source: trunk/kernel/mm/vmm.c @ 657

Last change on this file since 657 was 657, checked in by alain, 22 months ago

Introduce remote_buf.c/.h & socket.c/.h files.
Update dev_nic.c/.h files.

File size: 102.3 KB
Line 
1/*
2 * vmm.c - virtual memory manager related operations definition.
3 *
4 * Authors   Ghassan Almaless (2008,2009,2010,2011, 2012)
5 *           Alain Greiner (2016,2017,2018,2019,2020)
6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25#include <kernel_config.h>
26#include <hal_kernel_types.h>
27#include <hal_special.h>
28#include <hal_gpt.h>
29#include <hal_vmm.h>
30#include <hal_irqmask.h>
31#include <hal_macros.h>
32#include <printk.h>
33#include <memcpy.h>
34#include <remote_queuelock.h>
35#include <list.h>
36#include <xlist.h>
37#include <bits.h>
38#include <process.h>
39#include <thread.h>
40#include <vseg.h>
41#include <cluster.h>
42#include <scheduler.h>
43#include <vfs.h>
44#include <mapper.h>
45#include <page.h>
46#include <kmem.h>
47#include <vmm.h>
48#include <hal_exception.h>
49
50////////////////////////////////////////////////////////////////////////////////////////////
51//   Extern global variables
52////////////////////////////////////////////////////////////////////////////////////////////
53
54extern  process_t  process_zero;      // allocated in cluster.c
55
56////////////////////////////////////////////////////////////////////////////////////////////
57// This static function is called by the vmm_user_init() function.
58// It initialises the free lists of vsegs used by the VMM MMAP allocator.
59// It makes the assumption that HEAP_BASE == 1 Gbytes and HEAP_SIZE == 2 Gbytes.
60////////////////////////////////////////////////////////////////////////////////////////////
61static void vmm_stack_init( vmm_t * vmm )
62{
63
64// check STACK zone
65assert( ((CONFIG_VMM_STACK_SIZE * CONFIG_THREADS_MAX_PER_CLUSTER) <=
66(CONFIG_VMM_VSPACE_SIZE - CONFIG_VMM_STACK_BASE)) , "STACK zone too small\n");
67
68    // get pointer on STACK allocator
69    stack_mgr_t * mgr = &vmm->stack_mgr;
70
71    mgr->bitmap   = 0;
72    mgr->vpn_base = CONFIG_VMM_STACK_BASE;
73    busylock_init( &mgr->lock , LOCK_VMM_STACK );
74
75}
76
77////////////////////////////////////////////////////////////////////////////////////////////
78// This static function is called by the vmm_create_vseg() function, and implements
79// the VMM STACK specific allocator. Depending on the local thread index <ltid>,
80// it ckeks availability of the corresponding slot in the process STACKS region,
81// allocates a vseg descriptor, and initializes the "vpn_base" and "vpn_size" fields.
82////////////////////////////////////////////////////////////////////////////////////////////
83// @ vmm      : [in]  pointer on VMM.
84// @ ltid     : [in]  requested slot == local user thread identifier.
85////////////////////////////////////////////////////////////////////////////////////////////
86static vseg_t * vmm_stack_alloc( vmm_t  * vmm,
87                                 ltid_t   ltid )
88{
89
90// check ltid argument
91assert( (ltid <= ((CONFIG_VMM_VSPACE_SIZE - CONFIG_VMM_STACK_BASE) / CONFIG_VMM_STACK_SIZE)),
92"slot index %d too large for an user stack vseg", ltid );
93
94    // get stack allocator pointer
95    stack_mgr_t * mgr = &vmm->stack_mgr;
96
97    // get lock protecting stack allocator
98    busylock_acquire( &mgr->lock );
99
100// check requested slot is available
101assert( (bitmap_state( &mgr->bitmap , ltid ) == false),
102"slot index %d already allocated", ltid );
103
104    // allocate a vseg descriptor
105    vseg_t * vseg = vseg_alloc();
106
107    if( vseg == NULL )
108        {
109        // release lock protecting free lists
110        busylock_release( &mgr->lock );
111
112        printk("\n[ERROR] %s cannot allocate memory for vseg in cluster %x\n",
113        __FUNCTION__ , local_cxy );
114
115        return NULL;
116    }
117
118    // update bitmap
119    bitmap_set( &mgr->bitmap , ltid );
120
121    // release lock on stack allocator
122    busylock_release( &mgr->lock );
123
124    // set "vpn_base" & "vpn_size" fields (first page non allocated)
125    vseg->vpn_base = mgr->vpn_base + (ltid * CONFIG_VMM_STACK_SIZE) + 1;
126    vseg->vpn_size = CONFIG_VMM_STACK_SIZE - 1;
127
128    return vseg;
129
130} // end vmm_stack_alloc()
131
132////////////////////////////////////////////////////////////////////////////////////////////
133// This static function is called by the vmm_remove_vseg() function, and implements
134// the VMM STACK specific desallocator.
135// It updates the bitmap to release the corresponding slot in the process STACKS region,
136// and releases memory allocated to vseg descriptor.
137////////////////////////////////////////////////////////////////////////////////////////////
138// @ vmm      : [in] pointer on VMM.
139// @ vseg     : [in] pointer on released vseg.
140////////////////////////////////////////////////////////////////////////////////////////////
141static void vmm_stack_free( vmm_t  * vmm,
142                            vseg_t * vseg )
143{
144    // get stack allocator pointer
145    stack_mgr_t * mgr = &vmm->stack_mgr;
146
147    // compute slot index
148    uint32_t index = (vseg->vpn_base - 1 - mgr->vpn_base) / CONFIG_VMM_STACK_SIZE;
149
150// check index
151assert( (index <= ((CONFIG_VMM_VSPACE_SIZE - CONFIG_VMM_STACK_BASE) / CONFIG_VMM_STACK_SIZE)),
152"slot index %d too large for an user stack vseg", index );
153
154// check released slot is allocated
155assert( (bitmap_state( &mgr->bitmap , index ) == true),
156"released slot index %d non allocated", index );
157
158    // get lock on stack allocator
159    busylock_acquire( &mgr->lock );
160
161    // update stacks_bitmap
162    bitmap_clear( &mgr->bitmap , index );
163
164    // release lock on stack allocator
165    busylock_release( &mgr->lock );
166
167    // release memory allocated to vseg descriptor
168    vseg_free( vseg );
169
170}  // end vmm_stack_free()
171
172
173
174////////////////////////////////////////////////////////////////////////////////////////////
175// This function display the current state of the VMM MMAP allocator of a process VMM
176// identified by the <vmm> argument.
177////////////////////////////////////////////////////////////////////////////////////////////
178void vmm_mmap_display( vmm_t * vmm )
179{
180    uint32_t  order;
181    xptr_t    root_xp;
182    xptr_t    iter_xp;
183
184    // get pointer on process
185    process_t * process = (process_t *)(((char*)vmm) - OFFSETOF( process_t , vmm ));
186
187    // get process PID
188    pid_t pid = process->pid;
189
190    // get pointer on VMM MMAP allocator
191    mmap_mgr_t * mgr = &vmm->mmap_mgr;
192
193    // display header
194    printk("***** VMM MMAP allocator / process %x *****\n", pid );
195
196    // scan the array of free lists of vsegs
197    for( order = 0 ; order <= CONFIG_VMM_HEAP_MAX_ORDER ; order++ )
198    {
199        root_xp = XPTR( local_cxy , &mgr->free_list_root[order] );
200
201        if( !xlist_is_empty( root_xp ) )
202        {
203            printk(" - %d (%x pages) : ", order , 1<<order );
204
205            XLIST_FOREACH( root_xp , iter_xp )
206            {
207                xptr_t   vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
208                vseg_t * vseg    = GET_PTR( vseg_xp );
209
210                printk("%x | ", vseg->vpn_base );
211            }
212
213            printk("\n");
214        }
215    }
216}  // end vmm_mmap_display()
217
218////////////////////////////////////////////////////////////////////////////////////////////
219// This static function is called by the vmm_user_init() function.
220// It initialises the free lists of vsegs used by the VMM MMAP allocator.
221// TODO this function is only valid for 32 bits cores, and makes three assumptions:
222// HEAP_BASE == 1 Gbytes / HEAP_SIZE == 2 Gbytes / MMAP_MAX_SIZE == 1 Gbytes
223////////////////////////////////////////////////////////////////////////////////////////////
224void vmm_mmap_init( vmm_t * vmm )
225{
226
227// check HEAP base and size
228assert( (CONFIG_VMM_HEAP_BASE == 0x40000) & (CONFIG_VMM_STACK_BASE == 0xc0000),
229"CONFIG_VMM_HEAP_BASE != 0x40000 or CONFIG_VMM_STACK_BASE != 0xc0000" );
230
231// check  MMAP vseg max order
232assert( (CONFIG_VMM_HEAP_MAX_ORDER == 18), "max mmap vseg size is 256K pages" );
233
234    // get pointer on MMAP allocator
235    mmap_mgr_t * mgr = &vmm->mmap_mgr;
236
237    // initialize HEAP base and size
238    mgr->vpn_base        = CONFIG_VMM_HEAP_BASE;
239    mgr->vpn_size        = CONFIG_VMM_STACK_BASE - CONFIG_VMM_HEAP_BASE;
240
241    // initialize lock
242    busylock_init( &mgr->lock , LOCK_VMM_MMAP );
243
244    // initialize free lists
245    uint32_t   i;
246    for( i = 0 ; i <= CONFIG_VMM_HEAP_MAX_ORDER ; i++ )
247    {
248        xlist_root_init( XPTR( local_cxy , &mgr->free_list_root[i] ) );
249    }
250
251    // allocate and register first 1 Gbytes vseg
252    vseg_t * vseg0 = vseg_alloc();
253
254assert( (vseg0 != NULL) , "cannot allocate vseg" );
255
256    vseg0->vpn_base = CONFIG_VMM_HEAP_BASE;
257    vseg0->vpn_size = CONFIG_VMM_HEAP_BASE;
258
259    xlist_add_first( XPTR( local_cxy , &mgr->free_list_root[CONFIG_VMM_HEAP_MAX_ORDER] ),
260                     XPTR( local_cxy , &vseg0->xlist ) );
261
262    // allocate and register second 1 Gbytes vseg
263    vseg_t * vseg1 = vseg_alloc();
264
265assert( (vseg1 != NULL) , "cannot allocate vseg" );
266
267    vseg1->vpn_base = CONFIG_VMM_HEAP_BASE << 1;
268    vseg1->vpn_size = CONFIG_VMM_HEAP_BASE;
269
270    xlist_add_first( XPTR( local_cxy , &mgr->free_list_root[CONFIG_VMM_HEAP_MAX_ORDER] ),
271                     XPTR( local_cxy , &vseg1->xlist ) );
272
273#if DEBUG_VMM_MMAP
274thread_t * this = CURRENT_THREAD;
275uint32_t cycle = (uint32_t)hal_get_cycles();
276printk("\n[%s] thread[%x,%x] / cycle %d\n",
277__FUNCTION__, this->process->pid, this->trdid, cycle );
278vmm_mmap_display( vmm );
279#endif
280
281}  // end vmm_mmap_init()
282
283////////////////////////////////////////////////////////////////////////////////////////////
284// This static function is called by the vmm_create_vseg() function, and implements
285// the VMM MMAP specific allocator.  Depending on the requested number of pages <npages>,
286// it get a free vseg from the relevant free_list, and initializes the "vpn_base" and
287// "vpn_size" fields.
288////////////////////////////////////////////////////////////////////////////////////////////
289// @ vmm      : [in] pointer on VMM.
290// @ npages   : [in] requested number of pages.
291// @ returns local pointer on vseg if success / returns NULL if failure.
292////////////////////////////////////////////////////////////////////////////////////////////
293static vseg_t * vmm_mmap_alloc( vmm_t * vmm,
294                                vpn_t   npages )
295{
296
297#if DEBUG_VMM_MMAP
298thread_t * this = CURRENT_THREAD;
299uint32_t cycle = (uint32_t)hal_get_cycles();
300if( DEBUG_VMM_MMAP < cycle )
301printk("\n[%s] thread[%x,%x] for %x pages / cycle %d\n",
302__FUNCTION__, this->process->pid, this->trdid, npages, cycle );
303#endif
304
305    // number of allocated pages must be power of 2
306    // compute actual size and order
307    vpn_t    required_vpn_size = POW2_ROUNDUP( npages );
308    uint32_t required_order    = bits_log2( required_vpn_size );
309
310    // get mmap allocator pointer
311    mmap_mgr_t * mgr = &vmm->mmap_mgr;
312
313    // take lock protecting free lists in MMAP allocator
314    busylock_acquire( &mgr->lock );
315
316    // initialises the while loop variables
317    uint32_t   current_order = required_order;
318    vseg_t   * current_vseg  = NULL;
319
320    // search a free vseg equal or larger than requested size
321        while( current_order <= CONFIG_VMM_HEAP_MAX_ORDER )
322        {
323        // build extended pointer on free_pages_root[current_order]
324        xptr_t root_xp = XPTR( local_cxy , &mgr->free_list_root[current_order] );
325
326                if( !xlist_is_empty( root_xp ) )
327                {
328            // get extended pointer on first vseg in this free_list
329                        xptr_t current_vseg_xp = XLIST_FIRST( root_xp , vseg_t , xlist );
330            current_vseg = GET_PTR( current_vseg_xp );
331
332            // build extended pointer on xlist field in vseg descriptor
333            xptr_t list_entry_xp = XPTR( local_cxy , &current_vseg->xlist );
334
335            // remove this vseg from the free_list
336                        xlist_unlink( list_entry_xp );
337
338                        break; 
339                }
340
341        // increment loop index
342        current_order++;
343
344    }  // end while loop
345
346    if( current_vseg == NULL )  // return failure
347    {
348        // release lock protecting free lists
349        busylock_release( &mgr->lock );
350
351        printk("\n[ERROR] %s cannot allocate ) %d page(s) in cluster %x\n",
352        __FUNCTION__, npages , local_cxy );
353
354        return NULL;
355    }
356
357        // split recursively the found vseg in smaller vsegs
358    // if required, and update the free-lists accordingly
359        while( current_order > required_order )
360        {
361        // get found vseg base and size
362        vpn_t  vpn_base = current_vseg->vpn_base;
363        vpn_t  vpn_size = current_vseg->vpn_size;
364       
365        // allocate a new vseg for the upper half of current vseg
366            vseg_t * new_vseg = vseg_alloc();
367
368            if( new_vseg == NULL )
369        {
370                // release lock protecting free lists
371            busylock_release( &mgr->lock );
372
373            printk("\n[ERROR] %s cannot allocate memory for vseg in cluster %x\n",
374            __FUNCTION__ , local_cxy );
375
376            return NULL;
377            }
378
379        // initialise new vseg (upper half of found vseg)
380        new_vseg->vmm      = vmm;
381        new_vseg->vpn_base = vpn_base + (vpn_size >> 1);
382        new_vseg->vpn_size = vpn_size >> 1;
383
384        // insert new vseg in relevant free_list
385                xlist_add_first( XPTR( local_cxy , &mgr->free_list_root[current_order-1] ),
386                         XPTR( local_cxy , &new_vseg->xlist ) );
387
388        // update found vseg
389        current_vseg->vpn_size = vpn_size>>1; 
390
391        // update order
392                current_order --;
393        }
394
395        // release lock protecting free lists
396        busylock_release( &mgr->lock );
397
398#if DEBUG_VMM_MMAP
399vmm_mmap_display( vmm );
400#endif
401
402    return current_vseg;
403
404}  // end vmm_mmap_alloc()
405
406////////////////////////////////////////////////////////////////////////////////////////////
407// This static function implements the VMM MMAP specific desallocator.
