/* * mapper.c - Map memory, file or device in process virtual address space. * * Authors Mohamed Lamine Karaoui (2015) * Alain Greiner (2016) * * Copyright (c) UPMC Sorbonne Universites * * This file is part of ALMOS-MKH. * * ALMOS-MKH is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2.0 of the License. * * ALMOS-MKH is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with ALMOS-MKH; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include ////////////////////////// mapper_t * mapper_create() { mapper_t * mapper; kmem_req_t req; error_t error; // allocate memory for associated mapper req.type = KMEM_MAPPER; req.size = sizeof(mapper_t); req.flags = AF_KERNEL | AF_ZERO; mapper = (mapper_t *)kmem_alloc( &req ); if( mapper == NULL ) { printk("\n[ERROR] in %s : no memory for mapper descriptor\n", __FUNCTION__ ); return NULL; } // initialize refcount & inode mapper->refcount = 0; mapper->inode = NULL; // initialize radix tree error = grdxt_init( &mapper->radix, CONFIG_VMM_GRDXT_W1, CONFIG_VMM_GRDXT_W2, CONFIG_VMM_GRDXT_W3 ); if( error ) { printk("\n[ERROR] in %s : cannot initialize radix tree\n", __FUNCTION__ ); req.type = KMEM_MAPPER; req.ptr = mapper; kmem_free( &req ); return NULL; } // initialize mapper lock rwlock_init( &mapper->lock ); // initialize waiting threads xlist (empty) xlist_root_init( XPTR( local_cxy , &mapper->wait_root ) ); // initialize vsegs xlist (empty) xlist_root_init( XPTR( local_cxy , &mapper->vsegs_root ) ); return mapper; } // end mapper_create() /////////////////////////////////////////// error_t mapper_destroy( mapper_t * mapper ) { page_t * page; uint32_t found_index = 0; uint32_t start_index = 0; kmem_req_t req; error_t error; // scan radix three and release all registered pages to PPM do { // get page from radix tree page = (page_t *)grdxt_get_first( &mapper->radix , start_index , &found_index ); if( page != NULL ) { // remove page from mapper and release to PPM error = mapper_release_page( mapper , found_index , page ); if ( error ) return error; // update start_key value for next page start_index = found_index; } } while( page != NULL ); // release the memory allocated to radix-tree itself grdxt_destroy( &mapper->radix ); // release memory for mapper descriptor req.type = KMEM_MAPPER; req.ptr = mapper; kmem_free( &req ); return 0; } // end mapper_destroy() //////////////////////////////////////////// page_t * mapper_get_page( mapper_t * mapper, uint32_t index ) { kmem_req_t req; page_t * page; error_t error; thread_t * this = CURRENT_THREAD; // take mapper lock in READ_MODE rwlock_rd_lock( &mapper->lock ); // search page in radix tree page = (page_t *)grdxt_lookup( &mapper->radix , index ); // test if page available in mapper if( ( page == NULL) || page_is_flag( page , PG_INLOAD ) ) // page not available / { // release the lock in READ_MODE and take it in WRITE_MODE rwlock_rd_unlock( &mapper->lock ); rwlock_wr_lock( &mapper->lock ); // second test on missing page because the page status can have been modified // by another thread, when passing from READ_MODE to WRITE_MODE. // from this point there is no concurrent accesses to mapper. page = grdxt_lookup( &mapper->radix , index ); if ( page == NULL ) // missing page => load it from file system { // allocate one page from PPM req.type = KMEM_PAGE; req.size = 0; req.flags = AF_NONE; page = kmem_alloc( &req ); if( page == NULL ) { printk("\n[ERROR] in %s : thread %x cannot allocate a page in cluster %x\n", __FUNCTION__ , this->trdid , local_cxy ); rwlock_wr_unlock( &mapper->lock ); return NULL; } // initialize the page descriptor page_init( page ); page_set_flag( page , PG_INIT ); page_set_flag( page , PG_INLOAD ); page_refcount_up( page ); page->mapper = mapper; page->index = index; // insert page in mapper radix tree error = grdxt_insert( &mapper->radix, index , page ); // release mapper lock from WRITE_MODE rwlock_wr_unlock( &mapper->lock ); if( error ) { printk("\n[ERROR] in %s : thread %x cannot insert page in mapper\n", __FUNCTION__ , this->trdid ); mapper_release_page( mapper , index , page ); page_clear_flag( page , PG_ALL ); req.ptr = page; req.type = KMEM_PAGE; kmem_free(&req); return NULL; } // launch I/O operation to load page from file system error = mapper_updt_page( mapper , index , page ); if( error ) { printk("\n[ERROR] in %s : thread %x cannot load page from device\n", __FUNCTION__ , this->trdid ); mapper_release_page( mapper , index , page ); page_clear_flag( page , PG_ALL ); req.ptr = page; req.type = KMEM_PAGE; kmem_free( &req ); return NULL; } // update the mapper and index fields in page descriptor page->mapper = mapper; page->index = index; // reset the page INLOAD flag to make the page available to all readers page_clear_flag( page , PG_INLOAD ); } else if( page_is_flag( page , PG_INLOAD ) ) // page is loaded by another thread { // release mapper lock from WRITE_MODE rwlock_wr_unlock( &mapper->lock ); // deschedule to wait load completion while( 1 ) { // exit waiting loop when loaded if( page_is_flag( page , PG_INLOAD ) ) break; // deschedule sched_yield(); } } return page; } else { // release lock from READ_MODE rwlock_rd_unlock( &mapper->lock ); return page; } } // end mapper_get_page() /////////////////////////////////////////////// error_t mapper_release_page( mapper_t * mapper, uint32_t index, page_t * page ) { error_t error; // lauch IO operation to update page to file system error = mapper_sync_page( mapper , index , page ); if( error ) { printk("\n[ERROR] in %s : cannot update file system\n", __FUNCTION__ ); return EIO; } // take mapper lock in WRITE_MODE rwlock_wr_lock( &mapper->lock ); // remove physical page from radix tree grdxt_remove( &mapper->radix , page->index ); // release mapper lock from WRITE_MODE rwlock_wr_unlock( &mapper->lock ); // release page to PPM kmem_req_t req; req.type = KMEM_PAGE; req.ptr = page; kmem_free( &req ); return 0; } // end mapper_release_page() //////////////////////////////////////////// error_t mapper_updt_page( mapper_t * mapper, uint32_t index, page_t * page ) { uint32_t type; vfs_inode_t * inode; error_t error = 0; if( page == NULL ) { printk("\n[PANIC] in %s : page pointer is NULL\n", __FUNCTION__ ); hal_core_sleep(); } if( mapper == NULL ) { printk("\n[PANIC] in %s : no mapper for this page\n", __FUNCTION__ ); hal_core_sleep(); } // get file system type and inode pointer inode = mapper->inode; type = inode->ctx->type; // get page lock page_lock( page ); // get mapper lock in WRITE_MODE rwlock_wr_lock( &mapper->lock ); // call proper I/O operation to update file system if ( type == FS_TYPE_FATFS ) error = fatfs_read_page( page ); else if( type == FS_TYPE_RAMFS ) error = ramfs_read_page( page ); else { printk("\n[PANIC] in %s : undefined file system type\n", __FUNCTION__ ); hal_core_sleep(); } // release mapper lock from WRITE_MODE rwlock_wr_unlock( &mapper->lock ); // release page lock page_unlock( page ); if( error ) { printk("\n[PANIC] in %s : cannot access file system\n", __FUNCTION__ ); return EIO; } return 0; } // end mapper_updt_page //////////////////////////////////////////// error_t mapper_sync_page( mapper_t * mapper, uint32_t index, page_t * page ) { uint32_t type; vfs_inode_t * inode; error_t error = 0; if( page == NULL ) { printk("\n[PANIC] in %s : page pointer is NULL\n", __FUNCTION__ ); hal_core_sleep(); } if( mapper == NULL ) { printk("\n[PANIC] in %s : no mapper for this page\n", __FUNCTION__ ); hal_core_sleep(); } if( page_is_flag( page , PG_DIRTY ) ) { // get file system type and inode pointer inode = mapper->inode; type = inode->ctx->type; // get page lock page_lock( page ); // get mapper lock in READ_MODE rwlock_rd_lock( &mapper->lock ); // call proper I/O operation to update file system if ( type == FS_TYPE_FATFS ) error = fatfs_write_page( page ); else if( type == FS_TYPE_RAMFS ) error = ramfs_write_page( page ); else { printk("\n[PANIC] in %s : undefined file system type\n", __FUNCTION__ ); hal_core_sleep(); } // release mapper lock from READ_MODE rwlock_rd_unlock( &mapper->lock ); // release page lock page_unlock( page ); if( error ) { printk("\n[PANIC] in %s : cannot update file system\n", __FUNCTION__ ); return EIO; } // clear dirty bit page_undo_dirty( page ); } return 0; } // end mapper_sync_page() /////////////////////////////////////////////////////////////////////////////////////// // This static function is called by the mapper_move fragments() function. // It moves one fragment between an user buffer and the kernel mapper. // Implementation Note: It can require access to one or two pages in mapper: // [max_page_index == min_page_index] <=> fragment fit in one mapper page // [max_page index == min_page_index + 1] <=> fragment spread on two mapper pages /////////////////////////////////////////////////////////////////////////////////////// static error_t mapper_move_one_fragment( mapper_t * mapper, bool_t to_buffer, fragment_t * fragment ) { uint32_t size; // number of bytes in fragment cxy_t buf_cxy; // cluster identifier for user buffer uint8_t * buf_ptr; // local pointer on first byte in user buffer xptr_t xp_buf; // extended pointer on byte in user buffer xptr_t xp_map; // extended pointer on byte in kernel mapper uint32_t min_file_offset; // offset of first byte in file uint32_t max_file_offset; // offset of last byte in file uint32_t first_page_index; // index of first page in mapper uint32_t first_page_offset; // offset of first byte in first page in mapper uint32_t first_page_size; // offset of first byte in first page in mapper uint32_t second_page_index; // index of last page in mapper uint32_t second_page_offset; // offset of last byte in last page in mapper uint32_t second_page_size; // offset of last byte in last page in mapper page_t * page; // pointer on one page descriptor in mapper uint8_t * map_ptr; // local pointer on first byte in mapper // get fragment attributes in user buffer buf_cxy = fragment->buf_cxy; buf_ptr = fragment->buf_ptr; size = fragment->size; if( size > CONFIG_PPM_PAGE_SIZE ) { printk("\n[PANIC] in %s : illegal fragment size = %d\n", __FUNCTION__ , size ); return EINVAL; } // compute offsets of first and last bytes in file min_file_offset = fragment->file_offset; max_file_offset = min_file_offset + size; // compute indexes of pages for first and last byte in mapper first_page_index = min_file_offset >> CONFIG_PPM_PAGE_SHIFT; second_page_index = max_file_offset >> CONFIG_PPM_PAGE_SHIFT; if ( first_page_index == second_page_index ) // only one page in mapper { // compute offset and size for page in mapper first_page_offset = min_file_offset & (1< CONFIG_MAPPER_MAX_FRAGMENTS ) { printk("\n[PANIC] in %s : number of fragments cannot be larger than %d\n", __FUNCTION__ , CONFIG_MAPPER_MAX_FRAGMENTS ); return EINVAL; } // get client cluster and local pointer on fragments array cxy_t client_cxy = GET_CXY( xp_frags ); fragment_t * client_frags = (fragment_t *)GET_PTR( xp_frags ); if ( local_cxy == client_cxy ) // use the local fragments array if possible { frags_array = client_frags; } else // make a local copy of fragments array { hal_remote_memcpy( XPTR( local_cxy , local_frags ) , xp_frags , sizeof(fragment_t) * nb_frags ); frags_array = local_frags; } // loop on fragments for( index = 0 ; index < nb_frags ; index ++ ) { error = mapper_move_one_fragment( mapper , read , &frags_array[index] ); if ( error ) return error; } return 0; } // end mapper_move_fragments()