread in the list of attached threads, implementing the following
53// three steps policy:
54// 1) It scan the list of kernel threads, from the next thread after the last executed one,
55//    and returns the first runnable found : not IDLE, not blocked, client queue not empty.
56//    It can be the current thread.
57// 2) If no kernel thread found, it scan the list of user thread, from the next thread after
58//    the last executed one, and returns the first runable found : not blocked.
59//    It can be the current thread.
60// 3) If no runable thread found, it returns the idle thread.
61////////////////////////////////////////////////////////////////////////////////////////////
62// @ sched   : local pointer on scheduler.
63// @ returns pointer on selected thread descriptor
64////////////////////////////////////////////////////////////////////////////////////////////
[683]65static thread_t * __attribute__((__noinline__))sched_select( scheduler_t * sched )
[1]66{
[408]67    thread_t     * thread;
68    list_entry_t * current;
69    list_entry_t * last;
[437]70    list_entry_t * root;
71    bool_t         done;
[450]72    uint32_t       count;
[1]73
[437]74    // first : scan the kernel threads list if not empty
[279]75    if( list_is_empty( &sched->k_root ) == false )
[1]76    {
[437]77        root    = &sched->k_root;
[279]78        last    = sched->k_last;
[450]79        done    = false;
80        count   = 0;
[437]81        current = last;
82
83        while( done == false )
[279]84        {
85            // get next entry in kernel list
[437]86            current = current->next;
[1]87
[437]88            // check exit condition
89            if( current == last ) done = true;
90
[279]91            // skip the root that does not contain a thread
[437]92            if( current == root ) continue;
[450]93            else                  count++;
[1]94
[279]95            // get thread pointer for this entry
96            thread = LIST_ELEMENT( current , thread_t , sched_list );
[1]97
[450]98            // select kernel thread if non blocked and non THREAD_IDLE
[564]99            if( (thread->blocked == 0)  && (thread->type != THREAD_IDLE) ) return thread;
100
[437]101        } // end loop on kernel threads
[450]102    } // end kernel threads
[437]103
104    // second : scan the user threads list if not empty
[279]105    if( list_is_empty( &sched->u_root ) == false )
[1]106    {
[437]107        root    = &sched->u_root;
[279]108        last    = sched->u_last;
[450]109        done    = false;
110        count   = 0;
[437]111        current = last;
112
113        while( done == false )
[279]114        {
115            // get next entry in user list
[437]116            current = current->next;
[1]117
[437]118            // check exit condition
119            if( current == last ) done = true;
120
[279]121            // skip the root that does not contain a thread
[437]122            if( current == root ) continue;
[450]123            else                  count++;
[1]124
[279]125            // get thread pointer for this entry
126            thread = LIST_ELEMENT( current , thread_t , sched_list );
[1]127
[450]128            // select thread if non blocked
[564]129            if( thread->blocked == 0 )  return thread;
130
[437]131        } // end loop on user threads
[450]132    } // end user threads
[1]133
[437]134    // third : return idle thread if no other runnable thread
[1]135    return sched->idle;
136
[296]137}  // end sched_select()
[1]138
[564]139////////////////////////////////////////////////////////////////////////////////////////////
[592]140// This static function is the only function that can actually delete a thread,
[619]141// (and the associated process descriptor if required).
142// It is private, because it is only called by the sched_yield() public function.
[564]143// It scan all threads attached to a given scheduler, and executes the relevant
[583]144// actions for two types of pending requests:
[592]145//
[564]146// - REQ_ACK : it checks that target thread is blocked, decrements the response counter
147//   to acknowledge the client thread, and reset the pending request.
[583]148// - REQ_DELETE : it removes the target thread from the process th_tbl[], remove it
149//   from the scheduler list, and release the memory allocated to thread descriptor.
150//   For an user thread, it destroys the process descriptor it the target thread is
151//   the last thread in the local process descriptor.
152//
153// Implementation note:
154// We use a while to scan the threads in scheduler lists, because some threads can
155// be destroyed, and we want not use a LIST_FOREACH()
[564]156////////////////////////////////////////////////////////////////////////////////////////////
157// @ core    : local pointer on the core descriptor.