408// It is called by the vmm_remove_vseg() function.
409// It releases the vseg to the relevant free_list, after trying (recursively) to
410// merge it to the buddy vseg.
411////////////////////////////////////////////////////////////////////////////////////////////
412// @ vmm      : [in] pointer on VMM.
413// @ vseg     : [in] pointer on released vseg.
414////////////////////////////////////////////////////////////////////////////////////////////
415static void vmm_mmap_free( vmm_t  * vmm,
416                           vseg_t * vseg )
417{
418
419#if DEBUG_VMM_MMAP
420thread_t * this = CURRENT_THREAD;
421uint32_t cycle = (uint32_t)hal_get_cycles();
422if( DEBUG_VMM_MMAP < cycle )
423printk("\n[%s] thread[%x,%x] for vpn_base %x / vpn_size %x / cycle %d\n",
424__FUNCTION__, this->process->pid, this->trdid, vseg->vpn_base, vseg->vpn_size, cycle );
425#endif
426
427    vseg_t * buddy_vseg;
428
429    // get mmap allocator pointer
430    mmap_mgr_t * mgr = &vmm->mmap_mgr;
431
432    // take lock protecting free lists
433    busylock_acquire( &mgr->lock );
434
435    // initialise loop variables
436    // released_vseg is the currently released vseg
437    vseg_t * released_vseg     = vseg;
438    uint32_t released_order    = bits_log2( vseg->vpn_size );
439
440        // iteratively merge the released vseg to the buddy vseg
441        // release the current page and exit when buddy not found
442    while( released_order <= CONFIG_VMM_HEAP_MAX_ORDER )
443    {
444        // compute buddy_vseg vpn_base
445                vpn_t buddy_vpn_base = released_vseg->vpn_base ^ (1 << released_order);
446       
447        // build extended pointer on free_pages_root[current_order]
448        xptr_t root_xp = XPTR( local_cxy , &mgr->free_list_root[released_order] );
449
450        // scan this free list to find the buddy vseg
451        xptr_t   iter_xp;
452        buddy_vseg = NULL;
453        XLIST_FOREACH( root_xp , iter_xp )
454        {
455            xptr_t   current_vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
456            vseg_t * current_vseg    = GET_PTR( current_vseg_xp );
457
458            if( current_vseg->vpn_base == buddy_vpn_base )
459            {
460                buddy_vseg = current_vseg;
461                break;
462            }
463        }
464       
465        if( buddy_vseg != NULL )     // buddy found => merge released & buddy
466        {
467            // update released vseg fields
468            released_vseg->vpn_size = buddy_vseg->vpn_size<<1;
469            if( released_vseg->vpn_base > buddy_vseg->vpn_base) 
470                released_vseg->vpn_base = buddy_vseg->vpn_base;
471
472            // remove buddy vseg from free_list
473            xlist_unlink( XPTR( local_cxy , &buddy_vseg->xlist ) );
474
475            // release memory allocated to buddy descriptor
476            vseg_free( buddy_vseg );
477        }
478        else                         // buddy not found => register & exit
479        {
480            // register released vseg in free list
481            xlist_add_first( root_xp , XPTR( local_cxy , &released_vseg->xlist ) );
482
483            // exit while loop
484            break;
485        }
486
487        // increment released_order
488        released_order++;
489    }
490
491    // release lock
492    busylock_release( &mgr->lock );
493
494#if DEBUG_VMM_MMAP
495vmm_mmap_display( vmm );
496#endif
497
498}  // end vmm_mmap_free()
499
500////////////////////////////////////////////////////////////////////////////////////////////
501// This static function registers one vseg in the VSL of a local process descriptor.
502////////////////////////////////////////////////////////////////////////////////////////////
503// vmm       : [in] pointer on VMM.
504// vseg      : [in] pointer on vseg.
505////////////////////////////////////////////////////////////////////////////////////////////
506void vmm_attach_vseg_to_vsl( vmm_t  * vmm,
507                             vseg_t * vseg )
508{
509    // update vseg descriptor
510    vseg->vmm = vmm;
511
512    // increment vsegs number
513    vmm->vsegs_nr++;
514
515    // add vseg in vmm list
516    xlist_add_last( XPTR( local_cxy , &vmm->vsegs_root ),
517                    XPTR( local_cxy , &vseg->xlist ) );
518
519}  // end vmm_attach_vseg_from_vsl()
520
521////////////////////////////////////////////////////////////////////////////////////////////
522// This static function removes one vseg from the VSL of a local process descriptor.
523////////////////////////////////////////////////////////////////////////////////////////////
524// vmm       : [in] pointer on VMM.
525// vseg      : [in] pointer on vseg.
526////////////////////////////////////////////////////////////////////////////////////////////
527void vmm_detach_vseg_from_vsl( vmm_t  * vmm,
528                               vseg_t * vseg )
529{
530    // update vseg descriptor
531    vseg->vmm = NULL;
532
533    // decrement vsegs number
534    vmm->vsegs_nr--;
535
536    // remove vseg from VSL
537    xlist_unlink( XPTR( local_cxy , &vseg->xlist ) );
538
539}  // end vmm_detach_from_vsl()
540
541////////////////////////////////////////////
542error_t vmm_user_init( process_t * process )
543{
544
545#if DEBUG_VMM_USER_INIT
546thread_t * this = CURRENT_THREAD;
547uint32_t cycle = (uint32_t)hal_get_cycles();
548if( DEBUG_VMM_USER_INIT )
549printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n", 
550__FUNCTION__ , this->process->pid, this->trdid, process->pid, local_cxy, cycle );
551#endif
552
553    // get pointer on VMM
554    vmm_t   * vmm = &process->vmm;
555
556// check UTILS zone
557assert( ((CONFIG_VMM_ARGS_SIZE + CONFIG_VMM_ENVS_SIZE) <= 
558         (CONFIG_VMM_ELF_BASE - CONFIG_VMM_UTILS_BASE)) ,
559         "UTILS zone too small\n" );
560
561    // initialize lock protecting the VSL
562        remote_queuelock_init( XPTR( local_cxy , &vmm->vsl_lock ) , LOCK_VMM_VSL );
563
564
565    // initialize STACK allocator
566    vmm_stack_init( vmm );
567
568    // initialize MMAP allocator
569    vmm_mmap_init( vmm );
570
571    // initialize instrumentation counters
572        vmm->false_pgfault_nr    = 0;
573        vmm->local_pgfault_nr    = 0;
574        vmm->global_pgfault_nr   = 0;
575        vmm->false_pgfault_cost  = 0;
576        vmm->local_pgfault_cost  = 0;
577        vmm->global_pgfault_cost = 0;
578
579/*
580    // register "args" vseg in VSL
581    base = CONFIG_VMM_UTILS_BASE << CONFIG_PPM_PAGE_SHIFT;
582    size = CONFIG_VMM_ARGS_SIZE << CONFIG_PPM_PAGE_SHIFT;
583
584    vseg_args = vmm_create_vseg( process,
585                                 VSEG_TYPE_DATA,
586                                 base,
587                                 size,
588                                 0,             // file_offset unused
589                                 0,             // file_size unused
590                                 XPTR_NULL,     // mapper_xp unused
591                                 local_cxy );
592    if( vseg_args == NULL )
593    {
594        printk("\n[ERROR] in %s : cannot register args vseg\n", __FUNCTION__ );
595        return -1;
596    }
597
598    vmm->args_vpn_base = base;
599
600    // register "envs" vseg in VSL
601    base = (CONFIG_VMM_UTILS_BASE + CONFIG_VMM_ARGS_SIZE) << CONFIG_PPM_PAGE_SHIFT;
602    size = CONFIG_VMM_ENVS_SIZE << CONFIG_PPM_PAGE_SHIFT;
603
604    vseg_envs = vmm_create_vseg( process,
605                                 VSEG_TYPE_DATA,
606                                 base,
607                                 size,
608                                 0,             // file_offset unused
609                                 0,             // file_size unused
610                                 XPTR_NULL,     // mapper_xp unused
611                                 local_cxy );
612    if( vseg_envs == NULL )
613    {
614        printk("\n[ERROR] in %s : cannot register envs vseg\n", __FUNCTION__ );
615        return -1;
616    }
617
618    vmm->envs_vpn_base = base;
619*/
620    hal_fence();
621
622#if DEBUG_VMM_USER_INIT
623cycle = (uint32_t)hal_get_cycles();
624if( DEBUG_VMM_USER_INIT )
625printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n", 
626__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy, cycle );
627#endif
628
629    return 0;
630
631}  // end vmm_user_init()
632
633//////////////////////////////////////////
634void vmm_user_reset( process_t * process )
635{
636    xptr_t       vseg_xp;
637        vseg_t     * vseg;
638    vseg_type_t  vseg_type;
639
640#if DEBUG_VMM_USER_RESET
641uint32_t   cycle;
642thread_t * this = CURRENT_THREAD;
643#endif
644
645#if (DEBUG_VMM_USER_RESET & 1 )
646cycle = (uint32_t)hal_get_cycles();
647if( DEBUG_VMM_USER_RESET < cycle )
648printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
649__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy, cycle );
650#endif
651
652#if (DEBUG_VMM_USER_RESET & 1 )
653if( DEBUG_VMM_USER_RESET < cycle )
654hal_vmm_display( XPTR( local_cxy , process ) , true );
655#endif
656
657    // get pointer on local VMM
658    vmm_t * vmm = &process->vmm;
659
660    // build extended pointer on VSL root and VSL lock
661    xptr_t   root_xp = XPTR( local_cxy , &vmm->vsegs_root );
662    xptr_t   lock_xp = XPTR( local_cxy , &vmm->vsl_lock );
663
664    // take the VSL lock
665        remote_queuelock_acquire( lock_xp );
666
667    // scan the VSL to delete all non kernel vsegs
668    // (we don't use a FOREACH in case of item deletion)
669    xptr_t   iter_xp;
670    xptr_t   next_xp;
671        for( iter_xp = hal_remote_l64( root_xp ) ; 
672         iter_xp != root_xp ;
673         iter_xp = next_xp )
674        {
675        // save extended pointer on next item in xlist
676        next_xp = hal_remote_l64( iter_xp );
677
678        // get pointers on current vseg in VSL
679        vseg_xp   = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
680        vseg      = GET_PTR( vseg_xp );
681        vseg_type = vseg->type;
682
683#if( DEBUG_VMM_USER_RESET & 1 )
684if( DEBUG_VMM_USER_RESET < cycle )
685printk("\n[%s] found %s vseg / vpn_base %x / vpn_size %d\n",
686__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
687#endif
688        // delete non kernel vseg 
689        if( (vseg_type != VSEG_TYPE_KCODE) && 
690            (vseg_type != VSEG_TYPE_KDATA) && 
691            (vseg_type != VSEG_TYPE_KDEV ) )
692        {
693            // remove vseg from VSL
694            vmm_remove_vseg( process , vseg );
695
696#if( DEBUG_VMM_USER_RESET & 1 )
697if( DEBUG_VMM_USER_RESET < cycle )
698printk("\n[%s] %s vseg deleted / vpn_base %x / vpn_size %d\n",
699__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
700#endif
701        }
702        else
703        {
704
705#if( DEBUG_VMM_USER_RESET & 1 )
706if( DEBUG_VMM_USER_RESET < cycle )
707printk("\n[%s] keep %s vseg / vpn_base %x / vpn_size %d\n",
708__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
709#endif
710        }
711        }  // end loop on vsegs in VSL
712
713    // release the VSL lock
714        remote_queuelock_release( lock_xp );
715
716// FIXME il faut gérer les process copies...
