/* * thread.c - implementation of thread operations (user & kernel) * * Author Ghassan Almaless (2008,2009,2010,2011,2012) * Alain Greiner (2016,2017) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ////////////////////////////////////////////////////////////////////////////////////// // Extern global variables ////////////////////////////////////////////////////////////////////////////////////// extern process_t process_zero; ////////////////////////////////////////////////////////////////////////////////////// // This function returns a printable string for the thread type. ////////////////////////////////////////////////////////////////////////////////////// char * thread_type_str( uint32_t type ) { if ( type == THREAD_USER ) return "USR"; else if( type == THREAD_RPC ) return "RPC"; else if( type == THREAD_DEV ) return "DEV"; else if( type == THREAD_IDLE ) return "IDL"; else return "undefined"; } ///////////////////////////////////////////////////////////////////////////////////// // This static function allocates physical memory for a thread descriptor. // It can be called by the three functions: // - thread_user_create() // - thread_user_fork() // - thread_kernel_create() ///////////////////////////////////////////////////////////////////////////////////// // @ return pointer on thread descriptor if success / return NULL if failure. ///////////////////////////////////////////////////////////////////////////////////// static thread_t * thread_alloc() { page_t * page; // pointer on page descriptor containing thread descriptor kmem_req_t req; // kmem request // allocates memory for thread descriptor + kernel stack req.type = KMEM_PAGE; req.size = CONFIG_THREAD_DESC_ORDER; req.flags = AF_KERNEL | AF_ZERO; page = kmem_alloc( &req ); if( page == NULL ) return NULL; // return pointer on new thread descriptor xptr_t base_xp = ppm_page2base( XPTR(local_cxy , page ) ); return (thread_t *)GET_PTR( base_xp ); } // end thread_alloc() ///////////////////////////////////////////////////////////////////////////////////// // This static function releases the physical memory for a thread descriptor. // It is called by the three functions: // - thread_user_create() // - thread_user_fork() // - thread_kernel_create() ///////////////////////////////////////////////////////////////////////////////////// // @ thread : pointer on thread descriptor. ///////////////////////////////////////////////////////////////////////////////////// static void thread_release( thread_t * thread ) { kmem_req_t req; xptr_t base_xp = ppm_base2page( XPTR(local_cxy , thread ) ); req.type = KMEM_PAGE; req.ptr = GET_PTR( base_xp ); kmem_free( &req ); } ///////////////////////////////////////////////////////////////////////////////////// // This static function initializes a thread descriptor (kernel or user). // It can be called by the four functions: // - thread_user_create() // - thread_user_fork() // - thread_kernel_create() // - thread_idle_init() // It updates the local DQDT. ///////////////////////////////////////////////////////////////////////////////////// // @ thread : pointer on thread descriptor // @ process : pointer on process descriptor. // @ type : thread type. // @ func : pointer on thread entry function. // @ args : pointer on thread entry function arguments. // @ core_lid : target core local index. // @ u_stack_base : stack base (user thread only) // @ u_stack_size : stack base (user thread only) ///////////////////////////////////////////////////////////////////////////////////// static error_t thread_init( thread_t * thread, process_t * process, thread_type_t type, void * func, void * args, lid_t core_lid, intptr_t u_stack_base, uint32_t u_stack_size ) { error_t error; trdid_t trdid; // allocated thread identifier cluster_t * local_cluster = LOCAL_CLUSTER; #if DEBUG_THREAD_USER_INIT uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_INIT < cycle ) printk("\n[DBG] %s : thread %x enter to init thread %x in process %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD, thread, process->pid , cycle ); #endif // register new thread in process descriptor, and get a TRDID error = process_register_thread( process, thread , &trdid ); if( error ) { printk("\n[ERROR] in %s : cannot get TRDID\n", __FUNCTION__ ); return EINVAL; } // compute thread descriptor size without kernel stack uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; // Initialize new thread descriptor thread->trdid = trdid; thread->type = type; thread->quantum = 0; // TODO thread->ticks_nr = 0; // TODO thread->time_last_check = 0; thread->core = &local_cluster->core_tbl[core_lid]; thread->process = process; thread->local_locks = 0; thread->remote_locks = 0; #if CONFIG_LOCKS_DEBUG list_root_init( &thread->locks_root ); xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) ); #endif thread->u_stack_base = u_stack_base; thread->u_stack_size = u_stack_size; thread->k_stack_base = (intptr_t)thread + desc_size; thread->k_stack_size = CONFIG_THREAD_DESC_SIZE - desc_size; thread->entry_func = func; // thread entry point thread->entry_args = args; // thread function arguments thread->flags = 0; // all flags reset thread->errno = 0; // no error detected thread->fork_user = 0; // no user defined placement for fork thread->fork_cxy = 0; // user defined target cluster for fork thread->blocked = THREAD_BLOCKED_GLOBAL; // reset sched list list_entry_init( &thread->sched_list ); // reset thread info memset( &thread->info , 0 , sizeof(thread_info_t) ); // initializes join_lock remote_spinlock_init( XPTR( local_cxy , &thread->join_lock ) ); // initialise signature thread->signature = THREAD_SIGNATURE; // FIXME define and call an architecture specific hal_thread_init() // function to initialise the save_sr field thread->save_sr = 0xFF13; // register new thread in core scheduler sched_register_thread( thread->core , thread ); // update DQDT dqdt_update_threads( 1 ); #if DEBUG_THREAD_USER_INIT cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_INIT < cycle ) printk("\n[DBG] %s : thread %x exit after init of thread %x in process %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD, thread, process->pid , cycle ); #endif return 0; } // end thread_init() ///////////////////////////////////////////////////////// error_t thread_user_create( pid_t pid, void * start_func, void * start_arg, pthread_attr_t * attr, thread_t ** new_thread ) { error_t error; thread_t * thread; // pointer on created thread descriptor process_t * process; // pointer to local process descriptor lid_t core_lid; // selected core local index vseg_t * vseg; // stack vseg assert( (attr != NULL) , __FUNCTION__, "pthread attributes must be defined" ); #if DEBUG_THREAD_USER_CREATE uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[DBG] %s : thread %x enter for process %x in cluster %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD, pid , local_cxy , cycle ); #endif // get process descriptor local copy process = process_get_local_copy( pid ); if( process == NULL ) { printk("\n[ERROR] in %s : cannot get process descriptor %x\n", __FUNCTION__ , pid ); return ENOMEM; } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[DBG] %s : process descriptor = %x for process %x in cluster %x\n", __FUNCTION__, process , pid , local_cxy ); #endif // select a target core in local cluster if( attr->attributes & PT_ATTR_CORE_DEFINED ) { core_lid = attr->lid; if( core_lid >= LOCAL_CLUSTER->cores_nr ) { printk("\n[ERROR] in %s : illegal core index attribute = %d\n", __FUNCTION__ , core_lid ); return EINVAL; } } else { core_lid = cluster_select_local_core(); } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[DBG] %s : core[%x,%d] selected\n", __FUNCTION__, local_cxy , core_lid ); #endif // allocate a stack from local VMM vseg = vmm_create_vseg( process, VSEG_TYPE_STACK, 0, // size unused 0, // length unused 0, // file_offset unused 0, // file_size unused XPTR_NULL, // mapper_xp unused local_cxy ); if( vseg == NULL ) { printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ ); return ENOMEM; } // allocate memory for thread descriptor thread = thread_alloc(); if( thread == NULL ) { printk("\n[ERROR] in %s : cannot create new thread\n", __FUNCTION__ ); vmm_remove_vseg( vseg ); return ENOMEM; } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[DBG] %s : thread descriptor %x allocated\n", __FUNCTION__, thread ); #endif // initialize thread descriptor error = thread_init( thread, process, THREAD_USER, start_func, start_arg, core_lid, vseg->min, vseg->max - vseg->min ); if( error ) { printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ ); vmm_remove_vseg( vseg ); thread_release( thread ); return EINVAL; } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[DBG] %s : thread descriptor %x initialised / trdid = %x\n", __FUNCTION__, thread , thread->trdid ); #endif // set DETACHED flag if required if( attr->attributes & PT_ATTR_DETACH ) { thread->flags |= THREAD_FLAG_DETACHED; } // allocate & initialize CPU context if( hal_cpu_context_create( thread ) ) { printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ ); vmm_remove_vseg( vseg ); thread_release( thread ); return ENOMEM; } // allocate FPU context if( hal_fpu_context_alloc( thread ) ) { printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ ); vmm_remove_vseg( vseg ); thread_release( thread ); return ENOMEM; } #if DEBUG_THREAD_USER_CREATE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[DBG] %s : thread %x exit / new_thread %x in process %x / core %d / cycle %d\n", __FUNCTION__, CURRENT_THREAD, thread->trdid , pid , core_lid, cycle ); #endif *new_thread = thread; return 0; } // end thread_user_create() /////////////////////////////////////////////////////// error_t thread_user_fork( xptr_t parent_thread_xp, process_t * child_process, thread_t ** child_thread ) { error_t error; thread_t * child_ptr; // local pointer on local child thread lid_t core_lid; // selected core local index thread_t * parent_ptr; // local pointer on remote parent thread cxy_t parent_cxy; // parent thread cluster process_t * parent_process; // local pointer on parent process xptr_t parent_gpt_xp; // extended pointer on parent thread GPT void * func; // parent thread entry_func void * args; // parent thread entry_args intptr_t base; // parent thread u_stack_base uint32_t size; // parent thread u_stack_size uint32_t flags; // parent_thread flags vpn_t vpn_base; // parent thread stack vpn_base vpn_t vpn_size; // parent thread stack vpn_size reg_t * uzone; // parent thread pointer on uzone vseg_t * vseg; // child thread STACK vseg #if DEBUG_THREAD_USER_FORK uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[DBG] %s : thread %x enter / child_process %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD, child_process->pid, cycle ); #endif // select a target core in local cluster core_lid = cluster_select_local_core(); // get cluster and local pointer on parent thread descriptor parent_cxy = GET_CXY( parent_thread_xp ); parent_ptr = (thread_t *)GET_PTR( parent_thread_xp ); // get relevant fields from parent thread func = (void *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_func )); args = (void *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_args )); base = (intptr_t)hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->u_stack_base )); size = (uint32_t)hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->u_stack_size )); flags = hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->flags )); uzone = (reg_t *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->uzone_current )); vpn_base = base >> CONFIG_PPM_PAGE_SHIFT; vpn_size = size >> CONFIG_PPM_PAGE_SHIFT; // get pointer on parent process in parent thread cluster parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy, &parent_ptr->process ) ); // get extended pointer on parent GPT in parent thread cluster parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt ); // allocate memory for child thread descriptor child_ptr = thread_alloc(); if( child_ptr == NULL ) { printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ ); return -1; } // initialize thread descriptor error = thread_init( child_ptr, child_process, THREAD_USER, func, args, core_lid, base, size ); if( error ) { printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ ); thread_release( child_ptr ); return EINVAL; } // return child pointer *child_thread = child_ptr; // set detached flag if required if( flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED; // update uzone pointer in child thread descriptor child_ptr->uzone_current = (char *)((intptr_t)uzone + (intptr_t)child_ptr - (intptr_t)parent_ptr ); // allocate CPU context for child thread if( hal_cpu_context_alloc( child_ptr ) ) { printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ ); thread_release( child_ptr ); return -1; } // allocate FPU context for child thread if( hal_fpu_context_alloc( child_ptr ) ) { printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ ); thread_release( child_ptr ); return -1; } // create and initialize STACK vseg vseg = vseg_alloc(); vseg_init( vseg, VSEG_TYPE_STACK, base, size, vpn_base, vpn_size, 0, 0, XPTR_NULL, // not a file vseg local_cxy ); // register STACK vseg in local child VSL vseg_attach( &child_process->vmm , vseg ); // copy all valid STACK GPT entries vpn_t vpn; bool_t mapped; ppn_t ppn; for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ ) { error = hal_gpt_pte_copy( &child_process->vmm.gpt, parent_gpt_xp, vpn, true, // set cow &ppn, &mapped ); if( error ) { vseg_detach( &child_process->vmm , vseg ); vseg_free( vseg ); thread_release( child_ptr ); printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ ); return -1; } // increment pending forks counter for the page if mapped if( mapped ) { xptr_t page_xp = ppm_ppn2page( ppn ); cxy_t page_cxy = GET_CXY( page_xp ); page_t * page_ptr = (page_t *)GET_PTR( page_xp ); hal_remote_atomic_add( XPTR( page_cxy , &page_ptr->forks ) , 1 ); #if (DEBUG_THREAD_USER_FORK & 1) cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[DBG] %s : thread %x copied stack PTE to child GPT : vpn %x\n", __FUNCTION__, CURRENT_THREAD, vpn ); #endif } } // set COW flag for all mapped entries of STAK vseg in parent thread GPT hal_gpt_set_cow( parent_gpt_xp, vpn_base, vpn_size ); #if DEBUG_THREAD_USER_FORK cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[DBG] %s : thread %x exit / child_process %x / child_thread %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD, child_process->pid, child_ptr, cycle ); #endif return 0; } // end thread_user_fork() ///////////////////////////////////////////////////////// error_t thread_kernel_create( thread_t ** new_thread, thread_type_t type, void * func, void * args, lid_t core_lid ) { error_t error; thread_t * thread; // pointer on new thread descriptor assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) , __FUNCTION__ , "illegal thread type" ); assert( (core_lid < LOCAL_CLUSTER->cores_nr) , __FUNCTION__ , "illegal core_lid" ); #if DEBUG_THREAD_KERNEL_CREATE uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_KERNEL_CREATE < cycle ) printk("\n[DBG] %s : thread %x enter / requested_type %s / cycle %d\n", __FUNCTION__, CURRENT_THREAD, thread, thread_type_str(type), cycle ); #endif // allocate memory for new thread descriptor thread = thread_alloc(); if( thread == NULL ) return ENOMEM; // initialize thread descriptor error = thread_init( thread, &process_zero, type, func, args, core_lid, 0 , 0 ); // no user stack for a kernel thread if( error ) // release allocated memory for thread descriptor { thread_release( thread ); return EINVAL; } // allocate & initialize CPU context hal_cpu_context_create( thread ); #if DEBUG_THREAD_KERNEL_CREATE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_KERNEL_CREATE < cycle ) printk("\n[DBG] %s : thread %x exit / new_thread %x / type %s / cycle %d\n", __FUNCTION__, CURRENT_THREAD, thread, thread_type_str(type), cycle ); #endif *new_thread = thread; return 0; } // end thread_kernel_create() ///////////////////////////////////////////////// error_t thread_idle_init( thread_t * thread, thread_type_t type, void * func, void * args, lid_t core_lid ) { assert( (type == THREAD_IDLE) , __FUNCTION__ , "illegal thread type" ); assert( (core_lid < LOCAL_CLUSTER->cores_nr) , __FUNCTION__ , "illegal core index" ); error_t error = thread_init( thread, &process_zero, type, func, args, core_lid, 0 , 0 ); // no user stack for a kernel thread // allocate & initialize CPU context if success if( error == 0 ) hal_cpu_context_create( thread ); return error; } // end thread_idle_init() /////////////////////////////////////////////////////////////////////////////////////// // TODO: check that all memory dynamically allocated during thread execution // has been released, using a cache of mmap requests. [AG] /////////////////////////////////////////////////////////////////////////////////////// bool_t thread_destroy( thread_t * thread ) { reg_t save_sr; bool_t last_thread; process_t * process = thread->process; core_t * core = thread->core; #if DEBUG_THREAD_DESTROY uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DESTROY < cycle ) printk("\n[DBG] %s : thread %x enter to destroy thread %x in process %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD, thread, process->pid, cycle ); #endif assert( (thread->local_locks == 0) , __FUNCTION__ , "local lock not released for thread %x in process %x", thread->trdid, process->pid ); assert( (thread->remote_locks == 0) , __FUNCTION__ , "remote lock not released for thread %x in process %x", thread->trdid, process->pid ); // update intrumentation values process->vmm.pgfault_nr += thread->info.pgfault_nr; // release memory allocated for CPU context and FPU context hal_cpu_context_destroy( thread ); if ( thread->type == THREAD_USER ) hal_fpu_context_destroy( thread ); // release FPU ownership if required hal_disable_irq( &save_sr ); if( core->fpu_owner == thread ) { core->fpu_owner = NULL; hal_fpu_disable(); } hal_restore_irq( save_sr ); // remove thread from process th_tbl[] last_thread = process_remove_thread( thread ); // update DQDT dqdt_update_threads( -1 ); // invalidate thread descriptor thread->signature = 0; // release memory for thread descriptor thread_release( thread ); #if DEBUG_THREAD_DESTROY cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DESTROY < cycle ) printk("\n[DBG] %s : thread %x exit / destroyed thread %x in process %x / cycle %d\n", __FUNCTION__, CURRENT_THREAD, thread, process->pid, cycle ); #endif return last_thread; } // end thread_destroy() ////////////////////////////////////////////////// inline void thread_set_req_ack( thread_t * target, uint32_t * rsp_count ) { reg_t save_sr; // for critical section // get pointer on target thread scheduler scheduler_t * sched = &target->core->scheduler; // wait scheduler ready to handle a new request while( sched->req_ack_pending ) asm volatile( "nop" ); // enter critical section hal_disable_irq( &save_sr ); // set request in target thread scheduler sched->req_ack_pending = true; // set ack request in target thread "flags" hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK ); // set pointer on responses counter in target thread target->ack_rsp_count = rsp_count; // exit critical section hal_restore_irq( save_sr ); hal_fence(); } // thread_set_req_ack() ///////////////////////////////////////////////////// inline void thread_reset_req_ack( thread_t * target ) { reg_t save_sr; // for critical section // get pointer on target thread scheduler scheduler_t * sched = &target->core->scheduler; // check signal pending in scheduler assert( sched->req_ack_pending , __FUNCTION__ , "no pending signal" ); // enter critical section hal_disable_irq( &save_sr ); // reset signal in scheduler sched->req_ack_pending = false; // reset signal in thread "flags" hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK ); // reset pointer on responses counter target->ack_rsp_count = NULL; // exit critical section hal_restore_irq( save_sr ); hal_fence(); } // thread_reset_req_ack() //////////////////////////////// inline bool_t thread_can_yield() { thread_t * this = CURRENT_THREAD; return (this->local_locks == 0) && (this->remote_locks == 0); } ///////////////////////// void thread_check_sched() { thread_t * this = CURRENT_THREAD; if( (this->local_locks == 0) && (this->remote_locks == 0) && (this->flags & THREAD_FLAG_SCHED) ) { this->flags &= ~THREAD_FLAG_SCHED; sched_yield( "delayed scheduling" ); } } // end thread_check_sched() ////////////////////////////////////// void thread_block( xptr_t thread_xp, uint32_t cause ) { // get thread cluster and local pointer cxy_t cxy = GET_CXY( thread_xp ); thread_t * ptr = GET_PTR( thread_xp ); // set blocking cause hal_remote_atomic_or( XPTR( cxy , &ptr->blocked ) , cause ); hal_fence(); #if DEBUG_THREAD_BLOCK uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_BLOCK < cycle ) printk("\n[DBG] %s : thread %x blocked thread %x / cause %x / cycle %d\n", __FUNCTION__ , CURRENT_THREAD , ptr , cause , cycle ); #endif #if (DEBUG_THREAD_BLOCK & 1) if( DEBUG_THREAD_BLOCK < cycle ) sched_display( ptr->core->lid ); #endif } // end thread_block() //////////////////////////////////////////// uint32_t thread_unblock( xptr_t thread_xp, uint32_t cause ) { // get thread cluster and local pointer cxy_t cxy = GET_CXY( thread_xp ); thread_t * ptr = GET_PTR( thread_xp ); // reset blocking cause uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause ); hal_fence(); #if DEBUG_THREAD_BLOCK uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_BLOCK < cycle ) printk("\n[DBG] %s : thread %x unblocked thread %x / cause %x / cycle %d\n", __FUNCTION__ , CURRENT_THREAD , ptr , cause , cycle ); #endif #if (DEBUG_THREAD_BLOCK & 1) if( DEBUG_THREAD_BLOCK < cycle ) sched_display( ptr->core->lid ); #endif // return a non zero value if the cause bit is modified return( previous & cause ); } // end thread_unblock() /* //////////////////////////////////// void thread_kill( xptr_t target_xp, bool_t is_exit, bool_t is_forced ) { reg_t save_sr; // for critical section bool_t attached; // target thread in attached mode bool_t join_done; // joining thread arrived first xptr_t killer_xp; // extended pointer on killer thread (this) thread_t * killer_ptr; // pointer on killer thread (this) cxy_t target_cxy; // target thread cluster thread_t * target_ptr; // pointer on target thread xptr_t joining_xp; // extended pointer on joining thread thread_t * joining_ptr; // pointer on joining thread cxy_t joining_cxy; // joining thread cluster pid_t target_pid; // target process PID cxy_t owner_cxy; // target process owner cluster trdid_t target_trdid; // target thread identifier ltid_t target_ltid; // target thread local index xptr_t process_state_xp; // extended pointer on in process xptr_t target_flags_xp; // extended pointer on target thread xptr_t target_join_lock_xp; // extended pointer on target thread xptr_t target_join_xp_xp; // extended pointer on target thread xptr_t target_process_xp; // extended pointer on target thread process_t * target_process; // pointer on target thread process // get target thread pointer and cluster target_cxy = GET_CXY( target_xp ); target_ptr = GET_PTR( target_xp ); // get killer thread pointers killer_ptr = CURRENT_THREAD; killer_xp = XPTR( local_cxy , killer_ptr ); #if DEBUG_THREAD_DELETE uint32_t cycle = (uint32_t)hal_get_cycles; if( DEBUG_THREAD_DELETE < cycle ) printk("\n[DBG] %s : thread %x enter for target thread %x / cycle %d\n", __FUNCTION__, killer_ptr, target_ptr, cycle ); #endif // block the target thread thread_block( target_xp , THREAD_BLOCKED_GLOBAL ); // get target thread attached mode target_flags_xp = XPTR( target_cxy , &target_ptr->flags ); attached = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_DETACHED) == 0); // synchronize with the joining thread // if the target thread is attached && not forced if( attached && (is_forced == false) ) { // build extended pointers on target thread join fields target_join_lock_xp = XPTR( target_cxy , &target_ptr->join_lock ); target_join_xp_xp = XPTR( target_cxy , &target_ptr->join_xp ); // enter critical section hal_disable_irq( &save_sr ); // take the join_lock in target thread descriptor remote_spinlock_lock( target_join_lock_xp ); // get join_done from target thread descriptor join_done = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_JOIN_DONE) != 0); if( join_done ) // joining thread arrived first { // get extended pointer on joining thread joining_xp = (xptr_t)hal_remote_lwd( target_join_xp_xp ); joining_ptr = GET_PTR( joining_xp ); joining_cxy = GET_CXY( joining_xp ); // reset the join_done flag in target thread hal_remote_atomic_and( target_flags_xp , ~THREAD_FLAG_JOIN_DONE ); // unblock the joining thread thread_unblock( joining_xp , THREAD_BLOCKED_JOIN ); // release the join_lock in target thread descriptor remote_spinlock_unlock( target_join_lock_xp ); // restore IRQs hal_restore_irq( save_sr ); } else // this thread arrived first { // set the kill_done flag in target thread hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_KILL_DONE ); // block this thread on BLOCKED_JOIN thread_block( killer_xp , THREAD_BLOCKED_JOIN ); // set extended pointer on killer thread in target thread hal_remote_swd( target_join_xp_xp , killer_xp ); // release the join_lock in target thread descriptor remote_spinlock_unlock( target_join_lock_xp ); // deschedule sched_yield( "killer thread wait joining thread" ); // restore IRQs hal_restore_irq( save_sr ); } } // end if attached // - if the target thread is the main thread // => synchronize with the parent process main thread // - if the target thread is not the main thread // => simply mark the target thread for delete // get pointer on target thread process target_process_xp = XPTR( target_cxy , &target_ptr->process ); target_process = (process_t *)hal_remote_lpt( target_process_xp ); // get target process owner cluster target_pid = hal_remote_lw( XPTR( target_cxy , &target_process->pid ) ); owner_cxy = CXY_FROM_PID( target_pid ); // get target thread local index target_trdid = hal_remote_lw( XPTR( target_cxy , &target_ptr->trdid ) ); target_ltid = LTID_FROM_TRDID( target_trdid ); if( (owner_cxy == target_cxy) && (target_ltid == 0) ) // main thread { // get extended pointer on term_state in target process owner cluster process_state_xp = XPTR( owner_cxy , &target_process->term_state ); // set termination info in target process owner if( is_exit ) hal_remote_atomic_or( process_state_xp , PROCESS_TERM_EXIT ); else hal_remote_atomic_or( process_state_xp , PROCESS_TERM_KILL ); #if DEBUG_THREAD_DELETE cycle = (uint32_t)hal_get_cycles; if( DEBUG_THREAD_DELETE < cycle ) printk("\n[DBG] %s : thread %x exit for thread %x / main thread / cycle %d\n", __FUNCTION__, killer_ptr, target_ptr, cycle ); #endif } else // main thread { // set the REQ_DELETE flag in target thread descriptor hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE ); #if DEBUG_THREAD_DELETE cycle = (uint32_t)hal_get_cycles; if( DEBUG_THREAD_DELETE < cycle ) printk("\n[DBG] %s : thread %x exit for thread %x / not the main thread / cycle %d\n", __FUNCTION__, killer_ptr, target_ptr, cycle ); #endif } } // end thread_kill() */ ////////////////////////////////////// void thread_delete( xptr_t target_xp, pid_t pid, bool_t is_forced ) { reg_t save_sr; // for critical section bool_t target_join_done; // joining thread arrived first bool_t target_attached; // target thread attached xptr_t killer_xp; // extended pointer on killer thread (this) thread_t * killer_ptr; // pointer on killer thread (this) cxy_t target_cxy; // target thread cluster thread_t * target_ptr; // pointer on target thread xptr_t target_flags_xp; // extended pointer on target thread uint32_t target_flags; // target thread value xptr_t target_join_lock_xp; // extended pointer on target thread xptr_t target_join_xp_xp; // extended pointer on target thread trdid_t target_trdid; // target thread identifier ltid_t target_ltid; // target thread local index xptr_t joining_xp; // extended pointer on joining thread thread_t * joining_ptr; // pointer on joining thread cxy_t joining_cxy; // joining thread cluster cxy_t owner_cxy; // process owner cluster // get target thread pointers, identifiers, and flags target_cxy = GET_CXY( target_xp ); target_ptr = GET_PTR( target_xp ); target_trdid = hal_remote_lw( XPTR( target_cxy , &target_ptr->trdid ) ); target_ltid = LTID_FROM_TRDID( target_trdid ); target_flags_xp = XPTR( target_cxy , &target_ptr->flags ); target_flags = hal_remote_lw( target_flags_xp ); // get killer thread pointers killer_ptr = CURRENT_THREAD; killer_xp = XPTR( local_cxy , killer_ptr ); #if DEBUG_THREAD_DELETE uint32_t cycle = (uint32_t)hal_get_cycles; if( DEBUG_THREAD_DELETE < cycle ) printk("\n[DBG] %s : killer thread %x enter for target thread %x / cycle %d\n", __FUNCTION__, killer_ptr, target_ptr, cycle ); #endif // target thread cannot be the main thread, because the main thread // must be deleted by the parent process sys_wait() function owner_cxy = CXY_FROM_PID( pid ); assert( ((owner_cxy != target_cxy) || (target_ltid != 0)), __FUNCTION__, "tharget thread cannot be the main thread\n" ); // block the target thread thread_block( target_xp , THREAD_BLOCKED_GLOBAL ); // get attached from target flag descriptor target_attached = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_DETACHED) != 0); // synchronize with the joining thread if the target thread is attached if( target_attached && (is_forced == false) ) { // build extended pointers on target thread join fields target_join_lock_xp = XPTR( target_cxy , &target_ptr->join_lock ); target_join_xp_xp = XPTR( target_cxy , &target_ptr->join_xp ); // enter critical section hal_disable_irq( &save_sr ); // take the join_lock in target thread descriptor remote_spinlock_lock( target_join_lock_xp ); // get join_done from target thread descriptor target_join_done = ((hal_remote_lw( target_flags_xp ) & THREAD_FLAG_JOIN_DONE) != 0); if( target_join_done ) // joining thread arrived first => unblock the joining thread { // get extended pointer on joining thread joining_xp = (xptr_t)hal_remote_lwd( target_join_xp_xp ); joining_ptr = GET_PTR( joining_xp ); joining_cxy = GET_CXY( joining_xp ); // reset the join_done flag in target thread hal_remote_atomic_and( target_flags_xp , ~THREAD_FLAG_JOIN_DONE ); // unblock the joining thread thread_unblock( joining_xp , THREAD_BLOCKED_JOIN ); // release the join_lock in target