158////////////////////////////////////////////////////////////////////////////////////////////
159static void sched_handle_signals( core_t * core )
[1]160{
[437]161
[1]162    list_entry_t * iter;
[440]163    list_entry_t * root;
[1]164    thread_t     * thread;
[428]165    process_t    * process;
[564]166    scheduler_t  * sched;
[583]167    uint32_t       threads_nr;   // number of threads in scheduler list
168    ltid_t         ltid;         // thread local index
169    uint32_t       count;        // number of threads in local process
[409]170
[440]171    // get pointer on scheduler
[564]172    sched = &core->scheduler;
[1]173
[635]174    ////////////////// scan user threads to handle ACK and DELETE requests
[440]175    root = &sched->u_root;
176    iter = root->next;
177    while( iter != root )
[1]178    {
[440]179        // get pointer on thread
[1]180        thread = LIST_ELEMENT( iter , thread_t , sched_list );
181
[440]182        // increment iterator
183        iter = iter->next;
184
[416]185        // handle REQ_ACK
186        if( thread->flags & THREAD_FLAG_REQ_ACK )
[408]187        {
[564]188
[635]189// check target thread blocked
[669]190assert( __FUNCTION__, (thread->blocked & THREAD_BLOCKED_GLOBAL) , "thread not blocked" );
[416]191 
192            // decrement response counter
193            hal_atomic_add( thread->ack_rsp_count , -1 );
[408]194
[416]195            // reset REQ_ACK in thread descriptor
196            thread_reset_req_ack( thread );
[408]197        }
[416]198
[564]199        // handle REQ_DELETE only if target thread != calling thread
[635]200        if( thread->flags & THREAD_FLAG_REQ_DELETE )
[416]201        {
[635]202
203// check calling thread != target thread
[669]204assert( __FUNCTION__, (thread != CURRENT_THREAD) , "calling thread cannot delete itself" );
[635]205 
[428]206            // get thread process descriptor
207            process = thread->process;
[416]208
[583]209            // get thread ltid
210            ltid = LTID_FROM_TRDID( thread->trdid);
[416]211
[593]212            // take the lock protecting sheduler state
213            busylock_acquire( &sched->lock );
214
[564]215            // update scheduler state
[583]216            threads_nr = sched->u_threads_nr;
[428]217            sched->u_threads_nr = threads_nr - 1;
[416]218            list_unlink( &thread->sched_list );
[450]219            if( sched->u_last == &thread->sched_list )
220            {
221                if( threads_nr == 1 ) 
222                {
223                    sched->u_last = NULL;
224                }
225                else if( sched->u_root.next == &thread->sched_list )
226                {
227                    sched->u_last = sched->u_root.pred;
228                }
229                else
230                {
231                    sched->u_last = sched->u_root.next;
232                }
233            }
[416]234
[593]235            // release the lock protecting sheduler state
236            busylock_release( &sched->lock );
237
[625]238            // release memory allocated for thread
239            count = thread_destroy( thread );
[583]240
[593]241            hal_fence();
242
[438]243#if DEBUG_SCHED_HANDLE_SIGNALS
[440]244uint32_t cycle = (uint32_t)hal_get_cycles();
[438]245if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[630]246printk("\n[%s] thread[%x,%x] on core[%x,%d] deleted / cycle %d\n",
247__FUNCTION__, process->pid, thread->trdid, local_cxy, thread->core->lid, cycle );
[433]248#endif
[583]249            // destroy process descriptor if last thread
250            if( count == 1 ) 
[428]251            {
252                // delete process   
253                process_destroy( process );
254
[438]255#if DEBUG_SCHED_HANDLE_SIGNALS
[433]256cycle = (uint32_t)hal_get_cycles();
[438]257if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[610]258printk("\n[%s] process %x in cluster %x deleted / cycle %d\n",
[443]259__FUNCTION__ , process->pid , local_cxy , cycle );
[433]260#endif
[428]261            }
[416]262        }
[583]263    }  // end user threads
264
[625]265    ///////////// scan kernel threads for DELETE only
[583]266    root = &sched->k_root;