717
718#if DEBUG_VMM_USER_RESET
719cycle = (uint32_t)hal_get_cycles();
720if( DEBUG_VMM_USER_RESET < cycle )
721printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n",
722__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy , cycle );
723#endif
724
725#if (DEBUG_VMM_USER_RESET & 1 )
726if( DEBUG_VMM_USER_RESET < cycle )
727hal_vmm_display( XPTR( local_cxy , process ) , true );
728#endif
729
730}  // end vmm_user_reset()
731
732/////////////////////////////////////////////////
733void vmm_global_delete_vseg( process_t * process,
734                             intptr_t    base )
735{
736    cxy_t           owner_cxy;
737    lpid_t          owner_lpid;
738    reg_t           save_sr;
739
740    xptr_t          process_lock_xp;
741    xptr_t          process_root_xp;
742    xptr_t          process_iter_xp;
743
744    xptr_t          remote_process_xp;
745    cxy_t           remote_process_cxy;
746    process_t     * remote_process_ptr;
747
748    xptr_t          vsl_root_xp;
749    xptr_t          vsl_lock_xp;
750    xptr_t          vsl_iter_xp;
751
752    rpc_desc_t      rpc;                  // shared rpc descriptor for parallel RPCs
753    uint32_t        responses;            // RPC responses counter
754
755    thread_t      * this    = CURRENT_THREAD;
756    pid_t           pid     = process->pid;
757    cluster_t     * cluster = LOCAL_CLUSTER;
758
759#if DEBUG_VMM_GLOBAL_DELETE_VSEG
760uint32_t cycle = (uint32_t)hal_get_cycles();
761#endif
762
763#if (DEBUG_VMM_GLOBAL_DELETE_VSEG & 1)
764if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
765printk("\n[%s] thread[%x,%x] enters / process %x / base %x / cycle %d\n",
766__FUNCTION__, this->process->pid, this->trdid, process->pid, base, cycle );
767#endif
768
769    // initialize a shared RPC descriptor
770    rpc.rsp       = &responses;
771    rpc.blocking  = false;                  // non blocking behaviour for rpc_send()
772    rpc.index     = RPC_VMM_REMOVE_VSEG;
773    rpc.thread    = this;
774    rpc.lid       = this->core->lid;
775    rpc.args[0]   = this->process->pid;
776    rpc.args[1]   = base;
777
778    // get owner process cluster and local index
779    owner_cxy        = CXY_FROM_PID( pid );
780    owner_lpid       = LPID_FROM_PID( pid );
781
782    // get extended pointer on root and lock of process copies xlist in owner cluster
783    process_root_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_root[owner_lpid] );
784    process_lock_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_lock[owner_lpid] );
785
786    // mask IRQs
787    hal_disable_irq( &save_sr );
788
789    // client thread blocks itself
790    thread_block( XPTR( local_cxy , this ) , THREAD_BLOCKED_RPC );
791
792    // take the lock protecting process copies
793    remote_queuelock_acquire( process_lock_xp );
794
795    // initialize responses counter
796    responses = 0;
797
798    // loop on process copies
799    XLIST_FOREACH( process_root_xp , process_iter_xp )
800    {
801        // get cluster and local pointer on remote process
802        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
803        remote_process_ptr = GET_PTR( remote_process_xp );
804        remote_process_cxy = GET_CXY( remote_process_xp );
805
806        // build extended pointers on remote VSL root and lock
807        vsl_root_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsegs_root );
808        vsl_lock_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsl_lock );
809
810        // get lock on remote VSL
811        remote_queuelock_acquire( vsl_lock_xp );
812
813        // loop on vsegs in remote process VSL
814        XLIST_FOREACH( vsl_root_xp , vsl_iter_xp )
815        {
816            // get pointers on current vseg
817            xptr_t   vseg_xp  = XLIST_ELEMENT( vsl_iter_xp , vseg_t , xlist );
818            vseg_t * vseg_ptr = GET_PTR( vseg_xp );
819
820            // get current vseg base address
821            intptr_t vseg_base = (intptr_t)hal_remote_lpt( XPTR( remote_process_cxy,
822                                                                 &vseg_ptr->min ) );
823
824            if( vseg_base == base )   // found searched vseg
825            {
826                // atomically increment responses counter
827                hal_atomic_add( &responses , 1 );
828
829#if (DEBUG_VMM_GLOBAL_DELETE_VSEG & 1)
830if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
831printk("\n[%s] thread[%x,%x] register RPC request in cluster %x\n",
832__FUNCTION__, this->process->pid, this->trdid, remote_process_cxy );
833#endif
834                // send RPC to remote cluster
835                rpc_send( remote_process_cxy , &rpc );
836
837                // exit loop on vsegs
838                break;
839            }
840        }  // end of loop on vsegs
841
842        // release lock on remote VSL
843        remote_queuelock_release( vsl_lock_xp );
844
845    }  // end of loop on process copies
846
847    // release the lock protecting process copies
848    remote_queuelock_release( process_lock_xp );
849
850#if (DEBUG_VMM_GLOBAL_DELETE_VSEG & 1)
851if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
852printk("\n[%s] thread[%x,%x] deschedule / process %x / base %x\n",
853__FUNCTION__, this->process->pid, this->trdid, process->pid, base );
854#endif
855
856    // client thread deschedule
857    sched_yield("blocked on rpc_vmm_delete_vseg");
858 
859    // restore IRQs
860    hal_restore_irq( save_sr );
861
862#if DEBUG_VMM_GLOBAL_DELETE_VSEG
863cycle = (uint32_t)hal_get_cycles();
864if( DEBUG_VMM_GLOBAL_DELETE_VSEG < cycle )
865printk("\n[%s] thread[%x,%x] exit / process %x / base %x / cycle %d\n",
866__FUNCTION__, this->process->pid, this->trdid, process->pid, base, cycle );
867#endif
868
869}  // end vmm_global_delete_vseg()
870
871////////////////////////////////////////////////
872void vmm_global_resize_vseg( process_t * process,
873                             intptr_t    base,
874                             intptr_t    new_base,
875                             intptr_t    new_size )
876{
877    cxy_t           owner_cxy;
878    lpid_t          owner_lpid;
879    reg_t           save_sr;
880
881    xptr_t          process_lock_xp;
882    xptr_t          process_root_xp;
883    xptr_t          process_iter_xp;
884
885    xptr_t          remote_process_xp;
886    cxy_t           remote_process_cxy;
887    process_t     * remote_process_ptr;
888
889    xptr_t          vsl_root_xp;
890    xptr_t          vsl_lock_xp;
891    xptr_t          vsl_iter_xp;
892
893    rpc_desc_t      rpc;                  // shared rpc descriptor for parallel RPCs
894    uint32_t        responses;            // RPC responses counter
895
896    thread_t      * this    = CURRENT_THREAD; 
897    pid_t           pid     = process->pid;
898    cluster_t     * cluster = LOCAL_CLUSTER;
899
900#if DEBUG_VMM_GLOBAL_RESIZE_VSEG
901uint32_t cycle = (uint32_t)hal_get_cycles();
902#endif
903
904#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
905if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
906printk("\n[%s] thread[%x,%x] : process %x / base %x / new_base %x / new_size %x / cycle %d\n",
907__FUNCTION__, this->process->pid, this->trdid, process->pid, base, new_base, new_size, cycle );
908#endif
909
910    // initialize a shared RPC descriptor
911    rpc.rsp       = &responses;
912    rpc.blocking  = false;                  // non blocking behaviour for rpc_send()
913    rpc.index     = RPC_VMM_REMOVE_VSEG;
914    rpc.thread    = this;
915    rpc.lid       = this->core->lid;
916    rpc.args[0]   = this->process->pid;
917    rpc.args[1]   = base;
918    rpc.args[2]   = new_base;
919    rpc.args[3]   = new_size;
920
921    // get owner process cluster and local index
922    owner_cxy        = CXY_FROM_PID( pid );
923    owner_lpid       = LPID_FROM_PID( pid );
924
925    // get extended pointer on root and lock of process copies xlist in owner cluster
926    process_root_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_root[owner_lpid] );
927    process_lock_xp  = XPTR( owner_cxy , &cluster->pmgr.copies_lock[owner_lpid] );
928
929    // mask IRQs
930    hal_disable_irq( &save_sr );
931
932    // client thread blocks itself
933    thread_block( XPTR( local_cxy , this ) , THREAD_BLOCKED_RPC );
934
935    // take the lock protecting process copies
936    remote_queuelock_acquire( process_lock_xp );
937
938    // initialize responses counter
939    responses = 0;
940
941    // loop on process copies
942    XLIST_FOREACH( process_root_xp , process_iter_xp )
943    {
944        // get cluster and local pointer on remote process
945        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
946        remote_process_ptr = GET_PTR( remote_process_xp );
947        remote_process_cxy = GET_CXY( remote_process_xp );
948
949        // build extended pointers on remote VSL root and lock
950        vsl_root_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsegs_root );
951        vsl_lock_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.vsl_lock );
952
953        // get lock on remote VSL
954        remote_queuelock_acquire( vsl_lock_xp );
955
956        // loop on vsegs in remote process VSL
957        XLIST_FOREACH( vsl_root_xp , vsl_iter_xp )
958        {
959            // get pointers on current vseg
960            xptr_t   vseg_xp  = XLIST_ELEMENT( vsl_iter_xp , vseg_t , xlist );
961            vseg_t * vseg_ptr = GET_PTR( vseg_xp );
962
963            // get current vseg base address
964            intptr_t vseg_base = (intptr_t)hal_remote_lpt( XPTR( remote_process_cxy,
965                                                                 &vseg_ptr->min ) );
966
967            if( vseg_base == base )   // found searched vseg
968            {
969                // atomically increment responses counter
970                hal_atomic_add( &responses , 1 );
971
972#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
973if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
974printk("\n[%s] thread[%x,%x] register RPC request in cluster %x\n",
975__FUNCTION__, this->process->pid, this->trdid, remote_process_cxy );
976#endif
977                // send RPC to remote cluster
978                rpc_send( remote_process_cxy , & rpc );
979
980                // exit loop on vsegs
981                break;
982            }
983
984        }  // end of loop on vsegs
985
986#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
987if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
988hal_vmm_display( remote_process_xp , false );
989#endif
990
991        // release lock on remote VSL
992        remote_queuelock_release( vsl_lock_xp );
993
994    }  // end of loop on process copies
995
996    // release the lock protecting process copies
997    remote_queuelock_release( process_lock_xp );
998
999#if (DEBUG_VMM_GLOBAL_RESIZE_VSEG & 1)
1000if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
1001printk("\n[%s] thread[%x,%x] deschedule / process %x / base %x\n",
1002__FUNCTION__, this->process->pid, this->trdid, process->pid, base );
1003#endif
1004
1005    // client thread deschedule
1006    sched_yield("blocked on rpc_vmm_delete_vseg");
1007
1008    // restore IRQs
1009    hal_restore_irq( save_sr );
1010
1011#if DEBUG_VMM_GLOBAL_RESIZE_VSEG
1012cycle = (uint32_t)hal_get_cycles();
1013if( DEBUG_VMM_GLOBAL_RESIZE_VSEG < cycle )
1014printk("\n[%s] thread[%x,%x] exit for process %x / base %x / cycle %d\n",
1015__FUNCTION__, this->process->pid, this->trdid, process->pid , base, cycle );
1016#endif
1017
1018}  // end vmm_global_resize_vseg()
1019
1020////////////////////////////////////////////////
1021void vmm_global_update_pte( process_t * process,
1022                            vpn_t       vpn,
1023                            uint32_t    attr,
1024                            ppn_t       ppn )
1025{
1026    pid_t           pid;
1027    cxy_t           owner_cxy;
1028    lpid_t          owner_lpid;
1029
1030    xlist_entry_t * process_root_ptr;
1031    xptr_t          process_root_xp;
1032    xptr_t          process_iter_xp;
1033
1034    xptr_t          remote_process_xp;
1035    cxy_t           remote_process_cxy;
1036    process_t     * remote_process_ptr;
1037    xptr_t          remote_gpt_xp;
1038
1039#if DEBUG_VMM_GLOBAL_UPDATE_PTE
1040uint32_t cycle = (uint32_t)hal_get_cycles();
1041thread_t * this = CURRENT_THREAD;
1042#endif
1043
1044
1045#if (DEBUG_VMM_GLOBAL_UPDATE_PTE & 1)
1046if( DEBUG_VMM_GLOBAL_UPDATE_PTE < cycle )
1047printk("\n[%s] thread[%x,%x] enter for process %x / vpn %x / attr %x / ppn %x / ycle %d\n",
1048__FUNCTION__, this->process->pid, this->trdid, process->pid, vpn, attr, ppn, cycle );
1049#endif
1050
1051    // get owner process cluster and local index
1052    pid              = process->pid;
1053    owner_cxy        = CXY_FROM_PID( pid );
1054    owner_lpid       = LPID_FROM_PID( pid );
1055
1056    // get extended pointer on root of process copies xlist in owner cluster
1057    process_root_ptr = &LOCAL_CLUSTER->pmgr.copies_root[owner_lpid];
1058    process_root_xp  = XPTR( owner_cxy , process_root_ptr );
1059
1060    // loop on process copies
1061    XLIST_FOREACH( process_root_xp , process_iter_xp )
1062    {
1063        // get cluster and local pointer on remote process
1064        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
1065        remote_process_ptr = GET_PTR( remote_process_xp );
1066        remote_process_cxy = GET_CXY( remote_process_xp );
1067
1068#if (DEBUG_VMM_GLOBAL_UPDATE_PTE & 1)
1069if( DEBUG_VMM_GLOBAL_UPDATE_PTE < cycle )
1070printk("\n[%s] thread[%x,%x] handling vpn %x for process %x in cluster %x\n",
1071__FUNCTION__, this->process->pid, this->trdid, vpn, process->pid, remote_process_cxy );
1072#endif
1073
1074        // get extended pointer on remote gpt
1075        remote_gpt_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.gpt );
1076
1077        // update remote GPT
1078        hal_gpt_update_pte( remote_gpt_xp, vpn, attr, ppn );
1079    } 
1080
1081#if DEBUG_VMM_GLOBAL_UPDATE_PTE
1082cycle = (uint32_t)hal_get_cycles();
1083if( DEBUG_VMM_GLOBAL_UPDATE_PTE < cycle )
1084printk("\n[%s] thread[%x,%x] exit for process %x / vpn %x / cycle %d\n",
1085__FUNCTION__, this->process->pid, this->trdid, process->pid , vpn , cycle );
1086#endif
1087
1088#if (DEBUG_VMM_GLOBAL_UPDATE_PTE & 1)
1089hal_vmm_display( process , true );
1090#endif
1091
1092}  // end vmm_global_update_pte()
1093
1094///////////////////////////////////////
1095void vmm_set_cow( process_t * process )
