/* * thread.c - thread operations implementation (user & kernel) * * Author Ghassan Almaless (2008,2009,2010,2011,2012) * Alain Greiner (2016,2017,2018,2019,2020) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ////////////////////////////////////////////////////////////////////////////////////// // Extern global variables ////////////////////////////////////////////////////////////////////////////////////// extern process_t process_zero; // allocated in kernel_init.c extern char * lock_type_str[]; // allocated in kernel_init.c extern chdev_directory_t chdev_dir; // allocated in kernel_init.c ////////////////////////////////////////////////////////////////////////////////////// // This function returns a printable string for the thread type. ////////////////////////////////////////////////////////////////////////////////////// const char * thread_type_str( thread_type_t type ) { switch ( type ) { case THREAD_USER: return "USR"; case THREAD_RPC: return "RPC"; case THREAD_DEV: return "DEV"; case THREAD_IDLE: return "IDL"; default: return "undefined"; } } ///////////////////////////////////////////////////////////////////////////////////// // This static function allocates physical memory for a thread descriptor. // It can be called by the three functions: // - thread_user_create() // - thread_user_fork() // - thread_kernel_create() ///////////////////////////////////////////////////////////////////////////////////// // @ return pointer on thread descriptor if success / return NULL if failure. ///////////////////////////////////////////////////////////////////////////////////// static thread_t * thread_alloc( void ) { kmem_req_t req; // kmem request // allocates memory for thread descriptor + kernel stack req.type = KMEM_PPM; req.order = CONFIG_THREAD_DESC_ORDER; req.flags = AF_KERNEL | AF_ZERO; return kmem_alloc( &req ); } // end thread_alloc() ///////////////////////////////////////////////////////////////////////////////////// // This static function initializes a thread descriptor (kernel or user). // It can be called by the four functions: // - thread_user_create() // - thread_user_fork() // - thread_kernel_create() // - thread_idle_init() // The "type" and "trdid" fields must have been previously set. // It updates the local DQDT. ///////////////////////////////////////////////////////////////////////////////////// // @ thread : pointer on local thread descriptor // @ process : pointer on local process descriptor. // @ type : thread type. // @ trdid : thread identifier // @ func : pointer on thread entry function. // @ args : pointer on thread entry function arguments. // @ core_lid : target core local index. // @ user_stack_vseg : local pointer on user stack vseg (user thread only) ///////////////////////////////////////////////////////////////////////////////////// static error_t thread_init( thread_t * thread, process_t * process, thread_type_t type, trdid_t trdid, void * func, void * args, lid_t core_lid, vseg_t * user_stack_vseg ) { // check type and trdid fields are initialized assert( (thread->type == type) , "bad type argument" ); assert( (thread->trdid == trdid) , "bad trdid argument" ); #if DEBUG_THREAD_INIT uint32_t cycle = (uint32_t)hal_get_cycles(); thread_t * this = CURRENT_THREAD; if( DEBUG_THREAD_INIT < cycle ) printk("\n[%s] thread[%x,%x] enter for thread[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle ); #endif // compute thread descriptor size without kernel stack uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; // Initialize new thread descriptor thread->quantum = 0; // TODO thread->ticks_nr = 0; // TODO thread->time_last_check = 0; // TODO thread->core = &LOCAL_CLUSTER->core_tbl[core_lid]; thread->process = process; thread->busylocks = 0; #if DEBUG_BUSYLOCK xlist_root_init( XPTR( local_cxy , &thread->busylocks_root ) ); #endif thread->user_stack_vseg = user_stack_vseg; thread->k_stack_base = (intptr_t)thread + desc_size; thread->k_stack_size = CONFIG_THREAD_DESC_SIZE - desc_size; thread->entry_func = func; // thread entry point thread->entry_args = args; // thread function arguments thread->flags = 0; // all flags reset thread->errno = 0; // no error detected thread->fork_user = 0; // no user defined placement for fork thread->fork_cxy = 0; // user defined target cluster for fork thread->blocked = THREAD_BLOCKED_GLOBAL; // initialize sched list list_entry_init( &thread->sched_list ); // initialize waiting queue entries list_entry_init( &thread->wait_list ); xlist_entry_init( XPTR( local_cxy , &thread->wait_xlist ) ); // initialize thread info memset( &thread->info , 0 , sizeof(thread_info_t) ); // initialize join_lock remote_busylock_init( XPTR( local_cxy , &thread->join_lock ), LOCK_THREAD_JOIN ); // initialise signature thread->signature = THREAD_SIGNATURE; // FIXME define and call an architecture specific hal_thread_init() // function to initialise the save_sr field thread->save_sr = 0xFF13; // register new thread in core scheduler sched_register_thread( thread->core , thread ); // update DQDT dqdt_increment_threads(); #if CONFIG_INSTRUMENTATION_PGFAULTS thread->info.false_pgfault_nr = 0; thread->info.false_pgfault_cost = 0; thread->info.false_pgfault_max = 0; thread->info.local_pgfault_nr = 0; thread->info.local_pgfault_cost = 0; thread->info.local_pgfault_max = 0; thread->info.global_pgfault_nr = 0; thread->info.global_pgfault_cost = 0; thread->info.global_pgfault_max = 0; #endif #if DEBUG_THREAD_INIT cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_INIT < cycle ) printk("\n[%s] thread[%x,%x] exit