267    iter = root->next;
268    while( iter != root )
269    {
270        // get pointer on thread
271        thread = LIST_ELEMENT( iter , thread_t , sched_list );
272
273        // increment iterator
274        iter = iter->next;
275
276        // handle REQ_DELETE only if target thread != calling thread
277        if( (thread->flags & THREAD_FLAG_REQ_DELETE) && (thread != CURRENT_THREAD) )
278        {
279
280// check process descriptor is local kernel process
[669]281assert( __FUNCTION__, ( thread->process == &process_zero ) , "illegal process descriptor");
[583]282
283            // get thread ltid
284            ltid = LTID_FROM_TRDID( thread->trdid);
285
[593]286            // take the lock protecting sheduler state
287            busylock_acquire( &sched->lock );
288
[583]289            // update scheduler state
290            threads_nr = sched->k_threads_nr;
291            sched->k_threads_nr = threads_nr - 1;
292            list_unlink( &thread->sched_list );
293            if( sched->k_last == &thread->sched_list )
294            {
295                if( threads_nr == 1 ) 
296                {
297                    sched->k_last = NULL;
298                }
299                else if( sched->k_root.next == &thread->sched_list )
300                {
301                    sched->k_last = sched->k_root.pred;
302                }
303                else
304                {
305                    sched->k_last = sched->k_root.next;
306                }
307            }
308
[593]309            // release the lock protecting sheduler state
310            busylock_release( &sched->lock );
311
[583]312            // get number of threads in local kernel process
313            count = process_zero.th_nr;
314
315// check th_nr value
[669]316assert( __FUNCTION__, (process_zero.th_nr > 0) , "kernel process th_nr cannot be 0" );
[583]317
318            // remove thread from process th_tbl[]
319            process_zero.th_tbl[ltid] = NULL;
[592]320            hal_atomic_add( &process_zero.th_nr , - 1 );
[583]321 
322            // delete thread descriptor
323            thread_destroy( thread );
324
325#if DEBUG_SCHED_HANDLE_SIGNALS
326uint32_t cycle = (uint32_t)hal_get_cycles();
327if( DEBUG_SCHED_HANDLE_SIGNALS < cycle )
[610]328printk("\n[%s] thread[%x,%x] on core[%x,%d] deleted / cycle %d\n",
[583]329__FUNCTION__ , process_zero.pid , thread->trdid , local_cxy , thread->core->lid , cycle );
330#endif
331        }
[1]332    }
[564]333} // end sched_handle_signals()
[1]334
[564]335////////////////////////////////////////////////////////////////////////////////////////////
336// This static function is called by the sched_yield function when the RFC_FIFO
337// associated to the core is not empty.
[583]338// It search an idle RPC thread for this core, and unblock it if found.
339// It creates a new RPC thread if no idle RPC thread is found.
[564]340////////////////////////////////////////////////////////////////////////////////////////////
341// @ sched   : local pointer on scheduler.
342////////////////////////////////////////////////////////////////////////////////////////////
[582]343static void sched_rpc_activate( scheduler_t * sched )
[564]344{
345    error_t         error;
346    thread_t      * thread; 
347    list_entry_t  * iter;
348    lid_t           lid = CURRENT_THREAD->core->lid;
349    bool_t          found = false;
350
351    // search one IDLE RPC thread associated to the selected core   
352    LIST_FOREACH( &sched->k_root , iter )
353    {
354        thread = LIST_ELEMENT( iter , thread_t , sched_list );
[583]355
356        if( (thread->type == THREAD_RPC) && 
357            (thread->blocked == THREAD_BLOCKED_IDLE ) ) 
[564]358        {
359            found = true;
360            break;
361        }
362    }
363
364    if( found == false )     // create new RPC thread     
365    {
366        error = thread_kernel_create( &thread,
367                                      THREAD_RPC, 
[619]368                                              &rpc_server_func, 
[564]369                                      NULL,
370                                          lid );
371        // check memory
372        if ( error )
