/* * scheduler.c - Core scheduler implementation. * * Author Alain Greiner (2016) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH. is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH. is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH.; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include /////////////////////////////////////////////////////////////////////////////////////////// // Extern global variables /////////////////////////////////////////////////////////////////////////////////////////// uint32_t idle_thread_count; uint32_t idle_thread_count_active; extern chdev_directory_t chdev_dir; // allocated in kernel_init.c file extern uint32_t switch_save_sr[]; // allocated in kernel_init.c file //////////////////////////////// void sched_init( core_t * core ) { scheduler_t * sched = &core->scheduler; sched->u_threads_nr = 0; sched->k_threads_nr = 0; sched->current = CURRENT_THREAD; sched->idle = NULL; // initialized in kernel_init() sched->u_last = NULL; // initialized in sched_register_thread() sched->k_last = NULL; // initialized in sched_register_thread() // initialise threads lists list_root_init( &sched->u_root ); list_root_init( &sched->k_root ); sched->req_ack_pending = false; // no pending request sched->trace = false; // context switches trace desactivated } // end sched_init() //////////////////////////////////////////// void sched_register_thread( core_t * core, thread_t * thread ) { scheduler_t * sched = &core->scheduler; thread_type_t type = thread->type; // take lock protecting sheduler lists spinlock_lock( &sched->lock ); if( type == THREAD_USER ) { list_add_last( &sched->u_root , &thread->sched_list ); sched->u_threads_nr++; if( sched->u_last == NULL ) sched->u_last = &thread->sched_list; } else // kernel thread { list_add_last( &sched->k_root , &thread->sched_list ); sched->k_threads_nr++; if( sched->k_last == NULL ) sched->k_last = &thread->sched_list; } // release lock hal_fence(); spinlock_unlock( &sched->lock ); } // end sched_register_thread() ////////////////////////////////////////////// thread_t * sched_select( scheduler_t * sched ) { thread_t * thread; list_entry_t * current; list_entry_t * last; list_entry_t * root; bool_t done; uint32_t count; // take lock protecting sheduler lists spinlock_lock( &sched->lock ); // first : scan the kernel threads list if not empty if( list_is_empty( &sched->k_root ) == false ) { root = &sched->k_root; last = sched->k_last; done = false; count = 0; current = last; while( done == false ) { assert( (count < sched->k_threads_nr), __FUNCTION__, "bad kernel threads list" ); // get next entry in kernel list current = current->next; // check exit condition if( current == last ) done = true; // skip the root that does not contain a thread if( current == root ) continue; else count++; // get thread pointer for this entry thread = LIST_ELEMENT( current , thread_t , sched_list ); // select kernel thread if non blocked and non THREAD_IDLE if( (thread->blocked == 0) && (thread->type != THREAD_IDLE) ) { spinlock_unlock( &sched->lock ); return thread; } } // end loop on kernel threads } // end kernel threads // second : scan the user threads list if not empty if( list_is_empty( &sched->u_root ) == false ) { root = &sched->u_root; last = sched->u_last; done = false; count = 0; current = last; while( done == false ) { assert( (count < sched->u_threads_nr), __FUNCTION__, "bad user threads list" ); // get next entry in user list current = current->next; // check exit condition if( current == last ) done = true; // skip the root that does not contain a thread if( current == root ) continue; else count++; // get thread pointer for this entry thread = LIST_ELEMENT( current , thread_t , sched_list ); // select thread if non blocked if( thread->blocked == 0 ) { spinlock_unlock( &sched->lock ); return thread; } } // end loop on user threads } // end user threads // third : return idle thread if no other runnable thread spinlock_unlock( &sched->lock ); return sched->idle; } // end sched_select() /////////////////////////////////////////// void sched_handle_signals( core_t * core ) { list_entry_t * iter; list_entry_t * root; thread_t * thread; process_t * process; bool_t last_thread; // get pointer on scheduler scheduler_t * sched = &core->scheduler; // get pointer on user threads root root = &sched->u_root; // take lock protecting threads lists spinlock_lock( &sched->lock ); // We use a while to scan the user threads, to control the iterator increment, // because some threads will be destroyed, and we cannot use a LIST_FOREACH() // initialise list iterator iter = root->next; // scan all user threads while( iter != root ) { // get pointer on thread thread = LIST_ELEMENT( iter , thread_t , sched_list ); // increment iterator iter = iter->next; // handle REQ_ACK if( thread->flags & THREAD_FLAG_REQ_ACK ) { // check thread blocked assert( (thread->blocked & THREAD_BLOCKED_GLOBAL) , __FUNCTION__ , "thread not blocked" ); // decrement response counter hal_atomic_add( thread->ack_rsp_count , -1 ); // reset REQ_ACK in thread descriptor thread_reset_req_ack( thread ); } // handle REQ_DELETE if( thread->flags & THREAD_FLAG_REQ_DELETE ) { // get thread process descriptor process = thread->process; // release FPU if required if( thread->core->fpu_owner == thread ) thread->core->fpu_owner = NULL; // remove thread from scheduler (scheduler lock already taken) uint32_t threads_nr = sched->u_threads_nr; assert( (threads_nr != 0) , __FUNCTION__ , "u_threads_nr cannot be 0\n" ); sched->u_threads_nr = threads_nr - 1; list_unlink( &thread->sched_list ); if( sched->u_last == &thread->sched_list ) { if( threads_nr == 1 ) { sched->u_last = NULL; } else if( sched->u_root.next == &thread->sched_list ) { sched->u_last = sched->u_root.pred; } else { sched->u_last = sched->u_root.next; } } // delete thread descriptor last_thread = thread_destroy( thread ); #if DEBUG_SCHED_HANDLE_SIGNALS uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_SCHED_HANDLE_SIGNALS < cycle ) printk("\n[DBG] %s : thread %x in process %x on core[%x,%d] deleted / cycle %d\n", __FUNCTION__ , thread->trdid , process->pid , local_cxy , thread->core->lid , cycle ); #endif // destroy process descriptor if no more threads if( last_thread ) { // delete process process_destroy( process ); #if DEBUG_SCHED_HANDLE_SIGNALS cycle = (uint32_t)hal_get_cycles(); if( DEBUG_SCHED_HANDLE_SIGNALS < cycle ) printk("\n[DBG] %s : process %x in cluster %x deleted / cycle %d\n", __FUNCTION__ , process->pid , local_cxy , cycle ); #endif } } } // release lock hal_fence(); spinlock_unlock( &sched->lock ); } // end sched_handle_signals() //////////////////////////////// void sched_yield( char * cause ) { thread_t * next; thread_t * current = CURRENT_THREAD; core_t * core = current->core; scheduler_t * sched = &core->scheduler; #if (DEBUG_SCHED_YIELD & 0x1) if( sched->trace ) sched_display( core->lid ); #endif // delay the yield if current thread has locks if( (current->local_locks != 0) || (current->remote_locks != 0) ) { current->flags |= THREAD_FLAG_SCHED; return; } // enter critical section / save SR in current thread descriptor hal_disable_irq( &CURRENT_THREAD->save_sr ); // loop on threads to select next thread next = sched_select( sched ); // check next thread kernel_stack overflow assert( (next->signature == THREAD_SIGNATURE), __FUNCTION__ , "kernel stack overflow for thread %x on core[%x,%d] \n", next, local_cxy, core->lid ); // check next thread attached to same core as the calling thread assert( (next->core == current->core), __FUNCTION__ , "next core %x != current core %x\n", next->core, current->core ); // check next thread not blocked when type != IDLE assert( ((next->blocked == 0) || (next->type == THREAD_IDLE)) , __FUNCTION__ , "next thread %x (%s) is blocked on core[%x,%d]\n", next->trdid , thread_type_str(next->type) , local_cxy , core->lid ); // switch contexts and update scheduler state if next != current if( next != current ) { #if DEBUG_SCHED_YIELD if( sched->trace ) printk("\n[DBG] %s : core[%x,%d] / cause = %s\n" " thread %x (%s) (%x,%x) => thread %x (%s) (%x,%x) / cycle %d\n", __FUNCTION__, local_cxy, core->lid, cause, current, thread_type_str(current->type), current->process->pid, current->trdid,next , thread_type_str(next->type) , next->process->pid , next->trdid , (uint32_t)hal_get_cycles() ); #endif // update scheduler sched->current = next; if( next->type == THREAD_USER ) sched->u_last = &next->sched_list; else sched->k_last = &next->sched_list; // handle FPU ownership if( next->type == THREAD_USER ) { if( next == current->core->fpu_owner ) hal_fpu_enable(); else hal_fpu_disable(); } // switch CPU from current thread context to new thread context hal_do_cpu_switch( current->cpu_context, next->cpu_context ); } else { #if DEBUG_SCHED_YIELD if( sched->trace ) printk("\n[DBG] %s : core[%x,%d] / cause = %s\n" " thread %x (%s) (%x,%x) continue / cycle %d\n", __FUNCTION__, local_cxy, core->lid, cause, current, thread_type_str(current->type), current->process->pid, current->trdid, (uint32_t)hal_get_cycles() ); #endif } // handle pending requests for all threads executing on this core. sched_handle_signals( core ); // exit critical section / restore SR from current thread descriptor hal_restore_irq( CURRENT_THREAD->save_sr ); } // end sched_yield() /////////////////////////////// void sched_display( lid_t lid ) { list_entry_t * iter; thread_t * thread; uint32_t save_sr; assert( (lid < LOCAL_CLUSTER->cores_nr), __FUNCTION__, "illegal