for thread[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle ); #endif return 0; } // end thread_init() ////////////////////////////////////////////////// error_t thread_user_create( pid_t pid, void * start_func, void * start_arg, pthread_attr_t * attr, thread_t ** new_thread ) { error_t error; thread_t * thread; // pointer on created thread descriptor trdid_t trdid; // created thred identifier process_t * process; // pointer to local process descriptor lid_t core_lid; // selected core local index vseg_t * us_vseg; // user stack vseg assert( (attr != NULL) , "pthread attributes must be defined" ); #if DEBUG_THREAD_USER_CREATE thread_t * this = CURRENT_THREAD; uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] thread[%x,%x] enter in cluster %x for process %x / cycle %d\n", __FUNCTION__, this->process->pid , this->trdid , local_cxy , pid , cycle ); #endif // get process descriptor local copy process = process_get_local_copy( pid ); if( process == NULL ) { printk("\n[ERROR] in %s : cannot get process descriptor %x\n", __FUNCTION__ , pid ); return -1; } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] process descriptor = %x for process %x in cluster %x\n", __FUNCTION__, process , pid , local_cxy ); #endif // select a target core in local cluster if( attr->attributes & PT_ATTR_CORE_DEFINED ) { core_lid = attr->lid; if( core_lid >= LOCAL_CLUSTER->cores_nr ) { printk("\n[ERROR] in %s : illegal core index attribute = %d\n", __FUNCTION__ , core_lid ); return -1; } } else { core_lid = cluster_select_local_core( local_cxy ); } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] core[%x,%d] selected\n", __FUNCTION__, local_cxy , core_lid ); #endif // allocate memory for thread descriptor thread = thread_alloc(); if( thread == NULL ) { printk("\n[ERROR] in %s : cannot create new thread in cluster %x\n", __FUNCTION__, local_cxy ); return -1; } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] new thread descriptor %x allocated\n", __FUNCTION__, thread ); #endif // set type in thread descriptor thread->type = THREAD_USER; // register new thread in process descriptor, and get a TRDID error = process_register_thread( process, thread , &trdid ); if( error ) { printk("\n[ERROR] in %s : cannot register new thread in process %x\n", __FUNCTION__, pid ); thread_destroy( thread ); return -1; } // set trdid in thread descriptor thread->trdid = trdid; #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] new thread %x registered in process %x\n", __FUNCTION__, trdid, pid ); #endif // allocate a stack from local VMM us_vseg = vmm_create_vseg( process, VSEG_TYPE_STACK, LTID_FROM_TRDID( trdid ), 0, // size unused 0, // file_offset unused 0, // file_size unused XPTR_NULL, // mapper_xp unused local_cxy ); if( us_vseg == NULL ) { printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ ); process_remove_thread( thread ); thread_destroy( thread ); return -1; } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] stack vseg created / vpn_base %x / %d pages\n", __FUNCTION__, us_vseg->vpn_base, us_vseg->vpn_size ); #endif // initialize thread descriptor error = thread_init( thread, process, THREAD_USER, trdid, start_func, start_arg, core_lid, us_vseg ); if( error ) { printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ ); vmm_remove_vseg( process , us_vseg ); process_remove_thread( thread ); thread_destroy( thread ); return -1; } #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] new thread %x in process %x initialised\n", __FUNCTION__, thread->trdid, process->pid ); #endif // set DETACHED flag if required if( attr->attributes & PT_ATTR_DETACH ) { thread->flags |= THREAD_FLAG_DETACHED; } // allocate & initialize CPU context if( hal_cpu_context_alloc( thread ) ) { printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ ); vmm_remove_vseg( process , us_vseg ); process_remove_thread( thread ); thread_destroy( thread ); return -1; } hal_cpu_context_init( thread ); // allocate & initialize FPU context if( hal_fpu_context_alloc( thread ) ) { printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ ); vmm_remove_vseg( process , us_vseg ); process_remove_thread( thread ); thread_destroy( thread ); return -1; } hal_fpu_context_init( thread ); #if( DEBUG_THREAD_USER_CREATE & 1) if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] CPU & FPU contexts created\n", __FUNCTION__, thread->trdid ); hal_vmm_display( XPTR( local_cxy , process ) , true ); #endif #if DEBUG_THREAD_USER_CREATE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_CREATE < cycle ) printk("\n[%s] thread[%x,%x] exit / new_thread %x / core %d / cycle %d\n", __FUNCTION__, this->process->pid , this->trdid , thread->trdid, core_lid, cycle ); #endif *new_thread = thread; return 0; } // end thread_user_create() /////////////////////////////////////////////////////// error_t thread_user_fork( xptr_t parent_thread_xp, process_t * child_process, thread_t ** child_thread ) { error_t error; thread_t * child_ptr; // local pointer on child thread trdid_t child_trdid; // child thread identifier lid_t core_lid; // selected core local index thread_t * parent_ptr; // local pointer on remote parent thread cxy_t parent_cxy; // parent thread cluster process_t * parent_process; // local pointer on parent process xptr_t parent_gpt_xp; // extended pointer on parent thread GPT void * parent_func; // parent thread entry_func void * parent_args; // parent thread entry_args uint32_t parent_flags; // parent_thread flags vseg_t * parent_us_vseg; // parent thread user stack vseg vseg_t * child_us_vseg; // child thread user stack vseg #if DEBUG_THREAD_USER_FORK uint32_t cycle = (uint32_t)hal_get_cycles(); thread_t * this = CURRENT_THREAD; if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] enter for child_process %x / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, child_process->pid, cycle ); #endif // select a target core in local cluster core_lid = cluster_select_local_core( local_cxy ); #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] selected core [%x,%d]\n", __FUNCTION__, this->process->pid, this->trdid, local_cxy, core_lid ); #endif // get cluster and local pointer on parent thread descriptor parent_cxy = GET_CXY( parent_thread_xp ); parent_ptr = GET_PTR( parent_thread_xp ); // get relevant infos from parent thread parent_func = (void *) hal_remote_lpt( XPTR(parent_cxy,&parent_ptr->entry_func )); parent_args = (void *) hal_remote_lpt( XPTR(parent_cxy,&parent_ptr->entry_args )); parent_flags = (uint32_t)hal_remote_l32( XPTR(parent_cxy,&parent_ptr->flags )); parent_us_vseg = (vseg_t *)hal_remote_lpt( XPTR(parent_cxy,&parent_ptr->user_stack_vseg )); // get pointer on parent process in parent thread cluster parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy, &parent_ptr->process ) ); // build extended pointer on parent GPT in parent thread cluster parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt ); #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] get parent GPT\n", __FUNCTION__, this->process->pid, this->trdid ); #endif // allocate memory for child thread descriptor child_ptr = thread_alloc(); if( child_ptr == NULL ) { printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ ); return -1; } #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] allocated new thread descriptor %x\n", __FUNCTION__, this->process->pid, this->trdid, child_ptr ); #endif // set type in thread descriptor child_ptr->type = THREAD_USER; // register new thread in process descriptor, and get a TRDID error = process_register_thread( child_process, child_ptr , &child_trdid ); if( error ) { printk("\n[ERROR] in %s : cannot register new thread in process %x\n", __FUNCTION__, child_process->pid ); thread_destroy( child_ptr ); return -1; } // set trdid in thread descriptor child_ptr->trdid = child_trdid; #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] registered child thread %x in child process %x\n", __FUNCTION__, this->process->pid, this->trdid, child_trdid, child_process->pid ); #endif // get an user stack vseg from local VMM allocator child_us_vseg = vmm_create_vseg( child_process, VSEG_TYPE_STACK, LTID_FROM_TRDID( child_trdid ), 0, // size unused 0, // file_offset unused 0, // file_size unused XPTR_NULL, // mapper_xp unused local_cxy ); if( child_us_vseg == NULL ) { printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ ); process_remove_thread( child_ptr ); thread_destroy( child_ptr ); return -1; } #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] created an user stack vseg / vpn_base %x / %d pages\n", __FUNCTION__, this->process->pid, this->trdid, child_us_vseg->vpn_base, child_us_vseg->vpn_size ); #endif // initialize thread descriptor error = thread_init( child_ptr, child_process, THREAD_USER, child_trdid, parent_func, parent_args, core_lid, child_us_vseg ); if( error ) { printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ ); vmm_remove_vseg( child_process , child_us_vseg ); process_remove_thread( child_ptr ); thread_destroy( child_ptr ); return -1; } #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] initialised thread %x in process %x\n", __FUNCTION__, this->process->pid, this->trdid, child_ptr->trdid, child_process->pid ); #endif // set detached flag if required if( parent_flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED; // allocate a CPU context for child thread if( hal_cpu_context_alloc( child_ptr ) ) { printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ ); vmm_remove_vseg( child_process , child_us_vseg ); process_remove_thread( child_ptr ); thread_destroy( child_ptr ); return -1; } // allocate a FPU context for child thread if( hal_fpu_context_alloc( child_ptr ) ) { printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ ); vmm_remove_vseg( child_process , child_us_vseg ); process_remove_thread( child_ptr ); thread_destroy( child_ptr ); return -1; } #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] created CPU & FPU contexts for thread %x in process %x\n", __FUNCTION__, this->process->pid, this->trdid, child_ptr->trdid, child_process->pid ); #endif // scan parent GPT, and copy all valid entries // associated to user stack vseg into child GPT vpn_t parent_vpn; vpn_t child_vpn; bool_t mapped; ppn_t ppn; vpn_t parent_vpn_base = hal_remote_l32( XPTR( parent_cxy, &parent_us_vseg->vpn_base ) ); vpn_t parent_vpn_size = hal_remote_l32( XPTR( parent_cxy, &parent_us_vseg->vpn_size ) ); vpn_t child_vpn_base = child_us_vseg->vpn_base; for( parent_vpn = parent_vpn_base , child_vpn = child_vpn_base ; parent_vpn < (parent_vpn_base + parent_vpn_size) ; parent_vpn++ , child_vpn++ ) { error = hal_gpt_pte_copy( &child_process->vmm.gpt, child_vpn, parent_gpt_xp, parent_vpn, true, // set cow &ppn, &mapped ); if( error ) { printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ ); vmm_remove_vseg( child_process , child_us_vseg ); process_remove_thread( child_ptr ); thread_destroy( child_ptr ); return -1; } // increment pending forks counter for a mapped page if( mapped ) { // get pointers on the page descriptor xptr_t page_xp = ppm_ppn2page( ppn ); cxy_t page_cxy = GET_CXY( page_xp ); page_t * page_ptr = GET_PTR( page_xp ); // build extended pointers on forks and lock fields xptr_t forks_xp = XPTR( page_cxy , &page_ptr->forks ); xptr_t lock_xp = XPTR( page_cxy , &page_ptr->lock ); // get lock protecting page remote_busylock_acquire( lock_xp ); // increment the forks counter in page descriptor hal_remote_atomic_add( forks_xp , 1 ); // release lock protecting page remote_busylock_release( lock_xp ); } } #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] copied STACK vseg PTEs & set COW in child GPT\n", __FUNCTION__, this->process->pid, this->trdid ); #endif // set COW flag for all mapped entries of user stack vseg in parent GPT hal_gpt_set_cow( parent_gpt_xp, parent_vpn_base, parent_vpn_size ); #if (DEBUG_THREAD_USER_FORK & 1) if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] set COW for STACK vseg in parent GPT\n", __FUNCTION__, this->process->pid, this->trdid ); #endif // return child pointer *child_thread = child_ptr; #if DEBUG_THREAD_USER_FORK cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_FORK < cycle ) printk("\n[%s] thread[%x,%x] exit / created thread[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, child_ptr->process->pid, child_ptr->trdid, cycle ); #endif return 0; } // end thread_user_fork() //////////////////////////////////////////////// error_t thread_user_exec( void * entry_func, uint32_t argc, char ** argv ) { thread_t * thread = CURRENT_THREAD; process_t * process = thread->process; #if DEBUG_THREAD_USER_EXEC uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_EXEC < cycle ) printk("\n[%s] thread[%x,%x] enter / entry %x / cycle %d\n", __FUNCTION__, process->pid, thread->trdid, entry_func , cycle ); #endif // check parent thread attributes assert( (thread->type == THREAD_USER ) , "bad type" ); assert( (thread->signature == THREAD_SIGNATURE) , "bad signature" ); assert( (thread->busylocks == 0) , "bad busylocks" ); // re-initialize various thread descriptor fields thread->quantum = 0; // TODO thread->ticks_nr = 0; // TODO thread->time_last_check = 0; // TODO thread->entry_func = entry_func; thread->main_argc = argc; thread->main_argv = argv; // the main thread is always detached thread->flags = THREAD_FLAG_DETACHED; thread->blocked = 0; thread->errno = 0; thread->fork_user = 0; // not inherited thread->fork_cxy = 0; // not inherited // re-initialize busylocks counters thread->busylocks = 0; // reset thread info memset( &thread->info , 0 , sizeof(thread_info_t) ); // re-initialize join_lock remote_busylock_init( XPTR( local_cxy , &thread->join_lock ), LOCK_THREAD_JOIN ); // allocate an user stack vseg for main thread vseg_t * us_vseg = vmm_create_vseg( process, VSEG_TYPE_STACK, LTID_FROM_TRDID( thread->trdid ), 0, // length unused 0, // file_offset unused 0, // file_size unused XPTR_NULL, // mapper_xp unused local_cxy ); if( us_vseg == NULL ) { printk("\n[ERROR] in %s : cannot create stack vseg for main thread\n", __FUNCTION__ ); return -1; } // update user stack in thread descriptor thread->user_stack_vseg = us_vseg; // release FPU ownership if required if( thread->core->fpu_owner == thread ) thread->core->fpu_owner = NULL; // re-initialize FPU context hal_fpu_context_init( thread ); #if DEBUG_THREAD_USER_EXEC cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_USER_EXEC < cycle ) printk("\n[%s] thread[%x,%x] set CPU context & jump to user code / cycle %d\n", __FUNCTION__, process->pid, thread->trdid, cycle ); hal_vmm_display( XPTR( local_cxy , process ) , true ); #endif // re-initialize CPU context... and jump to user code hal_cpu_context_exec( thread ); assert( false, "we should not execute this code"); return 0; } // end thread_user_exec() ///////////////////////////////////////////////////////// error_t thread_kernel_create( thread_t ** new_thread, thread_type_t type, void * func, void * args, lid_t core_lid ) { error_t error; thread_t * thread; // pointer on new thread descriptor trdid_t trdid; // new thread identifier thread_t * this = CURRENT_THREAD; assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) , "illegal thread type" ); assert( (core_lid < LOCAL_CLUSTER->cores_nr) , "illegal core_lid" ); #if DEBUG_THREAD_KERNEL_CREATE uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_KERNEL_CREATE < cycle ) printk("\n[%s] thread[%x,%x] enter / requested_type %s / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, thread_type_str(type), cycle ); #endif // allocate memory for new thread descriptor thread = thread_alloc(); if( thread == NULL ) { printk("\n[ERROR] in %s : thread %x in process %x\n" " no memory for thread descriptor\n", __FUNCTION__, this->trdid, this->process->pid ); return ENOMEM; } // set type in thread descriptor thread->type = type; // register new thread in local kernel process descriptor, and get a TRDID error = process_register_thread( &process_zero , thread , &trdid ); if( error ) { printk("\n[ERROR] in %s : cannot register thread in kernel process\n", __FUNCTION__ ); return -1; } // set trdid in thread descriptor thread->trdid = trdid; // initialize thread descriptor error = thread_init( thread, &process_zero, type, trdid, func, args, core_lid, NULL ); // no user stack for a kernel thread if( error ) // release allocated memory for thread descriptor { printk("\n[ERROR] in %s : cannot initialize thread descriptor\n", __FUNCTION__ ); thread_destroy( thread ); return ENOMEM; } // allocate & initialize CPU context error = hal_cpu_context_alloc( thread ); if( error ) { printk("\n[ERROR] in %s : thread %x in process %x\n" " cannot create