thread descriptor remote_spinlock_unlock( target_join_lock_xp ); // restore IRQs hal_restore_irq( save_sr ); } else // this thread arrived first => register flags and deschedule { // set the kill_done flag in target thread hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_KILL_DONE ); // block this thread on BLOCKED_JOIN thread_block( killer_xp , THREAD_BLOCKED_JOIN ); // set extended pointer on killer thread in target thread hal_remote_swd( target_join_xp_xp , killer_xp ); // release the join_lock in target thread descriptor remote_spinlock_unlock( target_join_lock_xp ); // deschedule sched_yield( "killer thread wait joining thread" ); // restore IRQs hal_restore_irq( save_sr ); } } // end if attached // set the REQ_DELETE flag in target thread descriptor hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE ); #if DEBUG_THREAD_DELETE cycle = (uint32_t)hal_get_cycles; if( DEBUG_THREAD_DELETE < cycle ) printk("\n[DBG] %s : killer thread %x exit for target thread %x / cycle %d\n", __FUNCTION__, killer_ptr, target_ptr, cycle ); #endif } // end thread_delete() /////////////////////// void thread_idle_func() { while( 1 ) { // unmask IRQs hal_enable_irq( NULL ); // force core to low-power mode (optional) if( CONFIG_THREAD_IDLE_MODE_SLEEP ) { #if DEBUG_THREAD_IDLE uint32_t cycle = (uint32_t)hal_get_cycles; thread_t * this = CURRENT_THREAD; if( DEBUG_THREAD_IDLE < cycle ) printk("\n[DBG] %s : idle thread %x on core[%x,%d] goes to sleep / cycle %d\n", __FUNCTION__, this, local_cxy, this->core->lid, cycle ); #endif hal_core_sleep(); #if DEBUG_THREAD_IDLE cycle = (uint32_t)hal_get_cycles; if( DEBUG_THREAD_IDLE < cycle ) printk("\n[DBG] %s : idle thread %x on core[%x,%d] wake up / cycle %d\n", __FUNCTION__, this, local_cxy, this->core->lid, cycle ); #endif } // search a runable thread sched_yield( "IDLE" ); } } // end thread_idle() ///////////////////////////////////////////////// void thread_user_time_update( thread_t * thread ) { // TODO // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ ); } /////////////////////////////////////////////////// void thread_kernel_time_update( thread_t * thread ) { // TODO // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ ); } ///////////////////////////////////// xptr_t thread_get_xptr( pid_t pid, trdid_t trdid ) { cxy_t target_cxy; // target thread cluster identifier ltid_t target_thread_ltid; // target thread local index thread_t * target_thread_ptr; // target thread local pointer xptr_t target_process_xp; // extended pointer on target process descriptor process_t * target_process_ptr; // local pointer on target process descriptor pid_t target_process_pid; // target process identifier xlist_entry_t root; // root of list of process in target cluster xptr_t lock_xp; // extended pointer on lock protecting this list // get target cluster identifier and local thread identifier target_cxy = CXY_FROM_TRDID( trdid ); target_thread_ltid = LTID_FROM_TRDID( trdid ); // check trdid argument if( (target_thread_ltid >= CONFIG_THREAD_MAX_PER_CLUSTER) || cluster_is_undefined( target_cxy ) ) return XPTR_NULL; // get root of list of process descriptors in target cluster hal_remote_memcpy( XPTR( local_cxy , &root ), XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ), sizeof(xlist_entry_t) ); // get extended pointer on lock protecting the list of processes lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock ); // take the lock protecting the list of processes in target cluster remote_spinlock_lock( lock_xp ); // loop on list of process in target cluster to find the PID process xptr_t iter; bool_t found = false; XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter ) { target_process_xp = XLIST_ELEMENT( iter , process_t , local_list ); target_process_ptr = (process_t *)GET_PTR( target_process_xp ); target_process_pid = hal_remote_lw( XPTR( target_cxy , &target_process_ptr->pid ) ); if( target_process_pid == pid ) { found = true; break; } } // release the lock protecting the list of processes in target cluster remote_spinlock_unlock( lock_xp ); // check PID found if( found == false ) return XPTR_NULL; // get target thread local pointer xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] ); target_thread_ptr = (thread_t *)hal_remote_lpt( xp ); if( target_thread_ptr == NULL ) return XPTR_NULL; return XPTR( target_cxy , target_thread_ptr ); }