1096{
1097    vmm_t         * vmm;
1098
1099    xlist_entry_t * process_root_ptr;
1100    xptr_t          process_root_xp;
1101    xptr_t          process_iter_xp;
1102
1103    xptr_t          remote_process_xp;
1104    cxy_t           remote_process_cxy;
1105    process_t     * remote_process_ptr;
1106    xptr_t          remote_gpt_xp;
1107
1108    xptr_t          vseg_root_xp;
1109    xptr_t          vseg_iter_xp;
1110
1111    xptr_t          vseg_xp;
1112    vseg_t        * vseg;
1113
1114    pid_t           pid;
1115    cxy_t           owner_cxy;
1116    lpid_t          owner_lpid;
1117
1118    // get target process PID
1119    pid = process->pid;
1120
1121#if DEBUG_VMM_SET_COW
1122uint32_t   cycle = (uint32_t)hal_get_cycles();
1123thread_t * this  = CURRENT_THREAD;
1124if( DEBUG_VMM_SET_COW < cycle )
1125printk("\n[%s] thread[%x,%x] enter for process %x / cycle %d\n",
1126__FUNCTION__, this->process->pid, this->trdid, pid , cycle );
1127#endif
1128
1129#if (DEBUG_VMM_SET_COW & 1)
1130if( DEBUG_VMM_SET_COW < cycle )
1131hal_vmm_display( process , true );
1132#endif
1133
1134// check cluster is reference
1135assert( (XPTR( local_cxy , process ) == process->ref_xp),
1136"local cluster must be process reference cluster\n");
1137
1138    // get pointer on reference VMM
1139    vmm = &process->vmm;
1140
1141    // get extended pointer on root of process copies xlist in owner cluster
1142    owner_cxy        = CXY_FROM_PID( pid );
1143    owner_lpid       = LPID_FROM_PID( pid );
1144    process_root_ptr = &LOCAL_CLUSTER->pmgr.copies_root[owner_lpid];
1145    process_root_xp  = XPTR( owner_cxy , process_root_ptr );
1146
1147    // get extended pointer on root of vsegs xlist from reference VMM
1148    vseg_root_xp  = XPTR( local_cxy , &vmm->vsegs_root ); 
1149
1150    // loop on target process copies
1151    XLIST_FOREACH( process_root_xp , process_iter_xp )
1152    {
1153        // get cluster and local pointer on remote process copy
1154        remote_process_xp  = XLIST_ELEMENT( process_iter_xp , process_t , copies_list );
1155        remote_process_ptr = GET_PTR( remote_process_xp );
1156        remote_process_cxy = GET_CXY( remote_process_xp );
1157
1158#if (DEBUG_VMM_SET_COW & 1)
1159if( DEBUG_VMM_SET_COW < cycle )
1160printk("\n[%s] thread[%x,%x] (%x) handles process %x in cluster %x\n",
1161__FUNCTION__, this->process->pid, this->trdid, this, pid, remote_process_cxy );
1162#endif
1163
1164        // get extended pointer on remote gpt
1165        remote_gpt_xp = XPTR( remote_process_cxy , &remote_process_ptr->vmm.gpt );
1166
1167        // loop on vsegs in (local) reference process VSL
1168        XLIST_FOREACH( vseg_root_xp , vseg_iter_xp )
1169        {
1170            // get pointer on vseg
1171            vseg_xp  = XLIST_ELEMENT( vseg_iter_xp , vseg_t , xlist );
1172            vseg     = GET_PTR( vseg_xp );
1173
1174            // get vseg type, base and size
1175            uint32_t type     = vseg->type;
1176            vpn_t    vpn_base = vseg->vpn_base;
1177            vpn_t    vpn_size = vseg->vpn_size;
1178
1179#if (DEBUG_VMM_SET_COW & 1)
1180if( DEBUG_VMM_SET_COW < cycle )
1181printk("\n[%s] thread[%x,%x] found vseg %s / vpn_base = %x / vpn_size = %x\n",
1182__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(type), vpn_base, vpn_size );
1183#endif
1184            // only DATA, ANON and REMOTE vsegs
1185            if( (type == VSEG_TYPE_DATA)  ||
1186                (type == VSEG_TYPE_ANON)  ||
1187                (type == VSEG_TYPE_REMOTE) )
1188            {
1189                vpn_t      vpn;
1190                uint32_t   attr;
1191                ppn_t      ppn;
1192                xptr_t     page_xp;
1193                cxy_t      page_cxy;
1194                page_t   * page_ptr;
1195                xptr_t     forks_xp;
1196                xptr_t     lock_xp;
1197
1198                // update flags in remote GPT
1199                hal_gpt_set_cow( remote_gpt_xp,
1200                                 vpn_base,
1201                                 vpn_size ); 
1202
1203                // atomically increment pending forks counter in physical pages,
1204                // this is only done once, when handling the reference copy
1205                if( remote_process_cxy == local_cxy )
1206                {
1207
1208#if (DEBUG_VMM_SET_COW & 1)
1209if( DEBUG_VMM_SET_COW < cycle )
1210printk("\n[%s] thread[%x,%x] handles vseg %s / vpn_base = %x / vpn_size = %x\n",
1211__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(type), vpn_base, vpn_size );
1212#endif
1213                    // scan all pages in vseg
1214                    for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
1215                    {
1216                        // get page attributes and PPN from reference GPT
1217                        hal_gpt_get_pte( remote_gpt_xp , vpn , &attr , &ppn ); 
1218
1219                        // atomically update pending forks counter if page is mapped
1220                        if( attr & GPT_MAPPED )
1221                        {
1222                            // get pointers and cluster on page descriptor
1223                            page_xp  = ppm_ppn2page( ppn );
1224                            page_cxy = GET_CXY( page_xp );
1225                            page_ptr = GET_PTR( page_xp );
1226
1227                            // get extended pointers on "forks" and "lock"
1228                            forks_xp = XPTR( page_cxy , &page_ptr->forks );
1229                            lock_xp  = XPTR( page_cxy , &page_ptr->lock );
1230
1231                            // take lock protecting "forks" counter
1232                            remote_busylock_acquire( lock_xp );
1233
1234                            // increment "forks"
1235                            hal_remote_atomic_add( forks_xp , 1 );
1236
1237                            // release lock protecting "forks" counter
1238                            remote_busylock_release( lock_xp );
1239                        }
1240                    }   // end loop on vpn
1241
1242#if (DEBUG_VMM_SET_COW & 1)
1243if( DEBUG_VMM_SET_COW < cycle )
1244printk("\n[%s] thread[%x,%x] completes vseg %s / vpn_base = %x / vpn_size = %x\n",
1245__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(type), vpn_base, vpn_size );
1246#endif
1247                }   // end if local
1248            }   // end if vseg type
1249        }   // end loop on vsegs
1250    }   // end loop on process copies
1251 
1252#if DEBUG_VMM_SET_COW
1253cycle = (uint32_t)hal_get_cycles();
1254if( DEBUG_VMM_SET_COW < cycle )
1255printk("\n[%s] thread[%x,%x] exit for process %x / cycle %d\n",
1256__FUNCTION__, this->process->pid, this->trdid, process->pid , cycle );
1257#endif
1258
1259}  // end vmm_set-cow()
1260
1261/////////////////////////////////////////////////
1262error_t vmm_fork_copy( process_t * child_process,
1263                       xptr_t      parent_process_xp )
1264{
1265    error_t     error;
1266    cxy_t       parent_cxy;
1267    process_t * parent_process;
1268    vmm_t     * parent_vmm;
1269    xptr_t      parent_lock_xp;
1270    vmm_t     * child_vmm;
1271    xptr_t      iter_xp;
1272    xptr_t      parent_vseg_xp;
1273    vseg_t    * parent_vseg;
1274    vseg_t    * child_vseg;
1275    uint32_t    type;
1276    vpn_t       vpn;           
1277    vpn_t       vpn_base;
1278    vpn_t       vpn_size;
1279    xptr_t      parent_root_xp;
1280    bool_t      mapped; 
1281    ppn_t       ppn;
1282
1283#if DEBUG_VMM_FORK_COPY
1284uint32_t cycle = (uint32_t)hal_get_cycles();
1285thread_t * this = CURRENT_THREAD;
1286if( DEBUG_VMM_FORK_COPY < cycle )
1287printk("\n[%s] thread %x enter / cycle %d\n",
1288__FUNCTION__ , this->process->pid, this->trdid, cycle );
1289#endif
1290
1291    // get parent process cluster and local pointer
1292    parent_cxy     = GET_CXY( parent_process_xp );
1293    parent_process = GET_PTR( parent_process_xp );
1294
1295    // get local pointers on parent and child VMM
1296    parent_vmm = &parent_process->vmm; 
1297    child_vmm  = &child_process->vmm;
1298
1299    // build extended pointer on parent VSL root and lock
1300    parent_root_xp = XPTR( parent_cxy , &parent_vmm->vsegs_root );
1301    parent_lock_xp = XPTR( parent_cxy , &parent_vmm->vsl_lock );
1302
1303    // take the lock protecting the parent VSL
1304    remote_queuelock_acquire( parent_lock_xp );
1305
1306    // loop on parent VSL xlist
1307    XLIST_FOREACH( parent_root_xp , iter_xp )
1308    {
1309        // get pointers on current parent vseg
1310        parent_vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
1311        parent_vseg    = GET_PTR( parent_vseg_xp );
1312
1313        // get vseg type
1314        type = hal_remote_l32( XPTR( parent_cxy , &parent_vseg->type ) );
1315       
1316#if DEBUG_VMM_FORK_COPY
1317cycle = (uint32_t)hal_get_cycles();
1318if( DEBUG_VMM_FORK_COPY < cycle )
1319printk("\n[%s] thread[%x,%x] found parent vseg %s / vpn_base = %x / cycle %d\n",
1320__FUNCTION__ , this->process->pid, this->trdid, vseg_type_str(type),
1321hal_remote_l32( XPTR( parent_cxy , &parent_vseg->vpn_base ) ) , cycle );
1322#endif
1323
1324        // all parent vsegs - but STACK and kernel vsegs - must be copied in child VSL
1325        if( (type != VSEG_TYPE_STACK) && (type != VSEG_TYPE_KCODE) &&
1326            (type != VSEG_TYPE_KDATA) && (type != VSEG_TYPE_KDEV) )
1327        {
1328            // allocate memory for a new child vseg
1329            child_vseg = vseg_alloc();
1330            if( child_vseg == NULL )   // release all allocated vsegs
1331            {
1332                vmm_destroy( child_process );
1333                printk("\n[ERROR] in %s : cannot create vseg for child\n", __FUNCTION__ );
1334                return -1;
1335            }
1336
1337            // copy parent vseg to child vseg
1338            vseg_init_from_ref( child_vseg , parent_vseg_xp );
1339
1340            // build extended pointer on child VSL lock
1341            xptr_t child_lock_xp = XPTR( local_cxy , &child_vmm->vsl_lock );
1342 
1343            // take the child VSL lock
1344            remote_queuelock_acquire( child_lock_xp );
1345
1346            // register child vseg in child VSL
1347            vmm_attach_vseg_to_vsl( child_vmm , child_vseg );
1348
1349            // release the child VSL lock
1350            remote_queuelock_release( child_lock_xp );
1351
1352#if DEBUG_VMM_FORK_COPY
1353cycle = (uint32_t)hal_get_cycles();
1354if( DEBUG_VMM_FORK_COPY < cycle )
1355printk("\n[%s] thread[%x,%x] copied vseg %s / vpn_base = %x to child VSL / cycle %d\n",
1356__FUNCTION__ , this->process->pid, this->trdid, vseg_type_str(type),
1357hal_remote_l32( XPTR( parent_cxy , &parent_vseg->vpn_base ) ) , cycle );
1358#endif
1359            // copy DATA, ANON, REMOTE, FILE parent GPT entries to child GPT
1360            if( type != VSEG_TYPE_CODE )
1361            {
1362                // activate the COW for DATA, ANON, REMOTE vsegs only
1363                // cow = ( type != VSEG_TYPE_FILE );
1364
1365                vpn_base = child_vseg->vpn_base;
1366                vpn_size = child_vseg->vpn_size;
1367
1368                // scan pages in parent vseg
1369                for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
1370                {
1371                    error = hal_gpt_pte_copy( &child_vmm->gpt,
1372                                              vpn,
1373                                              XPTR( parent_cxy , &parent_vmm->gpt ),
1374                                              vpn,
1375                                              false,      // does not handle COW flag
1376                                              &ppn,       // unused
1377                                              &mapped );  // unused
1378                    if( error )
1379                    {
1380                        vmm_destroy( child_process );
1381                        printk("\n[ERROR] in %s : cannot copy GPT\n", __FUNCTION__ );
1382                        return -1;
1383                    }
1384
1385#if DEBUG_VMM_FORK_COPY
1386cycle = (uint32_t)hal_get_cycles();
1387if( DEBUG_VMM_FORK_COPY < cycle )
1388printk("\n[%s] thread[%x,%x] copied vpn %x to child GPT / cycle %d\n",
1389__FUNCTION__ , this->process->pid, this->trdid , vpn , cycle );
1390#endif
1391                }
1392            }   // end if no code & no stack
1393        }   // end if no stack
1394    }   // end loop on vsegs
1395
1396    // release the parent VSL lock in read mode
1397    remote_queuelock_release( parent_lock_xp );
1398
1399/* deprecated [AG] : this is already done by the vmm_user_init() funcfion
1400
1401    // initialize the child VMM STACK allocator
1402    vmm_stack_init( child_vmm );
1403
1404    // initialize the child VMM MMAP allocator
1405    vmm_mmap_init( child_vmm );
1406
1407    // initialize instrumentation counters
1408        child_vmm->false_pgfault_nr    = 0;
1409        child_vmm->local_pgfault_nr    = 0;
1410        child_vmm->global_pgfault_nr   = 0;
1411        child_vmm->false_pgfault_cost  = 0;
1412        child_vmm->local_pgfault_cost  = 0;
1413        child_vmm->global_pgfault_cost = 0;
1414*/
1415    // copy base addresses from parent VMM to child VMM
1416    child_vmm->args_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->args_vpn_base));
1417    child_vmm->envs_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->envs_vpn_base));
1418    child_vmm->heap_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->heap_vpn_base));
1419    child_vmm->code_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->code_vpn_base));
1420    child_vmm->data_vpn_base = (vpn_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->data_vpn_base));
1421
1422    child_vmm->entry_point = (intptr_t)hal_remote_lpt(XPTR(parent_cxy, &parent_vmm->entry_point));
1423
1424    hal_fence();
1425
1426#if DEBUG_VMM_FORK_COPY
1427cycle = (uint32_t)hal_get_cycles();
1428if( DEBUG_VMM_FORK_COPY < cycle )
1429printk("\n[%s] thread[%x,%x] exit successfully / cycle %d\n",
1430__FUNCTION__ , this->process->pid, this->trdid , cycle );
1431#endif
1432
1433    return 0;
1434
1435}  // vmm_fork_copy()
1436
1437///////////////////////////////////////
1438void vmm_destroy( process_t * process )
1439{
1440    xptr_t   vseg_xp;
1441        vseg_t * vseg;
1442
1443#if DEBUG_VMM_DESTROY
1444uint32_t   cycle = (uint32_t)hal_get_cycles();
1445thread_t * this  = CURRENT_THREAD;
