source: trunk/libs/newlib/src/libgloss/mips/cma101.c @ 444

Last change on this file since 444 was 444, checked in by satin@…, 6 years ago

add newlib,libalmos-mkh, restructure shared_syscalls.h and mini-libc

File size: 8.8 KB
Line 
1/*
2 * cma101.c -- lo-level support for Cogent CMA101 development board.
3 *
4 * Copyright (c) 1996, 2001, 2002 Cygnus Support
5 *
6 * The authors hereby grant permission to use, copy, modify, distribute,
7 * and license this software and its documentation for any purpose, provided
8 * that existing copyright notices are retained in all copies and that this
9 * notice is included verbatim in any distributions. No written agreement,
10 * license, or royalty fee is required for any of the authorized uses.
11 * Modifications to this software may be copyrighted by their authors
12 * and need not follow the licensing terms described here, provided that
13 * the new terms are clearly indicated on the first page of each file where
14 * they apply.
15 */
16
17#ifdef __mips16
18/* The assembler portions of this file need to be re-written to
19   support mips16, if and when that seems useful.
20*/
21#error cma101.c can not be compiled -mips16
22#endif
23
24
25#include <time.h>       /* standard ANSI time routines */
26
27/* Normally these would appear in a header file for external
28   use. However, we are only building a simple example world at the
29   moment: */
30
31#include "regs.S"
32
33#if defined(MIPSEB)
34#define BYTEREG(b,o)    ((volatile unsigned char *)(PHYS_TO_K1((b) + (o) + 7)))
35#endif /* MIPSEB */
36#if defined(MIPSEL)
37#define BYTEREG(b,o)    ((volatile unsigned char *)(PHYS_TO_K1((b) + (o))))
38#endif /* MIPSEL */
39
40/* I/O addresses: */
41#define RTCLOCK_BASE (0x0E800000) /* Mk48T02 NVRAM/RTC */
42#define UART_BASE    (0x0E900000) /* NS16C552 DUART */
43#define LCD_BASE     (0x0EB00000) /* Alphanumeric display */
44
45/* LCD panel manifests: */
46#define LCD_DATA     BYTEREG(LCD_BASE,0)
47#define LCD_CMD      BYTEREG(LCD_BASE,8)
48
49#define LCD_STAT_BUSY   (0x80)
50#define LCD_SET_DDADDR  (0x80)
51
52/* RTC manifests */
53/* The lo-offsets are the NVRAM locations (0x7F8 bytes) */
54#define RTC_CONTROL     BYTEREG(RTCLOCK_BASE,0x3FC0)
55#define RTC_SECS        BYTEREG(RTCLOCK_BASE,0x3FC8)
56#define RTC_MINS        BYTEREG(RTCLOCK_BASE,0x3FD0)
57#define RTC_HOURS       BYTEREG(RTCLOCK_BASE,0x3FD8)
58#define RTC_DAY         BYTEREG(RTCLOCK_BASE,0x3FE0)
59#define RTC_DATE        BYTEREG(RTCLOCK_BASE,0x3FE8)
60#define RTC_MONTH       BYTEREG(RTCLOCK_BASE,0x3FF0)
61#define RTC_YEAR        BYTEREG(RTCLOCK_BASE,0x3FF8)
62
63#define RTC_CTL_LOCK_READ       (0x40) /* lock RTC whilst reading */
64#define RTC_CTL_LOCK_WRITE      (0x80) /* lock RTC whilst writing */
65
66/* Macro to force out-standing memory transfers to complete before
67   next sequence. For the moment we assume that the processor in the
68   CMA101 board supports at least ISA II.  */
69#define DOSYNC() asm(" .set mips2 ; sync ; .set mips0")
70
71/* We disable interrupts by writing zero to all of the masks, and the
72   global interrupt enable bit: */
73#define INTDISABLE(sr,tmp) asm("\
74 .set mips2 ; \
75 mfc0 %0,$12 ; \
76 lui %1,0xffff ; \
77 ori %1,%1,0xfffe ; \
78 and %1, %0, %1 ; \
79 mtc0 %1,$12 ; \
80 .set mips0" : "=d" (sr), "=d" (tmp))
81#define INTRESTORE(sr) asm("\
82 .set mips2 ; \
83 mtc0 %0,$12 ; \
84 .set mips0" : : "d" (sr))
85
86/* TODO:FIXME: The CPU card support should be in separate source file
87   from the standard CMA101 support provided in this file. */
88
89/* The CMA101 board being used contains a CMA257 Vr4300 CPU:
90   MasterClock is at 33MHz. PClock is derived from MasterClock by
91   multiplying by the ratio defined by the DivMode pins:
92        DivMode(1:0)    MasterClock     PClock  Ratio
93        00              100MHz          100MHz  1:1
94        01              100MHz          150MHz  1.5:1
95        10              100MHz          200MHz  2:1
96        11              100Mhz          300MHz  3:1
97
98   Are these pins reflected in the EC bits in the CONFIG register? or
99   is that talking about a different clock multiplier?