CPU context\n", __FUNCTION__, this->trdid, this->process->pid ); thread_destroy( thread ); return EINVAL; } hal_cpu_context_init( thread ); #if DEBUG_THREAD_KERNEL_CREATE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_KERNEL_CREATE < cycle ) printk("\n[%s] thread[%x,%x] exit / new_thread %x / type %s / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, thread, thread_type_str(type), cycle ); #endif *new_thread = thread; return 0; } // end thread_kernel_create() ////////////////////////////////////////////// void thread_idle_init( thread_t * thread, thread_type_t type, void * func, void * args, lid_t core_lid ) { trdid_t trdid; error_t error; // check arguments assert( (type == THREAD_IDLE) , "illegal thread type" ); assert( (core_lid < LOCAL_CLUSTER->cores_nr) , "illegal core index" ); // set type in thread descriptor thread->type = THREAD_IDLE; // register idle thread in local kernel process descriptor, and get a TRDID error = process_register_thread( &process_zero , thread , &trdid ); assert( (error == 0), "cannot register idle_thread in kernel process" ); // set trdid in thread descriptor thread->trdid = trdid; // initialize thread descriptor error = thread_init( thread, &process_zero, THREAD_IDLE, trdid, func, args, core_lid, NULL ); // no user stack for a kernel thread assert( (error == 0), "cannot initialize idle_thread" ); // allocate & initialize CPU context if success error = hal_cpu_context_alloc( thread ); assert( (error == 0), "cannot allocate CPU context" ); hal_cpu_context_init( thread ); } // end thread_idle_init() //////////////////////////////////////////// uint32_t thread_destroy( thread_t * thread ) { reg_t save_sr; uint32_t count; thread_type_t type = thread->type; process_t * process = thread->process; core_t * core = thread->core; #if DEBUG_THREAD_DESTROY uint32_t cycle; thread_t * this = CURRENT_THREAD; #endif #if (DEBUG_THREAD_DESTROY & 1) cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DESTROY < cycle ) printk("\n[%s] thread[%x,%x] enter to destroy thread[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle ); #endif // check calling thread busylocks counter thread_assert_can_yield( thread , __FUNCTION__ ); #if CONFIG_INSTRUMENTATION_PGFAULTS process->vmm.false_pgfault_nr += thread->info.false_pgfault_nr; process->vmm.false_pgfault_cost += thread->info.false_pgfault_cost; process->vmm.local_pgfault_nr += thread->info.local_pgfault_nr; process->vmm.local_pgfault_cost += thread->info.local_pgfault_cost; process->vmm.global_pgfault_nr += thread->info.global_pgfault_nr; process->vmm.global_pgfault_cost += thread->info.global_pgfault_cost; #endif #if (CONFIG_INSTRUMENTATION_PGFAULTS & 1) uint32_t false_nr = thread->info.false_pgfault_nr; uint32_t false_cost = thread->info.false_pgfault_cost; uint32_t false_max = thread->info.false_pgfault_max; uint32_t false_one = false_nr ? (false_cost / false_nr ) : 0; uint32_t local_nr = thread->info.local_pgfault_nr; uint32_t local_cost = thread->info.local_pgfault_cost; uint32_t local_max = thread->info.local_pgfault_max; uint32_t local_one = local_nr ? (local_cost / local_nr ) : 0; uint32_t global_nr = thread->info.global_pgfault_nr; uint32_t global_cost = thread->info.global_pgfault_cost; uint32_t global_max = thread->info.global_pgfault_max; uint32_t global_one = global_nr ? (global_cost / global_nr) : 0; printk("\n***** thread[%x,%x] page faults\n" " - false : %d events / cost %d cycles / max %d cycles\n" " - local : %d events / cost %d cycles / max %d cycles\n" " - global : %d events / cost %d cycles / max %d cycles\n", thread->process->pid, thread->trdid, false_nr , false_one , false_max, local_nr , local_one , local_max, global_nr, global_one, global_max ); #endif // remove thread from process th_tbl[] count = process_remove_thread( thread ); // release memory allocated for CPU context and FPU context hal_cpu_context_destroy( thread ); hal_fpu_context_destroy( thread ); // release user stack vseg (for an user thread only) if( type == THREAD_USER ) vmm_remove_vseg( process , thread->user_stack_vseg ); // release FPU ownership if required hal_disable_irq( &save_sr ); if( core->fpu_owner == thread ) { core->fpu_owner = NULL; hal_fpu_disable(); } hal_restore_irq( save_sr ); // invalidate thread descriptor thread->signature = 0; // release memory for thread descriptor (including kernel stack) kmem_req_t req; req.type = KMEM_PPM; req.ptr = thread; kmem_free( &req ); #if DEBUG_THREAD_DESTROY cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DESTROY < cycle ) printk("\n[%s] thread[%x,%x] exit / destroyed thread[%x,%x] / cycle %d\n", __FUNCTION__, this->process->pid, this->trdid, process->pid, thread->trdid, cycle ); #endif return count; } // end thread_destroy() ////////////////////////////////////////////////// inline void thread_set_req_ack( thread_t * target, uint32_t * rsp_count ) { reg_t save_sr; // for critical section // get pointer on target thread scheduler scheduler_t * sched = &target->core->scheduler; // wait scheduler ready to handle a new request while( sched->req_ack_pending ) asm volatile( "nop" ); // enter critical section hal_disable_irq( &save_sr ); // set request in target thread scheduler sched->req_ack_pending = true; // set ack request in target thread "flags" hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK ); // set pointer on responses counter in target thread target->ack_rsp_count = rsp_count; // exit critical section hal_restore_irq( save_sr ); hal_fence(); } // thread_set_req_ack() ///////////////////////////////////////////////////// inline