1446if( DEBUG_VMM_DESTROY < cycle )
1447printk("\n[%s] thread[%x,%x] enter for process %x in cluster %x / cycle %d\n",
1448__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy, cycle );
1449#endif
1450
1451#if (DEBUG_VMM_DESTROY & 1 )
1452if( DEBUG_VMM_DESTROY < cycle )
1453hal_vmm_display( XPTR( local_cxy, process ) , true );
1454#endif
1455
1456    // get pointer on local VMM
1457    vmm_t  * vmm = &process->vmm;
1458
1459    // build extended pointer on VSL root, VSL lock and GPT lock
1460    xptr_t   vsl_root_xp = XPTR( local_cxy , &vmm->vsegs_root );
1461    xptr_t   vsl_lock_xp = XPTR( local_cxy , &vmm->vsl_lock );
1462
1463    // take the VSL lock
1464    remote_queuelock_acquire( vsl_lock_xp );
1465
1466    // scan the VSL to delete all registered vsegs
1467    // (we don't use a FOREACH in case of item deletion)
1468    xptr_t  iter_xp;
1469    xptr_t  next_xp;
1470        for( iter_xp = hal_remote_l64( vsl_root_xp ) ; 
1471         iter_xp != vsl_root_xp ;
1472         iter_xp = next_xp )
1473        {
1474        // save extended pointer on next item in xlist
1475        next_xp = hal_remote_l64( iter_xp );
1476
1477        // get pointers on current vseg in VSL
1478        vseg_xp   = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
1479        vseg      = GET_PTR( vseg_xp );
1480
1481        // delete vseg and release physical pages
1482        vmm_remove_vseg( process , vseg );
1483
1484#if( DEBUG_VMM_DESTROY & 1 )
1485if( DEBUG_VMM_DESTROY < cycle )
1486printk("\n[%s] %s vseg deleted / vpn_base %x / vpn_size %d\n",
1487__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
1488#endif
1489
1490        }
1491
1492    // release the VSL lock
1493    remote_queuelock_release( vsl_lock_xp );
1494
1495    // remove all registered MMAP vsegs from free_lists in MMAP allocator
1496    uint32_t i;
1497    for( i = 0 ; i <= CONFIG_VMM_HEAP_MAX_ORDER ; i++ )
1498    {
1499        // build extended pointer on free list root
1500        xptr_t root_xp = XPTR( local_cxy , &vmm->mmap_mgr.free_list_root[i] );
1501 
1502        // scan zombi_list[i]
1503            while( !xlist_is_empty( root_xp ) )
1504            {
1505                    vseg_xp = XLIST_FIRST( root_xp , vseg_t , xlist );
1506            vseg    = GET_PTR( vseg_xp );
1507
1508#if( DEBUG_VMM_DESTROY & 1 )
1509if( DEBUG_VMM_DESTROY < cycle )
1510printk("\n[%s] found zombi vseg / vpn_base %x / vpn_size %d\n",
1511__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
1512#endif
1513            // clean vseg descriptor
1514            vseg->vmm = NULL;
1515
1516            // remove vseg from  zombi_list
1517            xlist_unlink( XPTR( local_cxy , &vseg->xlist ) );
1518
1519                    // release vseg descriptor
1520            vseg_free( vseg );
1521
1522#if( DEBUG_VMM_DESTROY & 1 )
1523if( DEBUG_VMM_DESTROY < cycle )
1524printk("\n[%s] zombi vseg released / vpn_base %x / vpn_size %d\n",
1525__FUNCTION__ , vseg_type_str( vseg->type ), vseg->vpn_base, vseg->vpn_size );
1526#endif
1527            }
1528    }
1529
1530    // release memory allocated to the GPT itself
1531    hal_gpt_destroy( &vmm->gpt );
1532
1533#if DEBUG_VMM_DESTROY
1534cycle = (uint32_t)hal_get_cycles();
1535if( DEBUG_VMM_DESTROY < cycle )
1536printk("\n[%s] thread[%x,%x] exit for process %x in cluster %x / cycle %d\n",
1537__FUNCTION__, this->process->pid, this->trdid, process->pid, local_cxy , cycle );
1538#endif
1539
1540}  // end vmm_destroy()
1541
1542/////////////////////////////////////////////////
1543vseg_t * vmm_check_conflict( process_t * process,
1544                             vpn_t       vpn_base,
1545                             vpn_t       vpn_size )
1546{
1547    vmm_t        * vmm = &process->vmm;
1548
1549    // scan the VSL
1550        vseg_t       * vseg;
1551    xptr_t         iter_xp;
1552    xptr_t         vseg_xp;
1553    xptr_t         root_xp = XPTR( local_cxy , &vmm->vsegs_root );
1554
1555        XLIST_FOREACH( root_xp , iter_xp )
1556        {
1557                vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
1558        vseg    = GET_PTR( vseg_xp );
1559
1560                if( ((vpn_base + vpn_size) > vseg->vpn_base) &&
1561             (vpn_base < (vseg->vpn_base + vseg->vpn_size)) ) return vseg;
1562        }
1563    return NULL;
1564
1565}  // end vmm_check_conflict()
1566
1567////////////////////////////////////////////////
1568vseg_t * vmm_create_vseg( process_t   * process,
1569                              vseg_type_t   type,
1570                          intptr_t      base,         // ltid for VSEG_TYPE_STACK
1571                              uint32_t      size,
1572                          uint32_t      file_offset,
1573                          uint32_t      file_size,
1574                          xptr_t        mapper_xp,
1575                          cxy_t         cxy )
1576{
1577    vseg_t     * vseg;          // pointer on allocated vseg descriptor
1578
1579#if DEBUG_VMM_CREATE_VSEG
1580thread_t * this  = CURRENT_THREAD;
1581uint32_t   cycle;
1582#endif
1583
1584#if (DEBUG_VMM_CREATE_VSEG & 1)
1585cycle = (uint32_t)hal_get_cycles();
1586if( DEBUG_VMM_CREATE_VSEG < cycle )
1587printk("\n[%s] thread[%x,%x] enter / process %x / %s / base %x / cxy %x / cycle %d\n",
1588__FUNCTION__, this->process->pid, this->trdid,
1589process->pid, vseg_type_str(type), base, cxy, cycle );
1590#endif
1591
1592    // get pointer on VMM
1593        vmm_t * vmm    = &process->vmm;
1594
1595    // allocate a vseg descriptor and initialize it, depending on type
1596    // we use specific allocators for "stack" and "mmap" types
1597
1598    /////////////////////////////
1599    if( type == VSEG_TYPE_STACK )
1600    {
1601        // get vseg from STACK allocator
1602        vseg = vmm_stack_alloc( vmm , base );    // base == ltid
1603       
1604        if( vseg == NULL )
1605        {
1606            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1607            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1608            return NULL;
1609        }
1610
1611        // initialize vseg
1612        vseg->type = type;
1613        vseg->vmm  = vmm;
1614        vseg->min  = vseg->vpn_base << CONFIG_PPM_PAGE_SHIFT;
1615        vseg->max  = vseg->min + (vseg->vpn_size << CONFIG_PPM_PAGE_SHIFT);
1616        vseg->cxy  = cxy;
1617
1618        vseg_init_flags( vseg , type );
1619    }
1620    /////////////////////////////////
1621    else if( type == VSEG_TYPE_FILE )
1622    {
1623        // compute page index (in mapper) for first and last byte
1624        vpn_t    vpn_min    = file_offset >> CONFIG_PPM_PAGE_SHIFT;
1625        vpn_t    vpn_max    = (file_offset + size - 1) >> CONFIG_PPM_PAGE_SHIFT;
1626
1627        // compute offset in first page and number of pages
1628        uint32_t offset = file_offset & CONFIG_PPM_PAGE_MASK;
1629        vpn_t    npages      = vpn_max - vpn_min + 1;
1630
1631        // get vseg from MMAP allocator
1632        vseg = vmm_mmap_alloc( vmm , npages );
1633
1634        if( vseg == NULL )
1635        {
1636            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1637            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1638            return NULL;
1639        }
1640
1641        // initialize vseg
1642        vseg->type        = type;
1643        vseg->vmm         = vmm;
1644        vseg->min         = (vseg->vpn_base << CONFIG_PPM_PAGE_SHIFT) + offset; 
1645        vseg->max         = vseg->min + size;
1646        vseg->file_offset = file_offset;
1647        vseg->file_size   = file_size;
1648        vseg->mapper_xp   = mapper_xp;
1649        vseg->cxy         = cxy;
1650
1651        vseg_init_flags( vseg , type );
1652    }
1653    /////////////////////////////////////////////////////////////////
1654    else if( (type == VSEG_TYPE_ANON) || (type == VSEG_TYPE_REMOTE) )
1655    {
1656        // compute number of required pages in virtual space
1657        vpn_t npages = size >> CONFIG_PPM_PAGE_SHIFT;
1658        if( size & CONFIG_PPM_PAGE_MASK) npages++;
1659       
1660        // allocate vseg from MMAP allocator
1661        vseg = vmm_mmap_alloc( vmm , npages );
1662
1663        if( vseg == NULL )
1664        {
1665            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1666            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1667            return NULL;
1668        }
1669
1670        // initialize vseg
1671        vseg->type = type;
1672        vseg->vmm  = vmm;
1673        vseg->min  = vseg->vpn_base << CONFIG_PPM_PAGE_SHIFT;
1674        vseg->max  = vseg->min + (vseg->vpn_size << CONFIG_PPM_PAGE_SHIFT);
1675        vseg->cxy  = cxy;
1676
1677        vseg_init_flags( vseg , type );
1678    }
1679    /////////////////////////////////////////////////////////////////
1680    else    // VSEG_TYPE_DATA, VSEG_TYPE_CODE or KERNEL vseg
1681    {
1682        uint32_t vpn_min = base >> CONFIG_PPM_PAGE_SHIFT;
1683        uint32_t vpn_max = (base + size - 1) >> CONFIG_PPM_PAGE_SHIFT;
1684
1685        // allocate vseg descriptor
1686            vseg = vseg_alloc();
1687
1688            if( vseg == NULL )
1689            {
1690            printk("\n[ERROR] %s cannot create %s vseg for process %x in cluster %x\n",
1691            __FUNCTION__ , vseg_type_str( type ) , process->pid , local_cxy );
1692            return NULL;
1693            }
1694        // initialize vseg
1695        vseg->type        = type;
1696        vseg->vmm         = vmm;
1697        vseg->min         = base;
1698        vseg->max         = base + size;
1699        vseg->vpn_base    = base >> CONFIG_PPM_PAGE_SHIFT;
1700        vseg->vpn_size    = vpn_max - vpn_min + 1;
1701        vseg->file_offset = file_offset;
1702        vseg->file_size   = file_size;
1703        vseg->mapper_xp   = mapper_xp;
1704        vseg->cxy         = cxy;
1705
1706        vseg_init_flags( vseg , type );
1707    }
1708
1709    // check collisions
1710    vseg_t * existing_vseg = vmm_check_conflict( process , vseg->vpn_base , vseg->vpn_size );
1711
1712    if( existing_vseg != NULL )
1713    {
1714        printk("\n[ERROR] in %s for process %x : new vseg %s [vpn_base %x / vpn_size %x]\n"
1715               "        overlap existing vseg %s [vpn_base %x / vpn_size %x]\n",
1716        __FUNCTION__ , process->pid, vseg_type_str(vseg->type), vseg->vpn_base, vseg->vpn_size, 
1717        vseg_type_str(existing_vseg->type), existing_vseg->vpn_base, existing_vseg->vpn_size );
1718        vseg_free( vseg );
1719        return NULL;
1720    }
1721
1722    // build extended pointer on VSL lock
1723    xptr_t lock_xp = XPTR( local_cxy , &vmm->vsl_lock );
1724 
1725    // take the VSL lock in write mode
1726    remote_queuelock_acquire( lock_xp );
1727
1728    // attach vseg to VSL
1729        vmm_attach_vseg_to_vsl( vmm , vseg );
1730
1731    // release the VSL lock
1732    remote_queuelock_release( lock_xp );
1733
1734#if DEBUG_VMM_CREATE_VSEG
1735cycle = (uint32_t)hal_get_cycles();
1736if( DEBUG_VMM_CREATE_VSEG < cycle )
1737printk("\n[%s] thread[%x,%x] exit / %s / vpn_base %x / vpn_size %x / cycle %d\n",
1738__FUNCTION__, this->process->pid, this->trdid,
1739vseg_type_str(type), vseg->vpn_base, vseg->vpn_size, cycle );
1740#endif
1741
1742        return vseg;
1743
1744}  // vmm_create_vseg()
1745
1746////////////////////////////////////////////////////////////////////////////////////////////
1747// This static function is called by the vmm_remove_vseg() and vmm_resize_vseg() functions
1748// to update the physical page descriptor identified by the <ppn> argument.
1749// It decrements the refcount, set the dirty bit when required, and releases the physical
1750// page to kmem depending on the vseg type.
1751// - KERNEL : refcount decremented / not released to kmem    / dirty bit not set
1752// - FILE   : refcount decremented / not released to kmem    / dirty bit set when required.
1753// - CODE   : refcount decremented / released to kmem        / dirty bit not set.
1754// - STAK   : refcount decremented / released to kmem        / dirty bit not set.
1755// - DATA   : refcount decremented / released to kmem if ref / dirty bit not set.
1756// - MMAP   : refcount decremented / released to kmem if ref / dirty bit not set.
1757////////////////////////////////////////////////////////////////////////////////////////////
1758// @ process  : local pointer on process.
1759// @ vseg     : local pointer on vseg.
1760// @ ppn      : released pysical page index.
1761// @ dirty    : set the dirty bit in page descriptor when non zero.
1762////////////////////////////////////////////////////////////////////////////////////////////
1763static void vmm_ppn_release( process_t * process,
1764                             vseg_t    * vseg,
1765                             ppn_t       ppn,
1766                             uint32_t    dirty )
1767{
1768    bool_t do_kmem_release;
1769
1770    // get vseg type
1771    vseg_type_t type = vseg->type;
1772
1773    // compute is_ref <=> this vseg is the reference vseg
1774    bool_t is_ref = (GET_CXY( process->ref_xp ) == local_cxy);
1775
1776    // get pointers on physical page descriptor
1777    xptr_t   page_xp  = ppm_ppn2page( ppn );
1778    cxy_t    page_cxy = GET_CXY( page_xp );
1779    page_t * page_ptr = GET_PTR( page_xp );
1780
1781    // decrement page refcount
1782    xptr_t count_xp = XPTR( page_cxy , &page_ptr->refcount );
1783    hal_remote_atomic_add( count_xp , -1 );
1784
1785    // compute the do_kmem_release condition depending on vseg type
1786    if( (type == VSEG_TYPE_KCODE) || 
1787        (type == VSEG_TYPE_KDATA) || 
1788        (type == VSEG_TYPE_KDEV) )           
1789    {
1790        // no physical page release for KERNEL
1791        do_kmem_release = false;
1792    }
1793    else if( type == VSEG_TYPE_FILE )
1794    {
1795        // no physical page release for KERNEL
1796        do_kmem_release = false;
1797
1798        // set dirty bit if required
1799        if( dirty ) ppm_page_do_dirty( page_xp );
1800    }   
1801    else if( (type == VSEG_TYPE_CODE)  ||
1802             (type == VSEG_TYPE_STACK) ) 
1803    {
1804        // always release physical page for private vsegs
1805        do_kmem_release = true;
1806    }
1807    else if( (type == VSEG_TYPE_ANON)  ||
1808             (type == VSEG_TYPE_REMOTE) )
1809    {
1810        // release physical page if reference cluster
1811        do_kmem_release = is_ref;
1812    }
1813    else if( is_ref )  // vseg_type == DATA in reference cluster
1814    {
