source: trunk/libs/newlib/src/newlib/libm/common/s_expm1.c @ 567

Last change on this file since 567 was 444, checked in by satin@…, 6 years ago

add newlib,libalmos-mkh, restructure shared_syscalls.h and mini-libc

File size: 8.1 KB
Line 
1
2/* @(#)s_expm1.c 5.1 93/09/24 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/*
15FUNCTION
16        <<expm1>>, <<expm1f>>---exponential minus 1
17INDEX
18        expm1
19INDEX
20        expm1f
21
22SYNOPSIS
23        #include <math.h>
24        double expm1(double <[x]>);
25        float expm1f(float <[x]>);
26
27DESCRIPTION
28        <<expm1>> and <<expm1f>> calculate the exponential of <[x]>
29        and subtract 1, that is,
30        @ifnottex
31        e raised to the power <[x]> minus 1 (where e
32        @end ifnottex
33        @tex
34        $e^x - 1$ (where $e$
35        @end tex
36        is the base of the natural system of logarithms, approximately
37        2.71828).  The result is accurate even for small values of
38        <[x]>, where using <<exp(<[x]>)-1>> would lose many
39        significant digits.
40
41RETURNS
42        e raised to the power <[x]>, minus 1.
43
44PORTABILITY
45        Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
46        the System V Interface Definition (Issue 2).
47*/
48
49/* expm1(x)
50 * Returns exp(x)-1, the exponential of x minus 1.
51 *
52 * Method
53 *   1. Argument reduction:
54 *      Given x, find r and integer k such that
55 *
56 *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658 
57 *
58 *      Here a correction term c will be computed to compensate
59 *      the error in r when rounded to a floating-point number.
60 *
61 *   2. Approximating expm1(r) by a special rational function on
62 *      the interval [0,0.34658]:
63 *      Since
64 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
65 *      we define R1(r*r) by
66 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
67 *      That is,
68 *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
69 *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
70 *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
71 *      We use a special Reme algorithm on [0,0.347] to generate
72 *      a polynomial of degree 5 in r*r to approximate R1. The
73 *      maximum error of this polynomial approximation is bounded
74 *      by 2**-61. In other words,
75 *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
76 *      where   Q1  =  -1.6666666666666567384E-2,
77 *              Q2  =   3.9682539681370365873E-4,
78 *              Q3  =  -9.9206344733435987357E-6,
79 *              Q4  =   2.5051361420808517002E-7,
80 *              Q5  =  -6.2843505682382617102E-9;
81 *      (where z=r*r, and the values of Q1 to Q5 are listed below)
82 *      with error bounded by
83 *          |                  5           |     -61
84 *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
85 *          |                              |
86 *     
87 *      expm1(r) = exp(r)-1 is then computed by the following
88 *      specific way which minimize the accumulation rounding error:
89 *                             2     3
90 *                            r     r    [ 3 - (R1 + R1*r/2)  ]
91 *            expm1(r) = r + --- + --- * [--------------------]
92 *                            2     2    [ 6 - r*(3 - R1*r/2) ]
93 *     
94 *      To compensate the error in the argument reduction, we use
95 *              expm1(r+c) = expm1(r) + c + expm1(r)*c
96 *                         ~ expm1(r) + c + r*c
97 *      Thus c+r*c will be added in as the correction terms for
98 *      expm1(r+c). Now rearrange the term to avoid optimization
99 *      screw up:
100 *                      (      2                                    2 )
101 *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
102 *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
103 *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
104 *                      (                                             )
105 *     
106 *                 = r - E
107 *   3. Scale back to obtain expm1(x):
108 *      From step 1, we have
109 *         expm1(x) = either 2^k*[expm1(r)+1] - 1
110 *                  = or     2^k*[expm1(r) + (1-2^-k)]
111 *   4. Implementation notes:
112 *      (A). To save one multiplication, we scale the coefficient Qi
113 *           to Qi*2^i, and replace z by (x^2)/2.
114 *      (B). To achieve maximum accuracy, we compute expm1(x) by
115 *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
116 *        (ii)  if k=0, return r-E
117 *        (iii) if k=-1, return 0.5*(r-E)-0.5
118 *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
119 *                     else          return  1.0+2.0*(r-E);
120 *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
121 *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
122 *        (vii) return 2^k(1-((E+2^-k)-r))
123 *
124 * Special cases:
125 *      expm1(INF) is INF, expm1(NaN) is NaN;
126 *      expm1(-INF) is -1, and
127 *      for finite argument, only expm1(0)=0 is exact.
128 *
129 * Accuracy:
130 *      according to an error analysis, the error is always less than