void thread_reset_req_ack( thread_t * target ) { reg_t save_sr; // for critical section // get pointer on target thread scheduler scheduler_t * sched = &target->core->scheduler; // check signal pending in scheduler assert( sched->req_ack_pending , "no pending signal" ); // enter critical section hal_disable_irq( &save_sr ); // reset signal in scheduler sched->req_ack_pending = false; // reset signal in thread "flags" hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK ); // reset pointer on responses counter target->ack_rsp_count = NULL; // exit critical section hal_restore_irq( save_sr ); hal_fence(); } // thread_reset_req_ack() ////////////////////////////////////// void thread_block( xptr_t thread_xp, uint32_t cause ) { // get thread cluster and local pointer cxy_t cxy = GET_CXY( thread_xp ); thread_t * ptr = GET_PTR( thread_xp ); // set blocking cause hal_remote_atomic_or( XPTR( cxy , &ptr->blocked ) , cause ); hal_fence(); #if DEBUG_THREAD_BLOCK uint32_t cycle = (uint32_t)hal_get_cycles(); process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) ); thread_t * this = CURRENT_THREAD; if( DEBUG_THREAD_BLOCK < cycle ) printk("\n[%s] thread[%x,%x] blocked thread %x in process %x / cause %x\n", __FUNCTION__, this->process->pid, this->trdid, ptr->trdid, hal_remote_l32(XPTR( cxy , &process->pid )), cause ); #endif } // end thread_block() //////////////////////////////////////////// uint32_t thread_unblock( xptr_t thread_xp, uint32_t cause ) { // get thread cluster and local pointer cxy_t cxy = GET_CXY( thread_xp ); thread_t * ptr = GET_PTR( thread_xp ); // reset blocking cause uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause ); hal_fence(); #if DEBUG_THREAD_BLOCK uint32_t cycle = (uint32_t)hal_get_cycles(); process_t * process = hal_remote_lpt( XPTR( cxy , &ptr->process ) ); thread_t * this = CURRENT_THREAD; if( DEBUG_THREAD_BLOCK < cycle ) printk("\n[%s] thread[%x,%x] unblocked thread %x in process %x / cause %x\n", __FUNCTION__, this->process->pid, this->trdid, ptr->trdid, hal_remote_l32(XPTR( cxy , &process->pid )), cause ); #endif // return a non zero value if the cause bit is modified return( previous & cause ); } // end thread_unblock() ////////////////////////////////////// void thread_delete( xptr_t target_xp, bool_t is_forced ) { reg_t save_sr; // for critical section bool_t target_join_done; // joining thread arrived first bool_t target_attached; // target thread attached xptr_t killer_xp; // extended pointer on killer thread (this) thread_t * killer_ptr; // pointer on killer thread (this) cxy_t target_cxy; // target thread cluster thread_t * target_ptr; // pointer on target thread process_t * target_process; // pointer on target process pid_t target_pid; // target process identifier xptr_t target_flags_xp; // extended pointer on target thread xptr_t target_join_lock_xp; // extended pointer on target thread xptr_t target_join_xp_xp; // extended pointer on target thread trdid_t target_trdid; // target thread identifier ltid_t target_ltid; // target thread local index uint32_t target_flags; // target thread flags xptr_t joining_xp; // extended pointer on joining thread thread_t * joining_ptr; // local pointer on joining thread cxy_t joining_cxy; // joining thread cluster // get target thread cluster and local pointer target_cxy = GET_CXY( target_xp ); target_ptr = GET_PTR( target_xp ); // get target thread trdid, ltid, flags, and process PID target_trdid = hal_remote_l32( XPTR( target_cxy , &target_ptr->trdid ) ); target_ltid = LTID_FROM_TRDID( target_trdid ); target_flags_xp = XPTR( target_cxy , &target_ptr->flags ); target_flags = hal_remote_l32( target_flags_xp ); target_process = hal_remote_lpt( XPTR( target_cxy , &target_ptr->process ) ); target_pid = hal_remote_l32( XPTR( target_cxy , &target_process->pid ) ); target_attached = ((target_flags & THREAD_FLAG_DETACHED) == 0); // get killer thread pointers killer_ptr = CURRENT_THREAD; killer_xp = XPTR( local_cxy , killer_ptr ); #if DEBUG_THREAD_DELETE uint32_t cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DELETE < cycle ) printk("\n[%s] killer[%x,%x] enters / target[%x,%x] / forced %d / flags %x / cycle %d\n", __FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid, target_pid, target_trdid, is_forced, target_flags, cycle ); #endif // check target thread is not the main thread, because the main thread // must be deleted by the parent process sys_wait() function assert( ((CXY_FROM_PID( target_pid ) != target_cxy) || (target_ltid != 0)), "target thread cannot be the main thread" ); // check killer thread can yield thread_assert_can_yield( killer_ptr , __FUNCTION__ ); // if the target thread is attached, we must synchonize with the joining thread // before blocking and marking the target thead for delete. if( target_attached && (is_forced == false) ) // synchronize with joining thread { // build extended pointers on target thread join fields target_join_lock_xp = XPTR( target_cxy , &target_ptr->join_lock ); target_join_xp_xp = XPTR( target_cxy , &target_ptr->join_xp ); // enter critical section hal_disable_irq( &save_sr ); // take the join_lock in target thread descriptor remote_busylock_acquire( target_join_lock_xp ); // get join_done from target thread descriptor target_join_done = ((hal_remote_l32( target_flags_xp ) & THREAD_FLAG_JOIN_DONE) != 0); if( target_join_done ) // joining thread arrived first { // get extended pointer on joining thread joining_xp = (xptr_t)hal_remote_l64( target_join_xp_xp ); // get cluster and local pointer on