source: trunk/libs/newlib/src/newlib/libm/math/e_sqrt.c @ 567

Last change on this file since 567 was 444, checked in by satin@…, 6 years ago

add newlib,libalmos-mkh, restructure shared_syscalls.h and mini-libc

File size: 14.2 KB
Line 
1
2/* @(#)e_sqrt.c 5.1 93/09/24 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/* __ieee754_sqrt(x)
15 * Return correctly rounded sqrt.
16 *           ------------------------------------------
17 *           |  Use the hardware sqrt if you have one |
18 *           ------------------------------------------
19 * Method:
20 *   Bit by bit method using integer arithmetic. (Slow, but portable)
21 *   1. Normalization
22 *      Scale x to y in [1,4) with even powers of 2:
23 *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
24 *              sqrt(x) = 2^k * sqrt(y)
25 *   2. Bit by bit computation
26 *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
27 *           i                                                   0
28 *                                     i+1         2
29 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
30 *           i      i            i                 i
31 *                                                       
32 *      To compute q    from q , one checks whether
33 *                  i+1       i                       
34 *
35 *                            -(i+1) 2
36 *                      (q + 2      ) <= y.                     (2)
37 *                        i
38 *                                                            -(i+1)
39 *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
40 *                             i+1   i             i+1   i
41 *
42 *      With some algebric manipulation, it is not difficult to see
43 *      that (2) is equivalent to
44 *                             -(i+1)
45 *                      s  +  2       <= y                      (3)
46 *                       i                i
47 *
48 *      The advantage of (3) is that s  and y  can be computed by
49 *                                    i      i
50 *      the following recurrence formula:
51 *          if (3) is false
52 *
53 *          s     =  s  ,       y    = y   ;                    (4)
54 *           i+1      i          i+1    i
55 *
56 *          otherwise,
57 *                         -i                     -(i+1)
58 *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
59 *           i+1      i          i+1    i     i
60 *                             
61 *      One may easily use induction to prove (4) and (5).
62 *      Note. Since the left hand side of (3) contain only i+2 bits,
63 *            it does not necessary to do a full (53-bit) comparison
64 *            in (3).
65 *   3. Final rounding
66 *      After generating the 53 bits result, we compute one more bit.
67 *      Together with the remainder, we can decide whether the
68 *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
69 *      (it will never equal to 1/2ulp).
70 *      The rounding mode can be detected by checking whether
71 *      huge + tiny is equal to huge, and whether huge - tiny is
72 *      equal to huge for some floating point number "huge" and "tiny".
73 *             
74 * Special cases:
75 *      sqrt(+-0) = +-0         ... exact
76 *      sqrt(inf) = inf
77 *      sqrt(-ve) = NaN         ... with invalid signal
78 *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
79 *
80 * Other methods : see the appended file at the end of the program below.