373        {
[583]374            printk("\n[ERROR] in %s : no memory to create a RPC thread in cluster %x\n",
[564]375            __FUNCTION__, local_cxy );
376        }
377        else
378        {
379            // unblock created RPC thread
380            thread->blocked = 0;
381
382            // update RPC threads counter 
383            hal_atomic_add( &LOCAL_CLUSTER->rpc_threads[lid] , 1 );
384
385#if DEBUG_SCHED_RPC_ACTIVATE
386uint32_t cycle = (uint32_t)hal_get_cycles();
387if( DEBUG_SCHED_RPC_ACTIVATE < cycle ) 
[610]388printk("\n[%s] new RPC thread %x created for core[%x,%d] / total %d / cycle %d\n",
[583]389__FUNCTION__, thread->trdid, local_cxy, lid, LOCAL_CLUSTER->rpc_threads[lid], cycle );
[564]390#endif
391        }
392    }
393    else                 // RPC thread found => unblock it
394    {
395        // unblock found RPC thread
396        thread_unblock( XPTR( local_cxy , thread ) , THREAD_BLOCKED_IDLE );
397
398#if DEBUG_SCHED_RPC_ACTIVATE
399uint32_t cycle = (uint32_t)hal_get_cycles();
400if( DEBUG_SCHED_RPC_ACTIVATE < cycle ) 
[610]401printk("\n[%s] idle RPC thread %x unblocked for core[%x,%d] / cycle %d\n",
[564]402__FUNCTION__, thread->trdid, local_cxy, lid, cycle );
403#endif
404
405    }
406
407} // end sched_rpc_activate()
408
409
410
411///////////////////////////////////////////////////////////////////////////////////////////
412//         public functions
413///////////////////////////////////////////////////////////////////////////////////////////
414
415////////////////////////////////
416void sched_init( core_t * core )
417{
418    scheduler_t * sched = &core->scheduler;
419
420    sched->u_threads_nr   = 0;
421    sched->k_threads_nr   = 0;
422
423    sched->current        = CURRENT_THREAD;
424    sched->idle           = NULL;               // initialized in kernel_init()
425    sched->u_last         = NULL;               // initialized in sched_register_thread()
426    sched->k_last         = NULL;               // initialized in sched_register_thread()
427
428    // initialise threads lists
429    list_root_init( &sched->u_root );
430    list_root_init( &sched->k_root );
431
432    // init lock
433    busylock_init( &sched->lock , LOCK_SCHED_STATE );
434
435    sched->req_ack_pending = false;             // no pending request
436    sched->trace           = false;             // context switches trace desactivated
437
438}  // end sched_init()
439
440////////////////////////////////////////////
441void sched_register_thread( core_t   * core,
442                            thread_t * thread )
443{
444    scheduler_t * sched = &core->scheduler;
445    thread_type_t type  = thread->type;
446
447    // take lock protecting sheduler state
448    busylock_acquire( &sched->lock );
449
450    if( type == THREAD_USER )
451    {
452        list_add_last( &sched->u_root , &thread->sched_list );
453        sched->u_threads_nr++;
454        if( sched->u_last == NULL ) sched->u_last = &thread->sched_list;
455    }
456    else // kernel thread
457    {
458        list_add_last( &sched->k_root , &thread->sched_list );
459        sched->k_threads_nr++;
460        if( sched->k_last == NULL ) sched->k_last = &thread->sched_list; 
461    }
462
[1]463    // release lock
[564]464    busylock_release( &sched->lock );
[1]465
[564]466}  // end sched_register_thread()
[416]467
[625]468//////////////////////////////////////////////////////////////////
469void sched_yield( const char * cause __attribute__((__unused__)) )
[1]470{
[564]471    thread_t      * next;
472    thread_t      * current = CURRENT_THREAD;
473    core_t        * core    = current->core;
474    lid_t           lid     = core->lid;
475    scheduler_t   * sched   = &core->scheduler;
476    remote_fifo_t * fifo    = &LOCAL_CLUSTER->rpc_fifo[lid]; 
[407]477 
[635]478#if DEBUG_SCHED_YIELD
479uint32_t cycle = (uint32_t)hal_get_cycles();
480#endif
481
[438]482#if (DEBUG_SCHED_YIELD & 0x1)
[635]483if( sched->trace || (cycle > DEBUG_SCHED_YIELD) )
[640]484sched_remote_display( local_cxy , lid );
[407]485#endif
[1]486
[651]487// This assert should always be true, as this check has been
[614]488// done before, by any function that can possibly deschedule...
