/* * scheduler.c - Core scheduler implementation. * * Author Alain Greiner (2016) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH. is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH. is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH.; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include /////////////////////////////////////////////////////////////////////////////////////////// // Extern global variables /////////////////////////////////////////////////////////////////////////////////////////// extern chdev_directory_t chdev_dir; // allocated in kernel_init.c file extern uint32_t switch_save_sr[]; // allocated in kernel_init.c file //////////////////////////////// void sched_init( core_t * core ) { scheduler_t * sched = &core->scheduler; sched->u_threads_nr = 0; sched->k_threads_nr = 0; sched->current = CURRENT_THREAD; sched->idle = NULL; // initialized in kernel_init() sched->u_last = NULL; // initialized in sched_register_thread() sched->k_last = NULL; // initialized in sched_register_thread() // initialise threads lists list_root_init( &sched->u_root ); list_root_init( &sched->k_root ); sched->sig_pending = false; // no pending signal } // end sched_init() //////////////////////////////////////////// void sched_register_thread( core_t * core, thread_t * thread ) { scheduler_t * sched = &core->scheduler; thread_type_t type = thread->type; // take lock protecting sheduler lists spinlock_lock( &sched->lock ); if( type == THREAD_USER ) { list_add_last( &sched->u_root , &thread->sched_list ); sched->u_threads_nr++; if( sched->u_last == NULL ) sched->u_last = &thread->sched_list; } else // kernel thread { list_add_last( &sched->k_root , &thread->sched_list ); sched->k_threads_nr++; if( sched->k_last == NULL ) sched->k_last = &thread->sched_list; } // release lock spinlock_unlock( &sched->lock ); } // end sched_register_thread() ///////////////////////////////////////////// void sched_remove_thread( thread_t * thread ) { scheduler_t * sched = &thread->core->scheduler; thread_type_t type = thread->type; // take lock protecting sheduler lists spinlock_lock( &sched->lock ); if( type == THREAD_USER ) { list_unlink( &thread->sched_list ); sched->u_threads_nr--; if( sched->u_threads_nr == 0 ) sched->u_last = NULL; } else // kernel thread { list_unlink( &thread->sched_list ); sched->k_threads_nr--; if( sched->k_threads_nr == 0 ) sched->k_last = NULL; } // release lock spinlock_unlock( &sched->lock ); } // end sched_remove_thread() ////////////////////////////////////////////// thread_t * sched_select( scheduler_t * sched ) { thread_t * thread; list_entry_t * current; list_entry_t * last; // take lock protecting sheduler lists spinlock_lock( &sched->lock ); // first loop : scan the kernel threads list if not empty if( list_is_empty( &sched->k_root ) == false ) { last = sched->k_last; current = sched->k_last; do { // get next entry in kernel list current = list_next( &sched->k_root , current ); // skip the root that does not contain a thread if( current == NULL ) current = sched->k_root.next; // get thread pointer for this entry thread = LIST_ELEMENT( current , thread_t , sched_list ); // analyse kernel thread type switch( thread->type ) { case THREAD_IDLE: // skip IDLE thread break; case THREAD_RPC: // RPC thread if non blocked and FIFO non-empty if( (thread->blocked == 0) && (local_fifo_is_empty( &LOCAL_CLUSTER->rpc_fifo ) == 0) ) { spinlock_unlock( &sched->lock ); return thread; } break; default: // DEV thread if non blocked and waiting queue non empty if( (thread->blocked == 0) && (xlist_is_empty( XPTR( local_cxy , &thread->chdev->wait_root)) == 0) ) { spinlock_unlock( &sched->lock ); return thread; } break; } // end switch type } while( current != last ); } // second loop : scan the user threads list if not empty if( list_is_empty( &sched->u_root ) == false ) { last = sched->u_last; current = sched->u_last; do { // get next entry in user list current = list_next( &sched->u_root , current ); // skip the root that does not contain a thread if( current == NULL ) current = sched->u_root.next; // get thread pointer for this entry thread = LIST_ELEMENT( current , thread_t , sched_list ); // return thread if runnable if( thread->blocked == 0 ) { spinlock_unlock( &sched->lock ); return thread; } } while( current != last ); } // third : return idle thread if no runnable thread spinlock_unlock( &sched->lock ); return sched->idle; } // end sched_select() ////////////////////////////////////////// void sched_handle_signals( core_t * core ) { list_entry_t * iter; thread_t * thread; scheduler_t * sched = &core->scheduler; // take lock protecting threads lists spinlock_lock( &sched->lock ); // handle user threads LIST_FOREACH( &sched->u_root , iter ) { thread = LIST_ELEMENT( iter , thread_t , sched_list ); if( thread->flags & THREAD_FLAG_SIGNAL ) // thread has signal { // decrement response counter to acknowledge signal hal_atomic_add( thread->sig_rsp_count , -1 ); // reset signal thread_reset_signal( thread ); } } // release lock spinlock_unlock( &sched->lock ); } // end sched_handle_signals() //////////////////////////////// void sched_yield( char * cause ) { thread_t * next; thread_t * current = CURRENT_THREAD; core_t * core = current->core; scheduler_t * sched = &core->scheduler; #if( CONFIG_SCHED_DEBUG & 0x1 ) if( hal_time_stamp() > CONFIG_SCHED_DEBUG ) sched_display( core->lid ); #endif // delay the yield if current thread has locks if( (current->local_locks != 0) || (current->remote_locks != 0) ) { current->flags |= THREAD_FLAG_SCHED; return; } // enter critical section / save SR in current thread context hal_disable_irq( ¤t->save_sr ); // loop on threads to select next thread next = sched_select( sched ); // check next thread attached to same core as the calling thread assert( (next->core == current->core), __FUNCTION__ , "next core != current core\n"); // check next thread not blocked when type != IDLE assert( (next->blocked == 0) || (next->type = THREAD_IDLE) , __FUNCTION__ , "next thread %x (%s) is blocked on core[%x,%d]\n", next->trdid , thread_type_str(next->type) , local_cxy , core->lid ); // switch contexts and update scheduler state if next != current if( next != current ) { sched_dmsg("\n[DBG] %s : core[%x,%d] / cause = %s\n" " thread %x (%s) (%x,%x) => thread %x (%s) (%x,%x) / cycle %d\n", __FUNCTION__, local_cxy, core->lid, cause, current, thread_type_str(current->type), current->process->pid, current->trdid, next , thread_type_str(next->type) , next->process->pid , next->trdid, (uint32_t)hal_get_cycles() ); // update scheduler sched->current = next; if( next->type == THREAD_USER ) sched->u_last = &next->sched_list; else sched->k_last = &next->sched_list; // handle FPU ownership if( next->type == THREAD_USER ) { if( next == current->core->fpu_owner ) hal_fpu_enable(); else hal_fpu_disable(); } // switch CPU from calling thread context to new thread context hal_do_cpu_switch( current->cpu_context, next->cpu_context ); } else { sched_dmsg("\n[DBG] %s : core[%x,%d] / cause = %s\n" " thread %x (%s) (%x,%x) continue / cycle %d\n", __FUNCTION__, local_cxy, core->lid, cause, current, thread_type_str(current->type), current->process->pid, current->trdid, (uint32_t)hal_get_cycles() ); } // handle signals for all threads executing on this core. sched_handle_signals( core ); // exit critical section / restore SR from next thread context hal_restore_irq( next->save_sr ); } // end sched_yield() /////////////////////////////// void sched_display( lid_t lid ) { list_entry_t * iter; thread_t * thread; uint32_t save_sr; if( lid >= LOCAL_CLUSTER->cores_nr ) { printk("\n[ERROR] in %s : illegal local index %d in cluster %x\n", __FUNCTION__ , lid , local_cxy ); return; } core_t * core = &LOCAL_CLUSTER->core_tbl[lid]; scheduler_t * sched = &core->scheduler; // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on remote TXT0 chdev lock xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock in busy waiting mode remote_spinlock_lock_busy( lock_xp , &save_sr ); nolock_printk("\n***** scheduler state for core[%x,%d] at cycle %d\n" "kernel_threads = %d / user_threads = %d / current = (%x,%x)\n", local_cxy , core->lid, hal_time_stamp(), sched->k_threads_nr, sched->u_threads_nr, sched->current->process->pid , sched->current->trdid ); // display kernel threads LIST_FOREACH( &sched->k_root , iter ) { thread = LIST_ELEMENT( iter , thread_t , sched_list ); if (thread->type == THREAD_DEV) { nolock_printk(" - %s / pid %X / trdid %X / desc %X / blocked %X / %s\n", thread_type_str( thread->type ), thread->process->pid, thread->trdid, thread, thread->blocked , thread->chdev->name ); } else { nolock_printk(" - %s / pid %X / trdid %X / desc %X / blocked %X\n", thread_type_str( thread->type ), thread->process->pid, thread->trdid, thread, thread->blocked ); } } // display user threads LIST_FOREACH( &sched->u_root , iter ) { thread = LIST_ELEMENT( iter , thread_t , sched_list ); nolock_printk(" - %s / pid %X / trdid %X / desc %X / blocked %X\n", thread_type_str( thread->type ), thread->process->pid, thread->trdid, thread, thread->blocked ); } // release TXT0 lock remote_spinlock_unlock_busy( lock_xp , save_sr ); } // end sched_display()