1815        // get extended pointers on forks and lock field in page descriptor
1816        xptr_t forks_xp = XPTR( page_cxy , &page_ptr->forks );
1817        xptr_t lock_xp  = XPTR( page_cxy , &page_ptr->lock );
1818
1819        // take lock protecting "forks" counter
1820        remote_busylock_acquire( lock_xp );
1821
1822        // get number of pending forks from page descriptor
1823        uint32_t forks = hal_remote_l32( forks_xp );
1824
1825        // decrement pending forks counter if required
1826        if( forks )  hal_remote_atomic_add( forks_xp , -1 );
1827
1828        // release lock protecting "forks" counter
1829        remote_busylock_release( lock_xp );
1830
1831        // release physical page if forks == 0
1832        do_kmem_release = (forks == 0); 
1833    }
1834    else              // vseg_type == DATA not in reference cluster
1835    {
1836        // no physical page release if not in reference cluster
1837        do_kmem_release = false;
1838    }
1839
1840    // release physical page to relevant kmem when required
1841    if( do_kmem_release )
1842    {
1843        kmem_req_t req;
1844        req.type = KMEM_PPM;
1845        req.ptr  = GET_PTR( ppm_ppn2base( ppn ) );
1846
1847        kmem_remote_free( page_cxy , &req );
1848
1849#if DEBUG_VMM_PPN_RELEASE
1850thread_t * this = CURRENT_THREAD;
1851if( DEBUG_VMM_PPN_RELEASE < cycle )
1852printk("\n[%s] thread[%x,%x] released ppn %x to kmem\n",
1853__FUNCTION__, this->process->pid, this->trdid, ppn );
1854#endif
1855
1856    }
1857} // end vmm_ppn_release()
1858
1859//////////////////////////////////////////
1860void vmm_remove_vseg( process_t * process,
1861                      vseg_t    * vseg )
1862{
1863    uint32_t    vseg_type;  // vseg type
1864    vpn_t       vpn;        // VPN of current PTE
1865    vpn_t       vpn_min;    // VPN of first PTE
1866    vpn_t       vpn_max;    // VPN of last PTE (excluded)
1867    ppn_t       ppn;        // current PTE ppn value
1868    uint32_t    attr;       // current PTE attributes
1869
1870// check arguments
1871assert( (process != NULL), "process argument is NULL" );
1872assert( (vseg    != NULL), "vseg argument is NULL" );
1873
1874    // get pointers on local process VMM
1875    vmm_t * vmm = &process->vmm;
1876
1877    // build extended pointer on GPT
1878    xptr_t gpt_xp = XPTR( local_cxy , &vmm->gpt );
1879
1880    // get relevant vseg infos
1881    vseg_type = vseg->type;
1882    vpn_min   = vseg->vpn_base;
1883    vpn_max   = vpn_min + vseg->vpn_size;
1884
1885#if DEBUG_VMM_REMOVE_VSEG
1886uint32_t   cycle = (uint32_t)hal_get_cycles();
1887thread_t * this  = CURRENT_THREAD;
1888#endif
1889
1890#if (DEBUG_VMM_REMOVE_VSEG & 1 )
1891if( DEBUG_VMM_REMOVE_VSEG < cycle )
1892printk("\n[%s] thread[%x,%x] enters / process %x / type %s / base %x / cycle %d\n",
1893__FUNCTION__, this->process->pid, this->trdid, 
1894process->pid, vseg_type_str(vseg->type), vseg->min, cycle );
1895#endif
1896
1897    // loop on PTEs in GPT to unmap all mapped PTE
1898        for( vpn = vpn_min ; vpn < vpn_max ; vpn++ )
1899    {
1900        // get ppn and attr
1901        hal_gpt_get_pte( gpt_xp , vpn , &attr , &ppn );
1902
1903        if( attr & GPT_MAPPED )  // PTE is mapped
1904        { 
1905
1906#if( DEBUG_VMM_REMOVE_VSEG & 1 )
1907if( DEBUG_VMM_REMOVE_VSEG < cycle )
1908printk("\n[%s] thread[%x,%x] unmap vpn %x / ppn %x / type %s\n",
1909__FUNCTION__, this->process->pid, this->trdid, vpn , ppn, vseg_type_str(vseg_type) );
1910#endif
1911            // unmap GPT entry in local GPT
1912            hal_gpt_reset_pte( gpt_xp , vpn );
1913
1914            // release physical page depending on vseg type
1915            vmm_ppn_release( process , vseg , ppn , attr & GPT_DIRTY );
1916        }
1917    }
1918
1919    // remove vseg from VSL
1920    vmm_detach_vseg_from_vsl( vmm , vseg );
1921
1922    // release vseg descriptor depending on vseg type
1923    if( vseg_type == VSEG_TYPE_STACK )
1924    {
1925        // release slot to local stack allocator
1926        vmm_stack_free( vmm , vseg );
1927    }
1928    else if( (vseg_type == VSEG_TYPE_ANON) || 
1929             (vseg_type == VSEG_TYPE_FILE) || 
1930             (vseg_type == VSEG_TYPE_REMOTE) ) 
1931    {
1932        // release vseg to local mmap allocator
1933        vmm_mmap_free( vmm , vseg );
1934    }
1935    else
1936    {
1937        // release vseg descriptor to local kmem
1938        vseg_free( vseg );
1939    }
1940
1941#if DEBUG_VMM_REMOVE_VSEG
1942cycle = (uint32_t)hal_get_cycles();
1943if( DEBUG_VMM_REMOVE_VSEG < cycle )
1944printk("\n[%s] thread[%x,%x] exit / process %x / type %s / base %x / cycle %d\n",
1945__FUNCTION__, this->process->pid, this->trdid, 
1946process->pid, vseg_type_str(vseg->type), vseg->min, cycle );
1947#endif
1948
1949}  // end vmm_remove_vseg()
1950
1951/////////////////////////////////////////////
1952void vmm_resize_vseg( process_t * process,
1953                      vseg_t    * vseg,
1954                      intptr_t    new_base,
1955                      intptr_t    new_size )
1956{
1957    vpn_t     vpn;
1958    ppn_t     ppn;
1959    uint32_t  attr;
1960
1961// check arguments
1962assert( (process != NULL), "process argument is NULL" );
1963assert( (vseg    != NULL), "vseg argument is NULL" );
1964
1965#if DEBUG_VMM_RESIZE_VSEG
1966uint32_t   cycle = (uint32_t)hal_get_cycles();
1967thread_t * this  = CURRENT_THREAD;
1968#endif
1969
1970#if (DEBUG_VMM_RESIZE_VSEG & 1)
1971if( DEBUG_VMM_RESIZE_VSEG < cycle )
1972printk("\n[%s] thread[%x,%x] enter / process %x / %s / base %x / cycle %d\n",
1973__FUNCTION__, this->process->pid, this->trdid, 
1974process->pid, vseg_type_str(vseg->type), old_base, cycle );
1975#endif
1976
1977    // get existing vseg vpn_min and vpn_max
1978    vpn_t     old_vpn_min = vseg->vpn_base;
1979    vpn_t     old_vpn_max = old_vpn_min + vseg->vpn_size - 1;
1980
1981    // compute new vseg vpn_min & vpn_max 
1982    intptr_t min          = new_base;
1983    intptr_t max          = new_base + new_size;
1984    vpn_t    new_vpn_min  = min >> CONFIG_PPM_PAGE_SHIFT;
1985    vpn_t    new_vpn_max  = (max - 1) >> CONFIG_PPM_PAGE_SHIFT;
1986
1987    // build extended pointer on GPT
1988    xptr_t gpt_xp = XPTR( local_cxy , &process->vmm.gpt );
1989
1990    // loop on PTEs in GPT to unmap PTE if (old_vpn_min <= vpn < new_vpn_min)
1991        for( vpn = old_vpn_min ; vpn < new_vpn_min ; vpn++ )
1992    {
1993        // get ppn and attr
1994        hal_gpt_get_pte( gpt_xp , vpn , &attr , &ppn );
1995
1996        if( attr & GPT_MAPPED )  // PTE is mapped
1997        { 
1998
1999#if( DEBUG_VMM_RESIZE_VSEG & 1 )
2000if( DEBUG_VMM_RESIZE_VSEG < cycle )
2001printk("\n[%s] thread[%x,%x] unmap vpn %x / ppn %x / %s",
2002__FUNCTION__, this->process->pid, this->trdid, vpn , ppn, vseg_type_str(vseg_type) );
2003#endif
2004            // unmap GPT entry
2005            hal_gpt_reset_pte( gpt_xp , vpn );
2006
2007            // release physical page when required
2008            vmm_ppn_release( process , vseg , ppn , attr & GPT_DIRTY );
2009        }
2010    }
2011
2012    // loop on PTEs in GPT to unmap PTE if (new vpn_max <= vpn < old_vpn_max)
2013        for( vpn = new_vpn_max ; vpn < old_vpn_max ; vpn++ )
2014    {
2015        // get ppn and attr
2016        hal_gpt_get_pte( gpt_xp , vpn , &attr , &ppn );
2017
2018        if( attr & GPT_MAPPED )  // PTE is mapped
2019        { 
2020
2021#if( DEBUG_VMM_RESIZE_VSEG & 1 )
2022if( DEBUG_VMM_RESIZE_VSEG < cycle )
2023printk("\n[%s] thread[%x,%x] unmap vpn %x / ppn %x / %s",
2024__FUNCTION__, this->process->pid, this->trdid, vpn , ppn, vseg_type_str(vseg_type) );
2025#endif
2026            // unmap GPT entry in local GPT
2027            hal_gpt_reset_pte( gpt_xp , vpn );
2028
2029            // release physical page when required
2030            vmm_ppn_release( process , vseg , ppn , attr & GPT_DIRTY );
2031        }
2032    }
2033
2034    // resize vseg in VSL
2035    vseg->min      = min;
2036    vseg->max      = max;
2037    vseg->vpn_base = new_vpn_min;
2038    vseg->vpn_size = new_vpn_max - new_vpn_min + 1;
2039
2040#if DEBUG_VMM_RESIZE_VSEG
2041cycle = (uint32_t)hal_get_cycles();
2042if( DEBUG_VMM_RESIZE_VSEG < cycle )
2043printk("[%s] thread[%x,%x] exit / process %x / %s / base %x / cycle %d\n",
2044__FUNCTION__, this->process->pid, this->trdid, 
2045process->pid, vseg_type_str(vseg->type), vseg->min, cycle );
2046#endif
2047
2048}  // end vmm_resize_vseg
2049
2050/////////////////////////////////////////////////////////////////////////////////////////////
2051// This static function is called twice by the vmm_get_vseg() function.
2052// It scan the - possibly remote - VSL defined by the <vmm_xp> argument to find the vseg
2053// containing a given virtual address <vaddr>. It uses remote accesses to access the remote
2054// VSL if required. The VSL lock protecting the VSL must be taken by the caller.
2055/////////////////////////////////////////////////////////////////////////////////////////////
2056// @ vmm_xp  : extended pointer on the process VMM.
2057// @ vaddr   : virtual address.
2058// @ return local pointer on remote vseg if success / return NULL if not found.
2059/////////////////////////////////////////////////////////////////////////////////////////////
2060static vseg_t * vmm_vseg_from_vaddr( xptr_t     vmm_xp,
2061                                     intptr_t   vaddr )
2062{
2063    xptr_t   iter_xp;
2064    xptr_t   vseg_xp;
2065    vseg_t * vseg;
2066    intptr_t min;
2067    intptr_t max;
2068
2069    // get cluster and local pointer on target VMM
2070    vmm_t * vmm_ptr = GET_PTR( vmm_xp );
2071    cxy_t   vmm_cxy = GET_CXY( vmm_xp );
2072
2073    // build extended pointer on VSL root
2074    xptr_t root_xp = XPTR( vmm_cxy , &vmm_ptr->vsegs_root );
2075
2076    // scan the list of vsegs in VSL
2077    XLIST_FOREACH( root_xp , iter_xp )
2078    {
2079        vseg_xp = XLIST_ELEMENT( iter_xp , vseg_t , xlist );
2080        vseg    = GET_PTR( vseg_xp );
2081
2082        min = hal_remote_l32( XPTR( vmm_cxy , &vseg->min ) );
2083        max = hal_remote_l32( XPTR( vmm_cxy , &vseg->max ) );
2084
2085        // return success when match
2086        if( (vaddr >= min) && (vaddr < max) ) return vseg;
2087    }
2088
2089    // return failure
2090    return NULL;
2091
2092}  // end vmm_vseg_from_vaddr()
2093
2094///////////////////////////////////////////
2095error_t  vmm_get_vseg( process_t * process,
2096                       intptr_t    vaddr,
2097                       vseg_t   ** found_vseg )
2098{
2099    xptr_t    loc_lock_xp;     // extended pointer on local VSL lock
2100    xptr_t    ref_lock_xp;     // extended pointer on reference VSL lock
2101    vseg_t  * loc_vseg;        // local pointer on local vseg
2102    vseg_t  * ref_vseg;        // local pointer on reference vseg
2103
2104    // build extended pointer on local VSL lock
2105    loc_lock_xp = XPTR( local_cxy , &process->vmm.vsl_lock );
2106     
2107    // get local VSL lock
2108    remote_queuelock_acquire( loc_lock_xp );
2109
2110    // try to get vseg from local VMM
2111    loc_vseg = vmm_vseg_from_vaddr( XPTR( local_cxy, &process->vmm ) , vaddr );
2112
2113    if (loc_vseg == NULL)   // vseg not found => access reference VSL
2114    {
2115        // get extended pointer on reference process
2116        xptr_t ref_xp = process->ref_xp;
2117
2118        // get cluster and local pointer on reference process
2119        cxy_t       ref_cxy = GET_CXY( ref_xp );
2120        process_t * ref_ptr = GET_PTR( ref_xp );
2121
2122        // build extended pointer on reference VSL lock
2123        ref_lock_xp = XPTR( ref_cxy , &ref_ptr->vmm.vsl_lock );
2124     
2125        // get reference VSL lock
2126        remote_queuelock_acquire( ref_lock_xp );
2127
2128        // try to get vseg from reference VMM
2129        ref_vseg = vmm_vseg_from_vaddr( XPTR( ref_cxy , &ref_ptr->vmm ) , vaddr );
2130
2131        if( ref_vseg == NULL )  // vseg not found => return error
2132        {
2133            printk("\n[ERROR] in %s : vaddr %x in process %x out of segment\n",
2134            __FUNCTION__, vaddr, process->pid );
2135
2136            // release reference VSL lock
2137            remote_queuelock_release( ref_lock_xp );
2138
2139            return -1;
2140        }
2141        else                    // vseg found => try to update local VSL
2142        {
2143            // allocate a local vseg descriptor
2144            loc_vseg = vseg_alloc();
2145
2146            if( loc_vseg == NULL )   // no memory => return error
2147            {
2148                printk("\n[ERROR] in %s : vaddr %x in process %x / no memory for local vseg\n",
2149                __FUNCTION__, vaddr, process->pid );
2150
2151                // release reference VSL & local VSL locks
2152                remote_queuelock_release( ref_lock_xp );
2153                remote_queuelock_release( loc_lock_xp );
2154
2155                return -1;
2156            }
2157            else                     // update local VSL and return success
2158            {
2159                // initialize local vseg
2160                vseg_init_from_ref( loc_vseg , XPTR( ref_cxy , ref_vseg ) );
2161
2162                // register local vseg in local VSL
2163                vmm_attach_vseg_to_vsl( &process->vmm , loc_vseg );
2164
2165                // release reference VSL & local VSL locks
2166                remote_queuelock_release( ref_lock_xp );
2167                remote_queuelock_release( loc_lock_xp );
2168
2169                *found_vseg = loc_vseg;
2170                return 0;
2171            }
2172        }
2173    }
2174    else                        // vseg found in local VSL => return success
2175    {
2176        // release local VSL lock
2177        remote_queuelock_release( loc_lock_xp );
2178
2179        *found_vseg = loc_vseg;
2180        return 0;
2181    }
2182}  // end vmm_get_vseg()
2183
2184//////////////////////////////////////////////////////////////////////////////////////
2185// This static function compute the target cluster to allocate a physical page
2186// for a given <vpn> in a given <vseg>, allocates the page and returns an extended
2187// pointer on the allocated page descriptor.
2188// The vseg cannot have the FILE type.
2189//////////////////////////////////////////////////////////////////////////////////////
2190// @ vseg   : local pointer on vseg.
2191// @ vpn    : unmapped vpn.
2192// @ return an extended pointer on the allocated page descriptor.