81 *---------------
82 */
83
84#include "fdlibm.h"
85
86#ifndef _DOUBLE_IS_32BITS
87
88#ifdef __STDC__
89static  const double    one     = 1.0, tiny=1.0e-300;
90#else
91static  double  one     = 1.0, tiny=1.0e-300;
92#endif
93
94#ifdef __STDC__
95        double __ieee754_sqrt(double x)
96#else
97        double __ieee754_sqrt(x)
98        double x;
99#endif
100{
101        double z;
102        __int32_t sign = 0x80000000; 
103        __uint32_t r,t1,s1,ix1,q1;
104        __int32_t ix0,s0,q,m,t,i;
105
106        EXTRACT_WORDS(ix0,ix1,x);
107
108    /* take care of Inf and NaN */
109        if((ix0&0x7ff00000)==0x7ff00000) {                     
110            return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
111                                           sqrt(-inf)=sNaN */
112        } 
113    /* take care of zero */
114        if(ix0<=0) {
115            if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
116            else if(ix0<0)
117                return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */
118        }
119    /* normalize x */
120        m = (ix0>>20);
121        if(m==0) {                              /* subnormal x */
122            while(ix0==0) {
123                m -= 21;
124                ix0 |= (ix1>>11); ix1 <<= 21;
125            }
126            for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
127            m -= i-1;
128            ix0 |= (ix1>>(32-i));
129            ix1 <<= i;
130        }
131        m -= 1023;      /* unbias exponent */
132        ix0 = (ix0&0x000fffff)|0x00100000;
133        if(m&1){        /* odd m, double x to make it even */
134            ix0 += ix0 + ((ix1&sign)>>31);
135            ix1 += ix1;
136        }
137        m >>= 1;        /* m = [m/2] */
138
139    /* generate sqrt(x) bit by bit */
140        ix0 += ix0 + ((ix1&sign)>>31);
141        ix1 += ix1;
142        q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */
143        r = 0x00200000;         /* r = moving bit from right to left */
144
145        while(r!=0) {
146            t = s0+r; 
147            if(t<=ix0) { 
148                s0   = t+r; 
149                ix0 -= t; 
150                q   += r; 
151            } 
152            ix0 += ix0 + ((ix1&sign)>>31);
153            ix1 += ix1;
154            r>>=1;
155        }
156
157        r = sign;
158        while(r!=0) {
159            t1 = s1+r; 
160            t  = s0;
161            if((t<ix0)||((t==ix0)&&(t1<=ix1))) { 
162                s1  = t1+r;
163                if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
164                ix0 -= t;
165                if (ix1 < t1) ix0 -= 1;
166                ix1 -= t1;
167                q1  += r;
168            }
169            ix0 += ix0 + ((ix1&sign)>>31);
170            ix1 += ix1;
171            r>>=1;
172        }
173
174    /* use floating add to find out rounding direction */
175        if((ix0|ix1)!=0) {
176            z = one-tiny; /* trigger inexact flag */
177            if (z>=one) {
178                z = one+tiny;
179                if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;}
180                else if (z>one) {
181                    if (q1==(__uint32_t)0xfffffffe) q+=1;
182                    q1+=2; 
183                } else
184                    q1 += (q1&1);
185            }
186        }
187        ix0 = (q>>1)+0x3fe00000;
188        ix1 =  q1>>1;
189        if ((q&1)==1) ix1 |= sign;
190        ix0 += (m <<20);
191        INSERT_WORDS(z,ix0,ix1);
192        return z;
193}
194 
195#endif /* defined(_DOUBLE_IS_32BITS) */
196
197/*
198Other methods  (use floating-point arithmetic)
199-------------
200(This is a copy of a drafted paper by Prof W. Kahan
201and K.C. Ng, written in May, 1986)
202
203        Two algorithms are given here to implement sqrt(x)
204        (IEEE double precision arithmetic) in software.
205        Both supply sqrt(x) correctly rounded. The first algorithm (in
206        Section A) uses newton iterations and involves four divisions.
207        The second one uses reciproot iterations to avoid division, but
208        requires more multiplications. Both algorithms need the ability
209        to chop results of arithmetic operations instead of round them,
210        and the INEXACT flag to indicate when an arithmetic operation
211        is executed exactly with no roundoff error, all part of the
212        standard (IEEE 754-1985). The ability to perform shift, add,
213        subtract and logical AND operations upon 32-bit words is needed
214        too, though not part of the standard.
215
216A.  sqrt(x) by Newton Iteration
217
218   (1)  Initial approximation
219
220        Let x0 and x1 be the leading and the trailing 32-bit words of
221        a floating point number x (in IEEE double format) respectively
222
223            1    11                  52                           ...widths
224           ------------------------------------------------------
225        x: |s|    e     |             f                         |
226           ------------------------------------------------------
227              msb    lsb  msb                                 lsb ...order
228
229 
230             ------------------------        ------------------------
231        x0:  |s|   e    |    f1     |    x1: |          f2           |
232             ------------------------        ------------------------
233
234        By performing shifts and subtracts on x0 and x1 (both regarded
235        as integers), we obtain an 8-bit approximation of sqrt(x) as
236        follows.