[669]489assert( __FUNCTION__, (current->busylocks == 0),
[651]490"current thread hold %d busylocks\n", current->busylocks ); 
[1]491
[564]492    // activate or create an RPC thread if RPC_FIFO non empty
493    if( remote_fifo_is_empty( fifo ) == false )  sched_rpc_activate( sched );
[408]494
[564]495    // disable IRQs / save SR in current thread descriptor
496    hal_disable_irq( &current->save_sr );
497
498    // take lock protecting sheduler state
499    busylock_acquire( &sched->lock );
500   
501    // select next thread
[408]502    next = sched_select( sched );
[1]503
[564]504// check next thread kernel_stack overflow
[669]505assert( __FUNCTION__, (next->signature == THREAD_SIGNATURE),
[625]506"kernel stack overflow for thread %x on core[%x,%d]", next, local_cxy, lid );
[436]507
[651]508// check next thread attached to same core as the current thread
[669]509assert( __FUNCTION__, (next->core == current->core),
[651]510"next_core_lid %d / current_core_lid %d", current->core->lid, next->core->lid );
511   
[564]512// check next thread not blocked when type != IDLE
[669]513assert( __FUNCTION__, ((next->blocked == 0) || (next->type == THREAD_IDLE)) ,
[625]514"next thread %x (%s) is blocked on core[%x,%d]", 
[564]515next->trdid , thread_type_str(next->type) , local_cxy , lid );
[296]516
517    // switch contexts and update scheduler state if next != current
518        if( next != current )
[1]519    {
[296]520        // update scheduler
[408]521        sched->current = next;
522        if( next->type == THREAD_USER ) sched->u_last = &next->sched_list;
523        else                            sched->k_last = &next->sched_list;
[1]524
[407]525        // handle FPU ownership
[306]526            if( next->type == THREAD_USER )
[296]527        {
[407]528                if( next == current->core->fpu_owner )  hal_fpu_enable();
529                else                                    hal_fpu_disable();
[296]530        }
[1]531
[564]532        // release lock protecting scheduler state
533        busylock_release( &sched->lock );
534
535#if DEBUG_SCHED_YIELD
[635]536if( sched->trace || (cycle > DEBUG_SCHED_YIELD) )
[610]537printk("\n[%s] core[%x,%d] / cause = %s\n"
[564]538"      thread %x (%s) (%x,%x) => thread %x (%s) (%x,%x) / cycle %d\n",
539__FUNCTION__, local_cxy, lid, cause, 
540current, thread_type_str(current->type), current->process->pid, current->trdid,next ,
[635]541thread_type_str(next->type) , next->process->pid , next->trdid , cycle );
[564]542#endif
543
[435]544        // switch CPU from current thread context to new thread context
[407]545        hal_do_cpu_switch( current->cpu_context, next->cpu_context );
[296]546    }
547    else
548    {
[564]549        // release lock protecting scheduler state
550        busylock_release( &sched->lock );
[407]551
[635]552#if DEBUG_SCHED_YIELD
553if( sched->trace || (cycle > DEBUG_SCHED_YIELD) )
[610]554printk("\n[%s] core[%x,%d] / cause = %s\n"
[435]555"      thread %x (%s) (%x,%x) continue / cycle %d\n",
[564]556__FUNCTION__, local_cxy, lid, cause, current, thread_type_str(current->type),
[443]557current->process->pid, current->trdid, (uint32_t)hal_get_cycles() );
[428]558#endif
[407]559
[296]560    }
[408]561
[416]562    // handle pending requests for all threads executing on this core.