2193//////////////////////////////////////////////////////////////////////////////////////
2194static xptr_t vmm_page_allocate( vseg_t * vseg,
2195                                 vpn_t    vpn )
2196{
2197
2198#if DEBUG_VMM_PAGE_ALLOCATE
2199uint32_t   cycle   = (uint32_t)hal_get_cycles();
2200thread_t * this    = CURRENT_THREAD;
2201if( DEBUG_VMM_PAGE_ALLOCATE < cycle )
2202printk("\n[%s] thread[%x,%x] enter for vpn %x / cycle %d\n",
2203__FUNCTION__ , this->process->pid, this->trdid, vpn, cycle );
2204#endif
2205
2206    xptr_t       page_xp;
2207    cxy_t        page_cxy;
2208    uint32_t     index;
2209
2210    uint32_t     type   = vseg->type;
2211    uint32_t     flags  = vseg->flags;
2212    uint32_t     x_size = LOCAL_CLUSTER->x_size;
2213    uint32_t     y_size = LOCAL_CLUSTER->y_size;
2214
2215// check vseg type
2216assert( ( type != VSEG_TYPE_FILE ) , "illegal vseg type\n" );
2217
2218    // compute target cluster identifier
2219    if( flags & VSEG_DISTRIB )    // distributed => cxy depends on vpn LSB
2220    {
2221        index    = vpn & ((x_size * y_size) - 1);
2222        page_cxy = HAL_CXY_FROM_XY( (index / y_size) , (index % y_size) );
2223
2224        // If the cluster selected from VPN's LSBs is empty, we select one randomly
2225        if ( cluster_is_active( page_cxy ) == false )
2226        {
2227            page_cxy = cluster_random_select();
2228        }
2229    }
2230    else                          // other cases => cxy specified in vseg
2231    {
2232        page_cxy = vseg->cxy;
2233    }
2234
2235    // allocate one small physical page from target cluster
2236    kmem_req_t req;
2237    req.type  = KMEM_PPM;
2238    req.order = 0;
2239    req.flags = AF_ZERO;
2240
2241    // get local pointer on page base
2242    void * ptr = kmem_remote_alloc( page_cxy , &req );
2243
2244    // get extended pointer on page descriptor
2245    page_xp = ppm_base2page( XPTR( page_cxy , ptr ) );
2246
2247#if DEBUG_VMM_PAGE_ALLOCATE
2248cycle = (uint32_t)hal_get_cycles();
2249if( DEBUG_VMM_PAGE_ALLOCATE < cycle )
2250printk("\n[%s] thread[%x,%x] exit for vpn %x / ppn %x / cycle %d\n",
2251__FUNCTION__ , this->process->pid, this->trdid, vpn, ppm_page2ppn(page_xp), cycle );
2252#endif
2253
2254    return page_xp;
2255
2256}  // end vmm_page_allocate() 
2257
2258////////////////////////////////////////
2259error_t vmm_get_one_ppn( vseg_t * vseg,
2260                         vpn_t    vpn,
2261                         ppn_t  * ppn )
2262{
2263    error_t    error;
2264    xptr_t     page_xp;           // extended pointer on physical page descriptor
2265    uint32_t   page_id;           // missing page index in vseg mapper
2266    uint32_t   type;              // vseg type;
2267
2268    type      = vseg->type;
2269    page_id   = vpn - vseg->vpn_base;
2270
2271#if DEBUG_VMM_GET_ONE_PPN
2272uint32_t   cycle = (uint32_t)hal_get_cycles();
2273thread_t * this  = CURRENT_THREAD;
2274if( DEBUG_VMM_GET_ONE_PPN < cycle )
2275printk("\n[%s] thread[%x,%x] enter for vpn %x / vseg %s / page_id  %d / cycle %d\n",
2276__FUNCTION__, this->process->pid, this->trdid, vpn, vseg_type_str(type), page_id, cycle );
2277#endif
2278
2279#if (DEBUG_VMM_GET_ONE_PPN & 2)
2280if( DEBUG_VMM_GET_ONE_PPN < cycle )
2281hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2282#endif
2283
2284    // FILE type : get the physical page from the file mapper
2285    if( type == VSEG_TYPE_FILE )
2286    {
2287        // get extended pointer on mapper
2288        xptr_t mapper_xp = vseg->mapper_xp;
2289
2290assert( (mapper_xp != XPTR_NULL),
2291"mapper not defined for a FILE vseg\n" );
2292       
2293        // get extended pointer on page descriptor
2294        page_xp = mapper_get_page( mapper_xp , page_id );
2295
2296        if ( page_xp == XPTR_NULL ) return EINVAL;
2297    }
2298
2299    // Other types : allocate a physical page from target cluster,
2300    // as defined by vseg type and vpn value
2301    else
2302    {
2303        // allocate one physical page
2304        page_xp = vmm_page_allocate( vseg , vpn );
2305
2306        if( page_xp == XPTR_NULL ) return -1;
2307
2308        // initialise missing page from .elf file mapper for DATA and CODE types
2309        // the vseg->mapper_xp field is an extended pointer on the .elf file mapper
2310        if( (type == VSEG_TYPE_CODE) || (type == VSEG_TYPE_DATA) )
2311        {
2312            // get extended pointer on mapper
2313            xptr_t     mapper_xp = vseg->mapper_xp;
2314
2315assert( (mapper_xp != XPTR_NULL),
2316"mapper not defined for a CODE or DATA vseg\n" );
2317       
2318            // compute missing page offset in vseg
2319            uint32_t offset = page_id << CONFIG_PPM_PAGE_SHIFT;
2320
2321            // compute missing page offset in .elf file
2322            uint32_t elf_offset = vseg->file_offset + offset;
2323
2324#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2325if( DEBUG_VMM_GET_ONE_PPN < cycle )
2326printk("\n[%s] thread[%x,%x] for vpn = %x / elf_offset = %x\n",
2327__FUNCTION__, this->process->pid, this->trdid, vpn, elf_offset );
2328#endif
2329            // compute extended pointer on page base
2330            xptr_t base_xp  = ppm_page2base( page_xp );
2331
2332            // file_size (in .elf mapper) can be smaller than vseg_size (BSS)
2333            uint32_t file_size = vseg->file_size;
2334
2335            if( file_size < offset )                 // missing page fully in  BSS
2336            {
2337
2338#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2339if( DEBUG_VMM_GET_ONE_PPN < cycle )
2340printk("\n[%s] thread[%x,%x] for vpn  %x / fully in BSS\n",
2341__FUNCTION__, this->process->pid, this->trdid, vpn );
2342#endif
2343                if( GET_CXY( page_xp ) == local_cxy )
2344                {
2345                    memset( GET_PTR( base_xp ) , 0 , CONFIG_PPM_PAGE_SIZE );
2346                }
2347                else
2348                {
2349                   hal_remote_memset( base_xp , 0 , CONFIG_PPM_PAGE_SIZE );       
2350                }
2351            }
2352            else if( file_size >= (offset + CONFIG_PPM_PAGE_SIZE) )  // fully in  mapper
2353            {
2354
2355#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2356if( DEBUG_VMM_GET_ONE_PPN < cycle )
2357printk("\n[%s] thread[%x,%x] for vpn  %x / fully in mapper\n",
2358__FUNCTION__, this->process->pid, this->trdid, vpn );
2359#endif
2360                error = mapper_move_kernel( mapper_xp,
2361                                            true,             // to_buffer
2362                                            elf_offset,
2363                                            base_xp,
2364                                            CONFIG_PPM_PAGE_SIZE ); 
2365                if( error ) return EINVAL;
2366            }
2367            else  // both in mapper and in BSS :
2368                  // - (file_size - offset)             bytes from mapper
2369                  // - (page_size + offset - file_size) bytes from BSS
2370            {
2371
2372#if (DEBUG_VMM_GET_ONE_PPN & 0x1)
2373if( DEBUG_VMM_GET_ONE_PPN < cycle )
2374printk("\n[%s] thread[%x,%x] for vpn  %x / both mapper & BSS\n"
2375"      %d bytes from mapper / %d bytes from BSS\n",
2376__FUNCTION__, this->process->pid, this->trdid, vpn,
2377file_size - offset , offset + CONFIG_PPM_PAGE_SIZE - file_size  );
2378#endif
2379                // initialize mapper part
2380                error = mapper_move_kernel( mapper_xp,
2381                                            true,         // to buffer
2382                                            elf_offset,
2383                                            base_xp,
2384                                            file_size - offset ); 
2385                if( error ) return EINVAL;
2386
2387                // initialize BSS part
2388                if( GET_CXY( page_xp ) == local_cxy )
2389                {
2390                    memset( GET_PTR( base_xp ) + file_size - offset , 0 , 
2391                            offset + CONFIG_PPM_PAGE_SIZE - file_size );
2392                }
2393                else
2394                {
2395                   hal_remote_memset( base_xp + file_size - offset , 0 , 
2396                                      offset + CONFIG_PPM_PAGE_SIZE - file_size );
2397                }
2398            }   
2399
2400        }  // end if CODE or DATA types   
2401    } 
2402
2403    // return ppn
2404    *ppn = ppm_page2ppn( page_xp );
2405
2406#if DEBUG_VMM_GET_ONE_PPN
2407if( DEBUG_VMM_GET_ONE_PPN < cycle )
2408printk("\n[%s] thread[%x,%x] exit for vpn %x / ppn %x / cycle %d\n",
2409__FUNCTION__ , this->process->pid, this->trdid , vpn , *ppn, cycle );
2410#endif
2411
2412#if (DEBUG_VMM_GET_ONE_PPN & 2)
2413if( DEBUG_VMM_GET_ONE_PPN < cycle )
2414hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2415#endif
2416
2417    return 0;
2418
2419}  // end vmm_get_one_ppn()
2420
2421///////////////////////////////////////////////////
2422error_t vmm_handle_page_fault( process_t * process,
2423                               vpn_t       vpn )
2424{
2425    vseg_t         * vseg;            // vseg containing vpn
2426    uint32_t         attr;            // PTE_ATTR value
2427    ppn_t            ppn;             // PTE_PPN value
2428    uint32_t         ref_attr;        // PTE_ATTR value in reference GPT
2429    ppn_t            ref_ppn;         // PTE_PPN value in reference GPT
2430    cxy_t            ref_cxy;         // reference cluster for missing vpn
2431    process_t      * ref_ptr;         // reference process for missing vpn
2432    xptr_t           local_gpt_xp;    // extended pointer on local GPT
2433    xptr_t           ref_gpt_xp;      // extended pointer on reference GPT
2434    error_t          error;           // value returned by called functions
2435
2436    thread_t * this  = CURRENT_THREAD;
2437
2438#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2439uint32_t start_cycle = (uint32_t)hal_get_cycles();
2440#endif
2441
2442#if DEBUG_VMM_HANDLE_PAGE_FAULT
2443if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) & (vpn > 0) )
2444printk("\n[%s] thread[%x,%x] enter for vpn %x / cycle %d\n",
2445__FUNCTION__, this->process->pid, this->trdid, vpn, start_cycle );
2446#endif
2447
2448#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2449if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2450hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2451#endif
2452
2453    // get local vseg (access to reference VSL can be required)
2454    error = vmm_get_vseg( process, 
2455                          (intptr_t)vpn<<CONFIG_PPM_PAGE_SHIFT,
2456                          &vseg );
2457    if( error )
2458    {
2459        printk("\n[ERROR] in %s : vpn %x in thread[%x,%x] not in registered vseg\n",
2460        __FUNCTION__ , vpn , process->pid, this->trdid );
2461       
2462        return EXCP_USER_ERROR;
2463    }
2464
2465#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2466if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2467printk("\n[%s] thread[%x,%x] found vseg %s\n",
2468__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(vseg->type) );
2469#endif
2470
2471    // build extended pointer on local GPT
2472    local_gpt_xp  = XPTR( local_cxy , &process->vmm.gpt );
2473
2474    // lock PTE in local GPT and get current PPN and attributes
2475    error = hal_gpt_lock_pte( local_gpt_xp,
2476                              vpn,
2477                              &attr,
2478                              &ppn );
2479    if( error )
2480    {
2481        printk("\n[PANIC] in %s : cannot lock PTE in local GPT / vpn %x / process %x\n",
2482        __FUNCTION__ , vpn , process->pid );
2483       
2484        return EXCP_KERNEL_PANIC;
2485    }
2486
2487#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2488if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2489printk("\n[%s] thread[%x,%x] locked vpn %x in cluster %x\n",
2490__FUNCTION__, this->process->pid, this->trdid, vpn, local_cxy );
2491#endif
2492
2493    // handle page fault only if local PTE still unmapped after lock
2494    if( (attr & GPT_MAPPED) == 0 )
2495    {
2496        // get reference process cluster and local pointer
2497        ref_cxy = GET_CXY( process->ref_xp );
2498        ref_ptr = GET_PTR( process->ref_xp );
2499
2500        /////////////// private vseg or (local == reference)
2501        /////////////// => access only the local GPT
2502        if( (vseg->type == VSEG_TYPE_STACK) ||
2503            (vseg->type == VSEG_TYPE_CODE)  ||
2504            (ref_cxy    == local_cxy ) )
2505        {
2506
2507#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2508if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2509printk("\n[%s] thread[%x,%x] access local gpt : cxy %x / ref_cxy %x / type %s / cycle %d\n",
2510__FUNCTION__, this->process->pid, this->trdid,
2511local_cxy, ref_cxy, vseg_type_str(vseg->type), (uint32_t)hal_get_cycles() );
2512#endif
2513            // allocate and initialise a physical page
2514            error = vmm_get_one_ppn( vseg , vpn , &ppn );
2515
2516            if( error )
2517            {
2518                printk("\n[ERROR] in %s : no physical page / process = %x / vpn = %x\n",
2519                __FUNCTION__ , process->pid , vpn );
2520
2521                // unlock PTE in local GPT
2522                hal_gpt_unlock_pte( local_gpt_xp , vpn );
2523
2524                return EXCP_KERNEL_PANIC;
2525            }
2526
2527            // define attr from vseg flags
2528            attr = GPT_MAPPED | GPT_SMALL | GPT_READABLE;
2529            if( vseg->flags & VSEG_USER  ) attr |= GPT_USER;
2530            if( vseg->flags & VSEG_WRITE ) attr |= GPT_WRITABLE;
2531            if( vseg->flags & VSEG_EXEC  ) attr |= GPT_EXECUTABLE;
2532            if( vseg->flags & VSEG_CACHE ) attr |= GPT_CACHABLE;
2533
2534            // set PTE to local GPT
2535            // it unlocks this PTE
2536            hal_gpt_set_pte( local_gpt_xp,
2537                             vpn,
2538                             attr,
2539                             ppn );
2540
2541#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2542uint32_t end_cycle = (uint32_t)hal_get_cycles();
2543#endif
2544
2545#if DEBUG_VMM_HANDLE_PAGE_FAULT
2546if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2547printk("\n[%s] thread[%x,%x] handled local pgfault / ppn %x / attr %x / cycle %d\n",
2548__FUNCTION__, this->process->pid, this->trdid, ppn, attr, end_cycle );
2549#endif
2550
2551#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2552if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2553hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2554#endif
2555
2556#if CONFIG_INSTRUMENTATION_PGFAULTS
2557uint32_t cost      = end_cycle - start_cycle;
2558this->info.local_pgfault_nr++;
2559this->info.local_pgfault_cost += cost;
2560if( cost > this->info.local_pgfault_max ) this->info.local_pgfault_max = cost;
2561#endif
2562            return EXCP_NON_FATAL;
2563
2564        }   // end local GPT access
2565
2566        /////////////////// public vseg and (local != reference)
2567        /////////////////// => access ref GPT to update local GPT
2568        else                               
2569        {
2570
2571#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2572if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2573printk("\n[%s] thread[%x,%x] access ref gpt : cxy %x / ref_cxy %x / type %s / cycle %d\n",
2574__FUNCTION__, this->process->pid, this->trdid, 
2575local_cxy, ref_cxy, vseg_type_str(vseg->type), (uint32_t)hal_get_cycles() );