joining thread joining_ptr = GET_PTR( joining_xp ); joining_cxy = GET_CXY( joining_xp ); // copy exit_status from target thread to joining thread, because // target thread may be deleted before joining thread resume void * status = hal_remote_lpt( XPTR( target_cxy , &target_ptr->exit_status ) ); hal_remote_spt( XPTR( joining_cxy , &joining_ptr->exit_status ) , status ); // reset the join_done flag in target thread hal_remote_atomic_and( target_flags_xp , ~THREAD_FLAG_JOIN_DONE ); // unblock the joining thread thread_unblock( joining_xp , THREAD_BLOCKED_JOIN ); // release the join_lock in target thread descriptor remote_busylock_release( target_join_lock_xp ); // block the target thread thread_block( target_xp , THREAD_BLOCKED_GLOBAL ); // set the REQ_DELETE flag in target thread descriptor hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE ); // exit critical section hal_restore_irq( save_sr ); #if DEBUG_THREAD_DELETE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DELETE < cycle ) printk("\n[%s] killer[%x,%x] exit / target[%x,%x] marked after join / cycle %d\n", __FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid, target_pid, target_trdid, cycle ); #endif } else // killer thread arrived first { // set the kill_done flag in target thread hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_KILL_DONE ); // block target thread on BLOCKED_JOIN thread_block( killer_xp , THREAD_BLOCKED_JOIN ); // set extended pointer on killer thread in target thread hal_remote_s64( target_join_xp_xp , killer_xp ); // release the join_lock in target thread descriptor remote_busylock_release( target_join_lock_xp ); #if DEBUG_THREAD_DELETE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DELETE < cycle ) printk("\n[%s] killer[%x,%x] deschedules / target[%x,%x] not completed / cycle %d\n", __FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid, target_pid, target_trdid, cycle ); #endif // deschedule sched_yield( "killer thread wait joining thread" ); // block the target thread thread_block( target_xp , THREAD_BLOCKED_GLOBAL ); // set the REQ_DELETE flag in target thread descriptor hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE ); // exit critical section hal_restore_irq( save_sr ); #if DEBUG_THREAD_DELETE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DELETE < cycle ) printk("\n[%s] killer[%x,%x] exit / target[%x,%x] marked after join / cycle %d\n", __FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid, target_pid, target_trdid, cycle ); #endif } } else // no synchronization with joining thread required { // block the target thread thread_block( target_xp , THREAD_BLOCKED_GLOBAL ); // set the REQ_DELETE flag in target thread descriptor hal_remote_atomic_or( target_flags_xp , THREAD_FLAG_REQ_DELETE ); #if DEBUG_THREAD_DELETE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_DELETE < cycle ) printk("\n[%s] killer[%x,%x] exit / target [%x,%x] marked / no join / cycle %d\n", __FUNCTION__, killer_ptr->process->pid, killer_ptr->trdid, target_pid, target_trdid, cycle ); #endif } } // end thread_delete() ///////////////////////////// void thread_idle_func( void ) { #if DEBUG_THREAD_IDLE uint32_t cycle; #endif while( 1 ) { // unmask IRQs hal_enable_irq( NULL ); // force core to low-power mode (optional) if( CONFIG_SCHED_IDLE_MODE_SLEEP ) { #if DEBUG_THREAD_IDLE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_IDLE < cycle ) printk("\n[%s] idle thread on core[%x,%d] goes to sleep / cycle %d\n", __FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle ); #endif hal_core_sleep(); #if DEBUG_THREAD_IDLE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_IDLE < cycle ) printk("\n[%s] idle thread on core[%x,%d] wake up / cycle %d\n", __FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, cycle ); #endif } #if DEBUG_THREAD_IDLE cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_IDLE < cycle ) sched_remote_display( local_cxy , CURRENT_THREAD->core->lid ); #endif // search a runable thread sched_yield( "running idle thread" ); } // end while } // end thread_idle() /////////////////////////////////////////// void thread_time_update( thread_t * thread, bool_t is_user ) { cycle_t current_cycle; // current cycle counter value cycle_t last_cycle; // last cycle counter value // get pointer on thread_info structure thread_info_t * info = &thread->info; // get last cycle counter value last_cycle = info->last_cycle; // get current cycle counter value current_cycle = hal_get_cycles(); // update thread_info structure info->last_cycle = current_cycle; // update time in thread_info if( is_user ) info->usr_cycles += (current_cycle - last_cycle); else info->sys_cycles += (current_cycle - last_cycle); } // end thread_time_update() ///////////////////////////////////// xptr_t thread_get_xptr( pid_t pid, trdid_t trdid ) { cxy_t target_cxy; // target thread cluster identifier ltid_t target_thread_ltid; // target thread local index thread_t * target_thread_ptr; // target thread local pointer xptr_t target_process_xp; // extended pointer on target process descriptor process_t * target_process_ptr; // local pointer on target process descriptor pid_t target_process_pid; // target process identifier xlist_entry_t root; // root of list of process in target cluster xptr_t lock_xp; // extended pointer on lock protecting this list #if DEBUG_THREAD_GET_XPTR uint32_t cycle = (uint32_t)hal_get_cycles(); thread_t * this = CURRENT_THREAD; if( DEBUG_THREAD_GET_XPTR < cycle ) printk("\n[%s] thread %x in process %x enters / pid %x / trdid %x / cycle %d\n", __FUNCTION__, this->trdid, this->process->pid, pid, trdid, cycle ); #endif // get target cluster identifier and local thread identifier target_cxy = CXY_FROM_TRDID( trdid ); target_thread_ltid = LTID_FROM_TRDID( trdid ); // check trdid argument if( (target_thread_ltid >= CONFIG_THREADS_MAX_PER_CLUSTER) || cluster_is_active( target_cxy ) == false ) return XPTR_NULL; // get root of list of process descriptors in target cluster hal_remote_memcpy( XPTR( local_cxy , &root ), XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ), sizeof(xlist_entry_t) ); // get extended pointer on lock protecting the list of local processes lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock ); // take the lock protecting the list of processes in target cluster remote_queuelock_acquire( lock_xp ); #if( DEBUG_THREAD_GET_XPTR & 1 ) if( DEBUG_THREAD_GET_XPTR < cycle ) printk("\n[%s] scan processes in cluster %x :\n", __FUNCTION__, target_cxy ); #endif // scan the list of local processes in target cluster xptr_t iter; bool_t found = false; XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter ) { target_process_xp = XLIST_ELEMENT( iter , process_t , local_list ); target_process_ptr = GET_PTR( target_process_xp ); target_process_pid = hal_remote_l32( XPTR( target_cxy , &target_process_ptr->pid ) ); #if( DEBUG_THREAD_GET_XPTR & 1 ) if( DEBUG_THREAD_GET_XPTR < cycle ) printk(" - process %x\n", target_process_pid ); #endif if( target_process_pid == pid ) { found = true; break; } } // release the lock protecting the list of processes in target cluster remote_queuelock_release( lock_xp ); // check PID found if( found == false ) { #if( DEBUG_THREAD_GET_XPTR & 1 ) if( DEBUG_THREAD_GET_XPTR < cycle ) printk("\n[%s] pid %x not found in cluster %x\n", __FUNCTION__, pid, target_cxy ); #endif return XPTR_NULL; } // get target thread local pointer xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] ); target_thread_ptr = (thread_t *)hal_remote_lpt( xp ); if( target_thread_ptr == NULL ) { #if( DEBUG_THREAD_GET_XPTR & 1 ) if( DEBUG_THREAD_GET_XPTR < cycle ) printk("\n[%s] thread %x not registered in process %x in cluster %x\n", __FUNCTION__, trdid, pid, target_cxy ); #endif return XPTR_NULL; } #if DEBUG_THREAD_GET_XPTR cycle = (uint32_t)hal_get_cycles(); if( DEBUG_THREAD_GET_XPTR < cycle ) printk("\n[%s] thread %x in process %x exit / pid %x / trdid %x / cycle %d\n", __FUNCTION__, this->trdid, this->process->pid, pid, trdid, cycle ); #endif return XPTR( target_cxy , target_thread_ptr ); } // end thread_get_xptr() /////////////////////////////////////////////////// void thread_assert_can_yield( thread_t * thread, const char * func_str ) { // does nothing if thread does not hold any busylock if( thread->busylocks ) { // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on TXT0 lock xptr_t txt0_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock remote_busylock_acquire( txt0_lock_xp ); // display error message on TXT0 nolock_printk("\n[PANIC] in %s / thread[%x,%x] cannot yield : " "hold %d busylock(s) / cycle %d\n", func_str, thread->process->pid, thread->trdid, thread->busylocks - 1, (uint32_t)hal_get_cycles() ); #if DEBUG_BUSYLOCK // scan list of busylocks xptr_t iter_xp; xptr_t root_xp = XPTR( local_cxy , &thread->busylocks_root ); XLIST_FOREACH( root_xp , iter_xp ) { xptr_t lock_xp = XLIST_ELEMENT( iter_xp , busylock_t , xlist ); cxy_t lock_cxy = GET_CXY( lock_xp ); busylock_t * lock_ptr = GET_PTR( lock_xp ); uint32_t lock_type = hal_remote_l32( XPTR( lock_cxy , &lock_ptr->type ) ); nolock_printk(" - %s in cluster %x\n", lock_type_str[lock_type] , lock_cxy ); } #endif // release TXT0 lock remote_busylock_release( txt0_lock_xp ); // suicide hal_core_sleep(); } } // end thread_assert_can yield() ////////////////////////////////////////////////////// void thread_display_busylocks( xptr_t thread_xp, const char * string ) { cxy_t thread_cxy = GET_CXY( thread_xp ); thread_t * thread_ptr = GET_PTR( thread_xp ); #if DEBUG_BUSYLOCK xptr_t iter_xp; // get relevant info from target thread descriptor uint32_t locks = hal_remote_l32( XPTR( thread_cxy , &thread_ptr->busylocks ) ); trdid_t trdid = hal_remote_l32( XPTR( thread_cxy , &thread_ptr->trdid ) ); process_t * process = hal_remote_lpt( XPTR( thread_cxy , &thread_ptr->process ) ); pid_t pid = hal_remote_l32( XPTR( thread_cxy , &process->pid ) ); // get extended pointer on root of busylocks xptr_t root_xp = XPTR( thread_cxy , &thread_ptr->busylocks_root ); // get pointers on TXT0 chdev xptr_t txt0_xp = chdev_dir.txt_tx[0]; cxy_t txt0_cxy = GET_CXY( txt0_xp ); chdev_t * txt0_ptr = GET_PTR( txt0_xp ); // get extended pointer on remote TXT0 lock xptr_t txt0_lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock ); // get TXT0 lock remote_busylock_acquire( txt0_lock_xp ); // display header nolock_printk("\n***** thread[%x,%x] in <%s> : %d busylocks *****\n", pid, trdid, string, locks ); // scan the xlist of busylocks when required if( locks ) { XLIST_FOREACH( root_xp , iter_xp ) { xptr_t lock_xp = XLIST_ELEMENT( iter_xp , busylock_t , xlist ); cxy_t lock_cxy = GET_CXY( lock_xp ); busylock_t * lock_ptr = GET_PTR( lock_xp ); uint32_t lock_type = hal_remote_l32(XPTR( lock_cxy , &lock_ptr->type )); nolock_printk(" - %s in cluster %x\n", lock_type_str[lock_type] , lock_cxy ); } } // release TXT0 lock remote_busylock_release( txt0_lock_xp ); #else printk("\n[ERROR] in %s : set DEBUG_BUSYLOCK in kernel_config.h for %s / thread(%x,%x)\n", __FUNCTION__, string, thread_cxy, thread_ptr ); #endif return; } // end thread_display_busylock()