[433]563    sched_handle_signals( core );
[409]564
[435]565    // exit critical section / restore SR from current thread descriptor
566    hal_restore_irq( CURRENT_THREAD->save_sr );
[408]567
[1]568}  // end sched_yield()
569
[407]570
[450]571/////////////////////////////////////
572void sched_remote_display( cxy_t cxy,
573                           lid_t lid )
574{
575    thread_t     * thread;
576
577    // get local pointer on target scheduler
578    core_t      * core  = &LOCAL_CLUSTER->core_tbl[lid];
579    scheduler_t * sched = &core->scheduler;
580
581    // get local pointer on current thread in target scheduler
582    thread_t * current = hal_remote_lpt( XPTR( cxy, &sched->current ) );
583
584    // get local pointer on the first kernel and user threads list_entry
585    list_entry_t * k_entry = hal_remote_lpt( XPTR( cxy , &sched->k_root.next ) );
586    list_entry_t * u_entry = hal_remote_lpt( XPTR( cxy , &sched->u_root.next ) );
587   
588    // get pointers on TXT0 chdev
589    xptr_t    txt0_xp  = chdev_dir.txt_tx[0];
590    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
591    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
592
593    // get extended pointer on remote TXT0 chdev lock
594    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
595
[564]596    // get TXT0 lock
597    remote_busylock_acquire( lock_xp );
[450]598
[583]599    // get rpc_threads
600    uint32_t rpcs = hal_remote_l32( XPTR( cxy , &LOCAL_CLUSTER->rpc_threads[lid] ) );
601 
[450]602    // display header
[583]603    nolock_printk("\n***** threads on core[%x,%d] / current %x / rpc_threads %d / cycle %d\n",
604    cxy , lid, current, rpcs, (uint32_t)hal_get_cycles() );
[640]605    nolock_printk("  type | pid        | trdid      | desc       | block      | flags      | func\n");
[450]606
607    // display kernel threads
608    while( k_entry != &sched->k_root )
609    {
610        // get local pointer on kernel_thread
611        thread = LIST_ELEMENT( k_entry , thread_t , sched_list );
612
613        // get relevant thead info
[564]614        thread_type_t type    = hal_remote_l32 ( XPTR( cxy , &thread->type ) );
615        trdid_t       trdid   = hal_remote_l32 ( XPTR( cxy , &thread->trdid ) );
616        uint32_t      blocked = hal_remote_l32 ( XPTR( cxy , &thread->blocked ) );
617        uint32_t      flags   = hal_remote_l32 ( XPTR( cxy , &thread->flags ) );
[610]618        process_t *   process = hal_remote_lpt ( XPTR( cxy , &thread->process ) );
[564]619        pid_t         pid     = hal_remote_l32 ( XPTR( cxy , &process->pid ) );
[450]620
621        // display thread info
622        if (type == THREAD_DEV) 
623        {
624            char      name[16];
625            chdev_t * chdev = hal_remote_lpt( XPTR( cxy , &thread->chdev ) );
[610]626            hal_remote_strcpy( XPTR( local_cxy , name ), XPTR( cxy , chdev->name ) );
[450]627
[640]628            nolock_printk(" - %s | %X | %X | %X | %X | %X | %s\n",
[450]629            thread_type_str( type ), pid, trdid, thread, blocked, flags, name );
630        }
631        else
632        {
[640]633            nolock_printk(" - %s | %X | %X | %X | %X | %X |\n",
[450]634            thread_type_str( type ), pid, trdid, thread, blocked, flags );
635        }
636
637        // get next remote kernel thread list_entry
638        k_entry = hal_remote_lpt( XPTR( cxy , &k_entry->next ) );
639    }
640
641    // display user threads
642    while( u_entry != &sched->u_root )
643    {
644        // get local pointer on user_thread
645        thread = LIST_ELEMENT( u_entry , thread_t , sched_list );
646
647        // get relevant thead info
[564]648        thread_type_t type    = hal_remote_l32 ( XPTR( cxy , &thread->type ) );
649        trdid_t       trdid   = hal_remote_l32 ( XPTR( cxy , &thread->trdid ) );
650        uint32_t      blocked = hal_remote_l32 ( XPTR( cxy , &thread->blocked ) );
651        uint32_t      flags   = hal_remote_l32 ( XPTR( cxy , &thread->flags ) );
[610]652        process_t *   process = hal_remote_lpt ( XPTR( cxy , &thread->process ) );
[564]653        pid_t         pid     = hal_remote_l32 ( XPTR( cxy , &process->pid ) );
[640]654        void      *   func    = hal_remote_lpt ( XPTR( cxy , &thread->entry_func ) );
[450]655
[640]656        nolock_printk(" - %s | %X | %X | %X | %X | %X | %x\n",
657        thread_type_str( type ), pid, trdid, thread, blocked, flags, (uint32_t)func );
[450]658
659        // get next user thread list_entry
660        u_entry = hal_remote_lpt( XPTR( cxy , &u_entry->next ) );
661    }
662
663    // release TXT0 lock
[564]664    remote_busylock_release( lock_xp );
[450]665
666}  // end sched_remote_display()
667
[564]668
Note: See TracBrowser for help on using the repository browser.