100        110 = 1
101        111 = 1.5
102        000 = 2
103        001 = 3
104        (all other values are undefined)
105*/
106
107#define MASTERCLOCK (33) /* ticks per uS */
108unsigned int pclock; /* number of PClock ticks per uS */
109void
110set_pclock (void)
111{
112  unsigned int config;
113  asm volatile ("mfc0 %0,$16 ; nop ; nop" : "=r" (config)); /* nasty CP0 register constant */
114  switch ((config >> 28) & 0x7) {
115    case 0x7 : /* 1.5:1 */
116     pclock = (MASTERCLOCK + (MASTERCLOCK / 2));
117     break;
118
119    case 0x0 : /* 2:1 */
120     pclock = (2 * MASTERCLOCK);
121     break;
122
123    case 0x1 : /* 3:1 */
124     pclock = (3 * MASTERCLOCK);
125     break;
126
127    case 0x6 : /* 1:1 */
128    default : /* invalid configuration, so assume the lowest */
129     pclock = MASTERCLOCK;
130     break;
131  }
132
133  return;
134}
135
136#define PCLOCK_WAIT(x)  __cpu_timer_poll((x) * pclock)
137
138/* NOTE: On the Cogent CMA101 board the LCD controller will sometimes
139   return not-busy, even though it is. The work-around is to perform a
140   ~50uS delay before checking the busy signal. */
141
142static int
143lcd_busy (void)
144{
145  PCLOCK_WAIT(50); /* 50uS delay */
146  return(*LCD_CMD & LCD_STAT_BUSY);
147}
148
149/* Note: This code *ASSUMES* that the LCD has already been initialised
150   by the monitor. It only provides code to write to the LCD, and is
151   not a complete device driver. */
152
153void
154lcd_display (int line, const char *msg)
155{
156  int n;
157
158  if (lcd_busy ())
159   return;
160
161  *LCD_CMD = (LCD_SET_DDADDR | (line == 1 ? 0x40 : 0x00));
162
163  for (n = 0; n < 16; n++) {
164    if (lcd_busy ())
165     return;
166    if (*msg)
167     *LCD_DATA = *msg++;
168    else
169     *LCD_DATA = ' ';
170  }
171
172  return;
173}
174
175#define SM_PATTERN (0x55AA55AA)
176#define SM_INCR ((256 << 10) / sizeof(unsigned int)) /* 64K words */
177
178extern unsigned int __buserr_count(void);
179extern void __default_buserr_handler(void);
180extern void __restore_buserr_handler(void);
181
182/* Allow the user to provide his/her own defaults.  */
183unsigned int __sizemem_default;
184
185unsigned int
186__sizemem ()
187{
188  volatile unsigned int *base;
189  volatile unsigned int *probe;
190  unsigned int baseorig;
191  unsigned int sr;
192  extern char end[];
193  char *endptr = (char *)&end;
194  int extra;
195
196  /* If the linker script provided a value for the memory size (or the user
197     overrode it in a debugger), use that.  */
198  if (__sizemem_default)
199    return __sizemem_default;
200
201  /* If we are running in kernel segment 0 (possibly cached), try sizing memory
202     in kernel segment 1 (uncached) to avoid some problems with monitors.  */
203  if (endptr >= K0BASE_ADDR && endptr < K1BASE_ADDR)
204    endptr = (endptr - K0BASE_ADDR) + K1BASE_ADDR;
205
206  INTDISABLE(sr,baseorig); /* disable all interrupt masks */
207
208  __default_buserr_handler();
209  __cpu_flush();
210
211  DOSYNC();
212
213  /* _end is the end of the user program.  _end may not be properly aligned
214     for an int pointer, so we adjust the address to make sure it is safe.