core index %d\n", lid); core_t * core = &LOCAL_CLUSTER->core_tbl[lid]; scheduler_t * sched = &core->scheduler; // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on remote TXT0 chdev lock xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock in busy waiting mode remote_spinlock_lock_busy( lock_xp , &save_sr ); nolock_printk("\n***** threads on core[%x,%d] / current %x / cycle %d\n", local_cxy , core->lid, sched->current, (uint32_t)hal_get_cycles() ); // display kernel threads LIST_FOREACH( &sched->k_root , iter ) { thread = LIST_ELEMENT( iter , thread_t , sched_list ); if (thread->type == THREAD_DEV) { nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X / %s\n", thread_type_str( thread->type ), thread->process->pid, thread->trdid, thread, thread->blocked, thread->flags, thread->chdev->name ); } else { nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n", thread_type_str( thread->type ), thread->process->pid, thread->trdid, thread, thread->blocked, thread->flags ); } } // display user threads LIST_FOREACH( &sched->u_root , iter ) { thread = LIST_ELEMENT( iter , thread_t , sched_list ); nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n", thread_type_str( thread->type ), thread->process->pid, thread->trdid, thread, thread->blocked, thread->flags ); } // release TXT0 lock remote_spinlock_unlock_busy( lock_xp , save_sr ); } // end sched_display() ///////////////////////////////////// void sched_remote_display( cxy_t cxy, lid_t lid ) { thread_t * thread; uint32_t save_sr; // check cxy bool_t undefined = cluster_is_undefined( cxy ); assert( (undefined == false), __FUNCTION__, "illegal cluster %x\n", cxy ); // check lid uint32_t cores = hal_remote_lw( XPTR( cxy , &LOCAL_CLUSTER->cores_nr ) ); assert( (lid < cores), __FUNCTION__, "illegal core index %d\n", lid); // get local pointer on target scheduler core_t * core = &LOCAL_CLUSTER->core_tbl[lid]; scheduler_t * sched = &core->scheduler; // get local pointer on current thread in target scheduler thread_t * current = hal_remote_lpt( XPTR( cxy, &sched->current ) ); // get local pointer on the first kernel and user threads list_entry list_entry_t * k_entry = hal_remote_lpt( XPTR( cxy , &sched->k_root.next ) ); list_entry_t * u_entry = hal_remote_lpt( XPTR( cxy , &sched->u_root.next ) ); // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on remote TXT0 chdev lock xptr_t lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock in busy waiting mode remote_spinlock_lock_busy( lock_xp , &save_sr ); // display header nolock_printk("\n***** threads on core[%x,%d] / current %x / cycle %d\n", cxy , lid, current, (uint32_t)hal_get_cycles() ); // display kernel threads while( k_entry != &sched->k_root ) { // get local pointer on kernel_thread thread = LIST_ELEMENT( k_entry , thread_t , sched_list ); // get relevant thead info thread_type_t type = hal_remote_lw ( XPTR( cxy , &thread->type ) ); trdid_t trdid = hal_remote_lw ( XPTR( cxy , &thread->trdid ) ); uint32_t blocked = hal_remote_lw ( XPTR( cxy , &thread->blocked ) ); uint32_t flags = hal_remote_lw ( XPTR( cxy , &thread->flags ) ); process_t * process = hal_remote_lpt( XPTR( cxy , &thread->process ) ); pid_t pid = hal_remote_lw ( XPTR( cxy , &process->pid ) ); // display thread info if (type == THREAD_DEV) { char name[16]; chdev_t * chdev = hal_remote_lpt( XPTR( cxy , &thread->chdev ) ); hal_remote_strcpy( XPTR( local_cxy , name ), XPTR( cxy , &chdev->name ) ); nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X / %s\n", thread_type_str( type ), pid, trdid, thread, blocked, flags, name ); } else { nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n", thread_type_str( type ), pid, trdid, thread, blocked, flags ); } // get next remote kernel thread list_entry k_entry = hal_remote_lpt( XPTR( cxy , &k_entry->next ) ); } // display user threads while( u_entry != &sched->u_root ) { // get local pointer on user_thread thread = LIST_ELEMENT( u_entry , thread_t , sched_list ); // get relevant thead info thread_type_t type = hal_remote_lw ( XPTR( cxy , &thread->type ) ); trdid_t trdid = hal_remote_lw ( XPTR( cxy , &thread->trdid ) ); uint32_t blocked = hal_remote_lw ( XPTR( cxy , &thread->blocked ) ); uint32_t flags = hal_remote_lw ( XPTR( cxy , &thread->flags ) ); process_t * process = hal_remote_lpt( XPTR( cxy , &thread->process ) ); pid_t pid = hal_remote_lw ( XPTR( cxy , &process->pid ) ); nolock_printk(" - %s / pid %X / trdid %X / desc %X / block %X / flags %X\n", thread_type_str( type ), pid, trdid, thread, blocked, flags ); // get next user thread list_entry u_entry = hal_remote_lpt( XPTR( cxy , &u_entry->next ) ); } // release TXT0 lock remote_spinlock_unlock_busy( lock_xp , save_sr ); } // end sched_remote_display()