2576#endif
2577            // build extended pointer on reference GPT
2578            ref_gpt_xp = XPTR( ref_cxy , &ref_ptr->vmm.gpt );
2579
2580            // lock PTE in reference GPT and get current PPN and attributes
2581            error = hal_gpt_lock_pte( ref_gpt_xp,
2582                                      vpn,
2583                                      &ref_attr,
2584                                      &ref_ppn );
2585            if( error )
2586            {
2587                printk("\n[PANIC] in %s : cannot lock PTE in ref GPT / vpn %x / process %x\n",
2588                __FUNCTION__ , vpn , process->pid );
2589       
2590                // unlock PTE in local GPT
2591                hal_gpt_unlock_pte( local_gpt_xp , vpn );
2592                   
2593                return EXCP_KERNEL_PANIC;
2594            }
2595
2596#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2597if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2598printk("\n[%s] thread[%x,%x] get pte from ref gpt / attr %x / ppn %x\n",
2599__FUNCTION__, this->process->pid, this->trdid, ref_attr, ref_ppn );
2600#endif
2601
2602            if( ref_attr & GPT_MAPPED )        // false page fault
2603            {
2604                // update local GPT from reference GPT values
2605                // this unlocks the PTE in local GPT
2606                hal_gpt_set_pte( local_gpt_xp,
2607                                 vpn,
2608                                 ref_attr,
2609                                 ref_ppn );
2610
2611#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2612if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2613printk("\n[%s] thread[%x,%x] updated local gpt for a false pgfault\n",
2614__FUNCTION__, this->process->pid, this->trdid );
2615#endif
2616
2617                // unlock the PTE in reference GPT
2618                hal_gpt_unlock_pte( ref_gpt_xp, vpn );
2619                             
2620#if (DEBUG_VMM_HANDLE_PAGE_FAULT &1)
2621if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2622printk("\n[%s] thread[%x,%x] unlock the ref gpt after a false pgfault\n",
2623__FUNCTION__, this->process->pid, this->trdid );
2624#endif
2625
2626#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2627uint32_t end_cycle = (uint32_t)hal_get_cycles();
2628#endif
2629
2630#if DEBUG_VMM_HANDLE_PAGE_FAULT
2631if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2632printk("\n[%s] thread[%x,%x] handled false pgfault / ppn %x / attr %x / cycle %d\n",
2633__FUNCTION__, this->process->pid, this->trdid, ref_ppn, ref_attr, end_cycle );
2634#endif
2635
2636#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2637if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2638hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2639#endif
2640
2641#if CONFIG_INSTRUMENTATION_PGFAULTS
2642uint32_t cost      = end_cycle - start_cycle;
2643this->info.false_pgfault_nr++;
2644this->info.false_pgfault_cost += cost;
2645if( cost > this->info.false_pgfault_max ) this->info.false_pgfault_max = cost;
2646#endif
2647                return EXCP_NON_FATAL;
2648            }
2649            else                            // true page fault
2650            {
2651                // allocate and initialise a physical page depending on the vseg type
2652                error = vmm_get_one_ppn( vseg , vpn , &ppn );
2653
2654                if( error )
2655                {
2656                    printk("\n[ERROR] in %s : no memory / process = %x / vpn = %x\n",
2657                    __FUNCTION__ , process->pid , vpn );
2658
2659                    // unlock PTE in local GPT and in reference GPT
2660                    hal_gpt_unlock_pte( local_gpt_xp , vpn );
2661                    hal_gpt_unlock_pte( ref_gpt_xp   , vpn );
2662                   
2663                    return EXCP_KERNEL_PANIC;
2664                }
2665
2666                // define attr from vseg flags
2667                attr = GPT_MAPPED | GPT_SMALL | GPT_READABLE;
2668                if( vseg->flags & VSEG_USER  ) attr |= GPT_USER;
2669                if( vseg->flags & VSEG_WRITE ) attr |= GPT_WRITABLE;
2670                if( vseg->flags & VSEG_EXEC  ) attr |= GPT_EXECUTABLE;
2671                if( vseg->flags & VSEG_CACHE ) attr |= GPT_CACHABLE;
2672
2673#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2674if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2675printk("\n[%s] thread[%x,%x] build a new PTE for a true pgfault\n",
2676__FUNCTION__, this->process->pid, this->trdid );
2677#endif
2678                // set PTE in reference GPT
2679                // this unlock the PTE
2680                hal_gpt_set_pte( ref_gpt_xp,
2681                                 vpn,
2682                                 attr,
2683                                 ppn );
2684
2685#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 1)
2686if( (start_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2687printk("\n[%s] thread[%x,%x] set new PTE in ref gpt for a true page fault\n",
2688__FUNCTION__, this->process->pid, this->trdid );
2689#endif
2690
2691                // set PTE in local GPT
2692                // this unlock the PTE
2693                hal_gpt_set_pte( local_gpt_xp,
2694                                 vpn,
2695                                 attr,
2696                                 ppn );
2697
2698#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2699uint32_t end_cycle = (uint32_t)hal_get_cycles();
2700#endif
2701
2702#if DEBUG_VMM_HANDLE_PAGE_FAULT
2703if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2704printk("\n[%s] thread[%x,%x] handled global pgfault / ppn %x / attr %x / cycle %d\n",
2705__FUNCTION__, this->process->pid, this->trdid, ppn, attr, end_cycle );
2706#endif
2707
2708#if (DEBUG_VMM_HANDLE_PAGE_FAULT & 2)
2709if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2710hal_vmm_display( XPTR( local_cxy , this->process ) , true );
2711#endif
2712
2713#if CONFIG_INSTRUMENTATION_PGFAULTS
2714uint32_t cost      = end_cycle - start_cycle;
2715this->info.global_pgfault_nr++;
2716this->info.global_pgfault_cost += cost;
2717if( cost > this->info.global_pgfault_max ) this->info.global_pgfault_max = cost;
2718#endif
2719                return EXCP_NON_FATAL;
2720            }
2721        }
2722    }
2723    else   // page has been locally mapped by another concurrent thread
2724    {
2725        // unlock the PTE in local GPT
2726        hal_gpt_unlock_pte( local_gpt_xp , vpn );
2727
2728#if (CONFIG_INSTRUMENTATION_PGFAULTS || DEBUG_VMM_HANDLE_PAGE_FAULT)
2729uint32_t end_cycle = (uint32_t)hal_get_cycles();
2730#endif
2731
2732#if DEBUG_VMM_HANDLE_PAGE_FAULT
2733if( (end_cycle > DEBUG_VMM_HANDLE_PAGE_FAULT) && (vpn > 0) )
2734printk("\n[%s] handled by another thread / vpn %x / ppn %x / attr %x / cycle %d\n",
2735__FUNCTION__, vpn, ppn, attr, end_cycle );
2736#endif
2737
2738#if CONFIG_INSTRUMENTATION_PGFAULTS
2739uint32_t cost      = end_cycle - start_cycle;
2740this->info.false_pgfault_nr++;
2741this->info.false_pgfault_cost += cost;
2742if( cost > this->info.false_pgfault_max ) this->info.false_pgfault_max = cost;
2743#endif
2744        return EXCP_NON_FATAL;
2745    }
2746
2747}   // end vmm_handle_page_fault()
2748
2749////////////////////////////////////////////
2750error_t vmm_handle_cow( process_t * process,
2751                        vpn_t       vpn )
2752{
2753    vseg_t         * vseg;            // vseg containing vpn
2754    xptr_t           gpt_xp;          // extended pointer on GPT (local or reference)
2755    gpt_t          * gpt_ptr;         // local pointer on GPT (local or reference)
2756    cxy_t            gpt_cxy;         // GPT cluster identifier
2757    uint32_t         old_attr;        // current PTE_ATTR value
2758    ppn_t            old_ppn;         // current PTE_PPN value
2759    uint32_t         new_attr;        // new PTE_ATTR value
2760    ppn_t            new_ppn;         // new PTE_PPN value
2761    cxy_t            ref_cxy;         // reference process cluster
2762    process_t      * ref_ptr;         // local pointer on reference process
2763    error_t          error;
2764
2765    thread_t * this  = CURRENT_THREAD;
2766
2767#if DEBUG_VMM_HANDLE_COW
2768uint32_t   cycle = (uint32_t)hal_get_cycles();
2769if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2770printk("\n[%s] thread[%x,%x] enter for vpn %x / core[%x,%d] / cycle %d\n",
2771__FUNCTION__, this->process->pid, this->trdid, vpn, local_cxy, this->core->lid, cycle );
2772#endif
2773
2774#if (DEBUG_VMM_HANDLE_COW & 2)
2775hal_vmm_display( XPTR( local_cxy , process ) , true );
2776#endif
2777
2778    // get local vseg
2779    error = vmm_get_vseg( process, 
2780                          (intptr_t)vpn<<CONFIG_PPM_PAGE_SHIFT,
2781                          &vseg );
2782    if( error )
2783    {
2784        printk("\n[ERROR] in %s : vpn %x in thread[%x,%x] not in a registered vseg\n",
2785        __FUNCTION__, vpn, process->pid, this->trdid );
2786
2787        return EXCP_USER_ERROR;
2788    }
2789
2790#if DEBUG_VMM_HANDLE_COW
2791if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2792printk("\n[%s] thread[%x,%x] get vseg %s\n",
2793__FUNCTION__, this->process->pid, this->trdid, vseg_type_str(vseg->type) );
2794#endif
2795
2796    // get reference process cluster and local pointer
2797    ref_cxy = GET_CXY( process->ref_xp );
2798    ref_ptr = GET_PTR( process->ref_xp );
2799
2800    // build pointers on relevant GPT
2801    // - access only local GPT for a private vseg 
2802    // - access reference GPT and all copies for a public vseg
2803    if( (vseg->type == VSEG_TYPE_STACK) || (vseg->type == VSEG_TYPE_CODE) )
2804    {
2805        gpt_cxy = local_cxy;
2806        gpt_ptr = &process->vmm.gpt;
2807        gpt_xp  = XPTR( gpt_cxy , gpt_ptr );
2808    }
2809    else
2810    {
2811        gpt_cxy = ref_cxy;
2812        gpt_ptr = &ref_ptr->vmm.gpt;
2813        gpt_xp  = XPTR( gpt_cxy , gpt_ptr );
2814    }
2815
2816    // lock target PTE in relevant GPT (local or reference)
2817    // and get current PTE value
2818    error = hal_gpt_lock_pte( gpt_xp,
2819                              vpn,
2820                              &old_attr,
2821                              &old_ppn );
2822    if( error )
2823    {
2824        printk("\n[PANIC] in %s : cannot lock PTE in GPT / cxy %x / vpn %x / process %x\n",
2825        __FUNCTION__ , gpt_cxy, vpn , process->pid );
2826       
2827        return EXCP_KERNEL_PANIC;
2828    }
2829
2830#if DEBUG_VMM_HANDLE_COW
2831if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2832printk("\n[%s] thread[%x,%x] get pte for vpn %x : ppn %x / attr %x\n",
2833__FUNCTION__, this->process->pid, this->trdid, vpn, old_ppn, old_attr );
2834#endif
2835
2836    // return user error if COW attribute not set or PTE2 unmapped
2837    if( ((old_attr & GPT_COW) == 0) || ((old_attr & GPT_MAPPED) == 0) )
2838    {
2839        hal_gpt_unlock_pte( gpt_xp , vpn );
2840
2841        return EXCP_USER_ERROR;
2842    }
2843
2844    // get pointers on physical page descriptor
2845    xptr_t   page_xp  = ppm_ppn2page( old_ppn );
2846    cxy_t    page_cxy = GET_CXY( page_xp );
2847    page_t * page_ptr = GET_PTR( page_xp );
2848
2849    // get extended pointers on forks and lock field in page descriptor
2850    xptr_t forks_xp       = XPTR( page_cxy , &page_ptr->forks );
2851    xptr_t forks_lock_xp  = XPTR( page_cxy , &page_ptr->lock );
2852
2853    // take lock protecting "forks" counter
2854    remote_busylock_acquire( forks_lock_xp );
2855
2856    // get number of pending forks from page descriptor
2857    uint32_t forks = hal_remote_l32( forks_xp );
2858
2859#if DEBUG_VMM_HANDLE_COW
2860if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2861printk("\n[%s] thread[%x,%x] get forks = %d for vpn %x\n",
2862__FUNCTION__, this->process->pid, this->trdid, forks, vpn );
2863#endif
2864
2865    if( forks )        // pending fork => allocate a new page, and copy old to new
2866    {
2867        // decrement pending forks counter in page descriptor
2868        hal_remote_atomic_add( forks_xp , -1 );
2869
2870        // release lock protecting "forks" counter
2871        remote_busylock_release( forks_lock_xp );
2872
2873        // allocate a new physical page depending on vseg type
2874        page_xp = vmm_page_allocate( vseg , vpn );
2875
2876        if( page_xp == XPTR_NULL ) 
2877        {
2878            printk("\n[PANIC] in %s : no memory for vpn %x in process %x\n",
2879            __FUNCTION__ , vpn, process->pid );
2880
2881            hal_gpt_unlock_pte( gpt_xp , vpn ); 
2882
2883            return EXCP_KERNEL_PANIC;
2884        }
2885
2886        // compute allocated page PPN
2887        new_ppn = ppm_page2ppn( page_xp );
2888
2889#if DEBUG_VMM_HANDLE_COW
2890if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2891printk("\n[%s] thread[%x,%x] get new ppn %x for vpn %x\n",
2892__FUNCTION__, this->process->pid, this->trdid, new_ppn, vpn );
2893#endif
2894
2895        // copy old page content to new page
2896        hal_remote_memcpy( ppm_ppn2base( new_ppn ),
2897                           ppm_ppn2base( old_ppn ),
2898                           CONFIG_PPM_PAGE_SIZE );
2899
2900#if DEBUG_VMM_HANDLE_COW
2901if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2902printk("\n[%s] thread[%x,%x] copied old page to new page\n",
2903__FUNCTION__, this->process->pid, this->trdid );
2904#endif
2905
2906    }             
2907    else               // no pending fork => keep the existing page
2908    {
2909        // release lock protecting "forks" counter
2910        remote_busylock_release( forks_lock_xp );
2911
2912#if(DEBUG_VMM_HANDLE_COW & 1)
2913if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2914printk("\n[%s] thread[%x,%x] no pending forks / keep existing PPN %x\n",
2915__FUNCTION__, this->process->pid, this->trdid, old_ppn );
2916#endif
2917        new_ppn = old_ppn;
2918    }
2919
2920    // build new_attr : set WRITABLE, reset COW, reset LOCKED
2921    new_attr = (((old_attr | GPT_WRITABLE) & (~GPT_COW)) & (~GPT_LOCKED));
2922
2923#if(DEBUG_VMM_HANDLE_COW & 1)
2924if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2925printk("\n[%s] thread[%x,%x] new_attr %x / new_ppn %x\n",
2926__FUNCTION__, this->process->pid, this->trdid, new_attr, new_ppn );
2927#endif
2928
2929    // update the relevant GPT(s)
2930    // - private vseg => update only the local GPT
2931    // - public vseg => update the reference GPT AND all the GPT copies
2932    if( (vseg->type == VSEG_TYPE_STACK) || (vseg->type == VSEG_TYPE_CODE) )
2933    {
2934        // set new PTE in local gpt
2935        hal_gpt_set_pte( gpt_xp,
2936                         vpn,
2937                         new_attr,
2938                         new_ppn );
2939    }
2940    else
2941    {
2942        // set new PTE in all GPT copies
2943        vmm_global_update_pte( process,
2944                               vpn,
2945                               new_attr,
2946                               new_ppn );
2947    }
2948
2949#if DEBUG_VMM_HANDLE_COW
2950cycle = (uint32_t)hal_get_cycles();
2951if( (DEBUG_VMM_HANDLE_COW < cycle) && (vpn > 0) )
2952printk("\n[%s] thread[%x,%x] exit for vpn %x / core[%x,%d] / cycle %d\n",
2953__FUNCTION__, this->process->pid, this->trdid, vpn, local_cxy, this->core->lid, cycle );
2954#endif
2955
2956#if (DEBUG_VMM_HANDLE_COW & 2)
2957hal_vmm_display( XPTR( local_cxy , process ) , true );
2958#endif
2959
2960     return EXCP_NON_FATAL;
2961
2962}   // end vmm_handle_cow()
2963
Note: See TracBrowser for help on using the repository browser.