215     We use void * arithmetic to avoid accidentally truncating the pointer.  */
216
217  extra = ((int) endptr & (sizeof (int) - 1));
218  base = ((void *) endptr + sizeof (int) - extra);
219  baseorig = *base;
220
221  *base = SM_PATTERN;
222  /* This assumes that the instructions fetched between the store, and
223     the following read will have changed the data bus contents: */
224  if (*base == SM_PATTERN) {
225    probe = base;
226    for (;;) {
227      unsigned int probeorig;
228      probe += SM_INCR;
229      probeorig = *probe;
230      /* Check if a bus error occurred: */
231      if (!__buserr_count()) {
232        *probe = SM_PATTERN;
233        DOSYNC();
234        if (*probe == SM_PATTERN) {
235          *probe = ~SM_PATTERN;
236          DOSYNC();
237          if (*probe == ~SM_PATTERN) {
238            if (*base == SM_PATTERN) {
239              *probe = probeorig;
240              continue;
241            }
242          }
243        }
244        *probe = probeorig;
245      }
246      break;
247    }
248  }
249
250  *base = baseorig;
251  __restore_buserr_handler();
252  __cpu_flush();
253
254  DOSYNC();
255
256  INTRESTORE(sr); /* restore interrupt mask to entry state */
257
258  return((probe - base) * sizeof(unsigned int));
259}
260
261/* Provided as a function, so as to avoid reading the I/O location
262   multiple times: */
263static int
264convertbcd(byte)
265     unsigned char byte;
266{
267  return ((((byte >> 4) & 0xF) * 10) + (byte & 0xF));
268}
269
270time_t
271time (_timer)
272     time_t *_timer;
273{
274  time_t result = 0;
275  struct tm tm;
276  *RTC_CONTROL |= RTC_CTL_LOCK_READ;
277  DOSYNC();
278
279  tm.tm_sec = convertbcd(*RTC_SECS);
280  tm.tm_min = convertbcd(*RTC_MINS);
281  tm.tm_hour = convertbcd(*RTC_HOURS);
282  tm.tm_mday = convertbcd(*RTC_DATE);
283  tm.tm_mon = convertbcd(*RTC_MONTH);
284  tm.tm_year = convertbcd(*RTC_YEAR);
285
286  DOSYNC();
287  *RTC_CONTROL &= ~(RTC_CTL_LOCK_READ | RTC_CTL_LOCK_WRITE);
288
289  tm.tm_isdst = 0;
290
291  /* Check for invalid time information */
292  if ((tm.tm_sec < 60) && (tm.tm_min < 60) && (tm.tm_hour < 24)
293      && (tm.tm_mday < 32) && (tm.tm_mon < 13)) {
294
295    /* Get the correct year number, but keep it in YEAR-1900 form: */
296    if (tm.tm_year < 70)
297      tm.tm_year += 100;
298
299#if 0 /* NOTE: mon_printf() can only accept 4 arguments (format string + 3 fields) */
300    mon_printf("[DBG: s=%d m=%d h=%d]", tm.tm_sec, tm.tm_min, tm.tm_hour);
301    mon_printf("[DBG: d=%d m=%d y=%d]", tm.tm_mday, tm.tm_mon, tm.tm_year);
302#endif
303
304    /* Convert the time-structure into a second count */
305    result = mktime (&tm);
306  }
307
308  if (_timer != NULL)
309    *_timer = result;
310
311  return (result);
312}
313
314/*> EOF cma101.c <*/
Note: See TracBrowser for help on using the repository browser.