237
238                k  := (x0>>1) + 0x1ff80000;
239                y0 := k - T1[31&(k>>15)].       ... y ~ sqrt(x) to 8 bits
240        Here k is a 32-bit integer and T1[] is an integer array containing
241        correction terms. Now magically the floating value of y (y's
242        leading 32-bit word is y0, the value of its trailing word is 0)
243        approximates sqrt(x) to almost 8-bit.
244
245        Value of T1:
246        static int T1[32]= {
247        0,      1024,   3062,   5746,   9193,   13348,  18162,  23592,
248        29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
249        83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
250        16499,  12183,  8588,   5674,   3403,   1742,   661,    130,};
251
252    (2) Iterative refinement
253
254        Apply Heron's rule three times to y, we have y approximates
255        sqrt(x) to within 1 ulp (Unit in the Last Place):
256
257                y := (y+x/y)/2          ... almost 17 sig. bits
258                y := (y+x/y)/2          ... almost 35 sig. bits
259                y := y-(y-x/y)/2        ... within 1 ulp
260
261
262        Remark 1.
263            Another way to improve y to within 1 ulp is:
264
265                y := (y+x/y)            ... almost 17 sig. bits to 2*sqrt(x)
266                y := y - 0x00100006     ... almost 18 sig. bits to sqrt(x)
267
268                                2
269                            (x-y )*y
270                y := y + 2* ----------  ...within 1 ulp
271                               2
272                             3y  + x
273
274
275        This formula has one division fewer than the one above; however,
276        it requires more multiplications and additions. Also x must be
277        scaled in advance to avoid spurious overflow in evaluating the
278        expression 3y*y+x. Hence it is not recommended uless division
279        is slow. If division is very slow, then one should use the
280        reciproot algorithm given in section B.
281
282    (3) Final adjustment
283
284        By twiddling y's last bit it is possible to force y to be
285        correctly rounded according to the prevailing rounding mode
286        as follows. Let r and i be copies of the rounding mode and
287        inexact flag before entering the square root program. Also we
288        use the expression y+-ulp for the next representable floating
289        numbers (up and down) of y. Note that y+-ulp = either fixed
290        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
291        mode.
292
293                I := FALSE;     ... reset INEXACT flag I
294                R := RZ;        ... set rounding mode to round-toward-zero
295                z := x/y;       ... chopped quotient, possibly inexact
296                If(not I) then {        ... if the quotient is exact
297                    if(z=y) {
298                        I := i;  ... restore inexact flag
299                        R := r;  ... restore rounded mode
300                        return sqrt(x):=y.
301                    } else {
302                        z := z - ulp;   ... special rounding
303                    }
304                }
305                i := TRUE;              ... sqrt(x) is inexact
306                If (r=RN) then z=z+ulp  ... rounded-to-nearest
307                If (r=RP) then {        ... round-toward-+inf
308                    y = y+ulp; z=z+ulp;
309                }
310                y := y+z;               ... chopped sum
311                y0:=y0-0x00100000;      ... y := y/2 is correctly rounded.
312                I := i;                 ... restore inexact flag
313                R := r;                 ... restore rounded mode
314                return sqrt(x):=y.
315                   
316    (4) Special cases
317
318        Square root of +inf, +-0, or NaN is itself;
319        Square root of a negative number is NaN with invalid signal.
320
321
322B.  sqrt(x) by Reciproot Iteration
323
324   (1)  Initial approximation
325
326        Let x0 and x1 be the leading and the trailing 32-bit words of
327        a floating point number x (in IEEE double format) respectively
328        (see section A). By performing shifs and subtracts on x0 and y0,
329        we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
330
331            k := 0x5fe80000 - (x0>>1);
332            y0:= k - T2[63&(k>>14)].    ... y ~ 1/sqrt(x) to 7.8 bits
333
334        Here k is a 32-bit integer and T2[] is an integer array
335        containing correction terms. Now magically the floating
336        value of y (y's leading 32-bit word is y0, the value of
337        its trailing word y1 is set to zero) approximates 1/sqrt(x)
338        to almost 7.8-bit.