131 *      1 ulp (unit in the last place).
132 *
133 * Misc. info.
134 *      For IEEE double
135 *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
136 *
137 * Constants:
138 * The hexadecimal values are the intended ones for the following
139 * constants. The decimal values may be used, provided that the
140 * compiler will convert from decimal to binary accurately enough
141 * to produce the hexadecimal values shown.
142 */
143
144#include "fdlibm.h"
145
146#ifndef _DOUBLE_IS_32BITS
147
148#ifdef __STDC__
149static const double
150#else
151static double
152#endif
153one             = 1.0,
154huge            = 1.0e+300,
155tiny            = 1.0e-300,
156o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
157ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
158ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
159invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
160        /* scaled coefficients related to expm1 */
161Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
162Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
163Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
164Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
165Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
166
167#ifdef __STDC__
168        double expm1(double x)
169#else
170        double expm1(x)
171        double x;
172#endif
173{
174        double y,hi,lo,c,t,e,hxs,hfx,r1;
175        __int32_t k,xsb;
176        __uint32_t hx;
177
178        GET_HIGH_WORD(hx,x);
179        xsb = hx&0x80000000;            /* sign bit of x */
180        if(xsb==0) y=x; else y= -x;     /* y = |x| */
181        hx &= 0x7fffffff;               /* high word of |x| */
182
183    /* filter out huge and non-finite argument */
184        if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */
185            if(hx >= 0x40862E42) {              /* if |x|>=709.78... */
186                if(hx>=0x7ff00000) {
187                    __uint32_t low;
188                    GET_LOW_WORD(low,x);
189                    if(((hx&0xfffff)|low)!=0) 
190                         return x+x;     /* NaN */
191                    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
192                }
193                if(x > o_threshold) return huge*huge; /* overflow */
194            }
195            if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
196                if(x+tiny<0.0)          /* raise inexact */
197                return tiny-one;        /* return -1 */
198            }
199        }
200
201    /* argument reduction */
202        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */ 
203            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
204                if(xsb==0)
205                    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
206                else
207                    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
208            } else {
209                k  = invln2*x+((xsb==0)?0.5:-0.5);
210                t  = k;
211                hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
212                lo = t*ln2_lo;
213            }
214            x  = hi - lo;
215            c  = (hi-x)-lo;
216        } 
217        else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
218            t = huge+x; /* return x with inexact flags when x!=0 */
219            return x - (t-(huge+x));   
220        }
221        else k = 0;
222
223    /* x is now in primary range */
224        hfx = 0.5*x;
225        hxs = x*hfx;
226        r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
227        t  = 3.0-r1*hfx;
228        e  = hxs*((r1-t)/(6.0 - x*t));
229        if(k==0) return x - (x*e-hxs);          /* c is 0 */
230        else {
231            e  = (x*(e-c)-c);
232            e -= hxs;
233            if(k== -1) return 0.5*(x-e)-0.5;
234          if(k==1) {
235                if(x < -0.25) return -2.0*(e-(x+0.5));
236                else          return  one+2.0*(x-e);
237          }
238            if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
239                __uint32_t high;
240                y = one-(e-x);
241                GET_HIGH_WORD(high,y);
242                SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
243                return y-one;
244            }
245            t = one;
246            if(k<20) {
247                __uint32_t high;
248                SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
249                y = t-(e-x);
250                GET_HIGH_WORD(high,y);
251                SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
252           } else {
253                __uint32_t high;
254                SET_HIGH_WORD(t,((0x3ff-k)<<20));       /* 2^-k */
255                y = x-(e+t);
256                y += one;
257                GET_HIGH_WORD(high,y);
258                SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
259            }
260        }
261        return y;
262}
263
264#endif /* _DOUBLE_IS_32BITS */
Note: See TracBrowser for help on using the repository browser.