339
340        Value of T2:
341        static int T2[64]= {
342        0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
343        0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
344        0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
345        0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
346        0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
347        0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
348        0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
349        0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
350
351    (2) Iterative refinement
352
353        Apply Reciproot iteration three times to y and multiply the
354        result by x to get an approximation z that matches sqrt(x)
355        to about 1 ulp. To be exact, we will have
356                -1ulp < sqrt(x)-z<1.0625ulp.
357       
358        ... set rounding mode to Round-to-nearest
359           y := y*(1.5-0.5*x*y*y)       ... almost 15 sig. bits to 1/sqrt(x)
360           y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
361        ... special arrangement for better accuracy
362           z := x*y                     ... 29 bits to sqrt(x), with z*y<1
363           z := z + 0.5*z*(1-z*y)       ... about 1 ulp to sqrt(x)
364
365        Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
366        (a) the term z*y in the final iteration is always less than 1;
367        (b) the error in the final result is biased upward so that
368                -1 ulp < sqrt(x) - z < 1.0625 ulp
369            instead of |sqrt(x)-z|<1.03125ulp.
370
371    (3) Final adjustment
372
373        By twiddling y's last bit it is possible to force y to be
374        correctly rounded according to the prevailing rounding mode
375        as follows. Let r and i be copies of the rounding mode and
376        inexact flag before entering the square root program. Also we
377        use the expression y+-ulp for the next representable floating
378        numbers (up and down) of y. Note that y+-ulp = either fixed
379        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
380        mode.
381
382        R := RZ;                ... set rounding mode to round-toward-zero
383        switch(r) {
384            case RN:            ... round-to-nearest
385               if(x<= z*(z-ulp)...chopped) z = z - ulp; else
386               if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
387               break;
388            case RZ:case RM:    ... round-to-zero or round-to--inf
389               R:=RP;           ... reset rounding mod to round-to-+inf
390               if(x<z*z ... rounded up) z = z - ulp; else
391               if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
392               break;
393            case RP:            ... round-to-+inf
394               if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
395               if(x>z*z ...chopped) z = z+ulp;
396               break;
397        }
398
399        Remark 3. The above comparisons can be done in fixed point. For
400        example, to compare x and w=z*z chopped, it suffices to compare
401        x1 and w1 (the trailing parts of x and w), regarding them as
402        two's complement integers.
403
404        ...Is z an exact square root?
405        To determine whether z is an exact square root of x, let z1 be the
406        trailing part of z, and also let x0 and x1 be the leading and
407        trailing parts of x.
408
409        If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
410            I := 1;             ... Raise Inexact flag: z is not exact
411        else {
412            j := 1 - [(x0>>20)&1]       ... j = logb(x) mod 2
413            k := z1 >> 26;              ... get z's 25-th and 26-th
414                                            fraction bits
415            I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
416        }
417        R:= r           ... restore rounded mode
418        return sqrt(x):=z.
419
420        If multiplication is cheaper then the foregoing red tape, the
421        Inexact flag can be evaluated by
422
423            I := i;
424            I := (z*z!=x) or I.
425
426        Note that z*z can overwrite I; this value must be sensed if it is
427        True.
428
429        Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
430        zero.
431
432                    --------------------
433                z1: |        f2        |
434                    --------------------
435                bit 31             bit 0
436
437        Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
438        or even of logb(x) have the following relations:
439
440        -------------------------------------------------
441        bit 27,26 of z1         bit 1,0 of x1   logb(x)
442        -------------------------------------------------
443        00                      00              odd and even
444        01                      01              even
445        10                      10              odd
446        10                      00              even
447        11                      01              even
448        -------------------------------------------------
449
450    (4) Special cases (see (4) of Section A).   
451 
452 */
Note: See TracBrowser for help on using the repository browser.