source: trunk/libs/newlib/src/newlib/libm/mathfp/er_lgamma.c @ 444

Last change on this file since 444 was 444, checked in by satin@…, 6 years ago

add newlib,libalmos-mkh, restructure shared_syscalls.h and mini-libc

File size: 13.3 KB
Line 
1
2/* @(#)er_lgamma.c 5.1 93/09/24 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 *
13 */
14
15/*
16FUNCTION
17        <<gamma>>, <<gammaf>>, <<lgamma>>, <<lgammaf>>, <<gamma_r>>,
18        <<gammaf_r>>, <<lgamma_r>>, <<lgammaf_r>>---logarithmic gamma
19        function
20INDEX
21gamma
22INDEX
23gammaf
24INDEX
25lgamma
26INDEX
27lgammaf
28INDEX
29gamma_r
30INDEX
31gammaf_r
32INDEX
33lgamma_r
34INDEX
35lgammaf_r
36
37SYNOPSIS
38#include <math.h>
39double gamma(double <[x]>);
40float gammaf(float <[x]>);
41double lgamma(double <[x]>);
42float lgammaf(float <[x]>);
43double gamma_r(double <[x]>, int *<[signgamp]>);
44float gammaf_r(float <[x]>, int *<[signgamp]>);
45double lgamma_r(double <[x]>, int *<[signgamp]>);
46float lgammaf_r(float <[x]>, int *<[signgamp]>);
47
48DESCRIPTION
49<<gamma>> calculates
50@tex
51$\mit ln\bigl(\Gamma(x)\bigr)$,
52@end tex
53the natural logarithm of the gamma function of <[x]>.  The gamma function
54(<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains
55the property that
56@ifnottex
57<<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>.
58@end ifnottex
59@tex
60$\mit \Gamma(N)\equiv N\times\Gamma(N-1)$.
61@end tex
62Accordingly, the results of the gamma function itself grow very
63quickly.  <<gamma>> is defined as
64@tex
65$\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$
66@end tex
67@ifnottex
68the natural log of the gamma function, rather than the gamma function
69itself,
70@end ifnottex
71to extend the useful range of results representable.
72
73The sign of the result is returned in the global variable <<signgam>>,
74which is declared in math.h.
75
76<<gammaf>> performs the same calculation as <<gamma>>, but uses and
77returns <<float>> values.
78
79<<lgamma>> and <<lgammaf>> are alternate names for <<gamma>> and
80<<gammaf>>.  The use of <<lgamma>> instead of <<gamma>> is a reminder
81that these functions compute the log of the gamma function, rather
82than the gamma function itself.
83
84The functions <<gamma_r>>, <<gammaf_r>>, <<lgamma_r>>, and
85<<lgammaf_r>> are just like <<gamma>>, <<gammaf>>, <<lgamma>>, and
86<<lgammaf>>, respectively, but take an additional argument.  This
87additional argument is a pointer to an integer.  This additional
88argument is used to return the sign of the result, and the global
89variable <<signgam>> is not used.  These functions may be used for
90reentrant calls (but they will still set the global variable <<errno>>
91if an error occurs).
92
93RETURNS
94Normally, the computed result is returned.
95
96When <[x]> is a nonpositive integer, <<gamma>> returns <<HUGE_VAL>>
97and <<errno>> is set to <<EDOM>>.  If the result overflows, <<gamma>>
98returns <<HUGE_VAL>> and <<errno>> is set to <<ERANGE>>.
99
100You can modify this error treatment using <<matherr>>.
101
102PORTABILITY
103Neither <<gamma>> nor <<gammaf>> is ANSI C.  */
104
105/* lgamma_r(x, signgamp)
106 * Reentrant version of the logarithm of the Gamma function
107 * with user provide pointer for the sign of Gamma(x).
108 *
109 * Method:
110 *   1. Argument Reduction for 0 < x <= 8
111 *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
112 *      reduce x to a number in [1.5,2.5] by
113 *              lgamma(1+s) = log(s) + lgamma(s)
114 *      for example,
115 *              lgamma(7.3) = log(6.3) + lgamma(6.3)
116 *                          = log(6.3*5.3) + lgamma(5.3)
117 *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
118 *   2. Polynomial approximation of lgamma around its
119 *      minimun ymin=1.461632144968362245 to maintain monotonicity.
120 *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
121 *              Let z = x-ymin;
122 *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
123 *      where
124 *              poly(z) is a 14 degree polynomial.
125 *   2. Rational approximation in the primary interval [2,3]
126 *      We use the following approximation:
127 *              s = x-2.0;
128 *              lgamma(x) = 0.5*s + s*P(s)/Q(s)
129 *      with accuracy
130 *              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
131 *      Our algorithms are based on the following observation
132 *
133 *                             zeta(2)-1    2    zeta(3)-1    3
134 * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
135 *                                 2                 3
136 *
137 *      where Euler = 0.5771... is the Euler constant, which is very
138 *      close to 0.5.
139 *
140 *   3. For x>=8, we have
141 *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
142 *      (better formula:
143 *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
144 *      Let z = 1/x, then we approximation
145 *              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
146 *      by
147 *                                  3       5             11
148 *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
149 *      where
150 *              |w - f(z)| < 2**-58.74
151 *             
152 *   4. For negative x, since (G is gamma function)
153 *              -x*G(-x)*G(x) = pi/sin(pi*x),
154 *      we have
155 *              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
156 *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
157 *      Hence, for x<0, signgam = sign(sin(pi*x)) and
158 *              lgamma(x) = log(|Gamma(x)|)
159 *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
160 *      Note: one should avoid compute pi*(-x) directly in the
161 *            computation of sin(pi*(-x)).
162 *             
163 *   5. Special Cases
164 *              lgamma(2+s) ~ s*(1-Euler) for tiny s
165 *              lgamma(1)=lgamma(2)=0
166 *              lgamma(x) ~ -log(x) for tiny x
167 *              lgamma(0) = lgamma(inf) = inf
168 *              lgamma(-integer) = +-inf
169 *     
170 */
171
172#include "fdlibm.h"
173
174#ifdef __STDC__
175static const double 
176#else
177static double 
178#endif
179two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
180half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
181one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
182pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
183a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
184a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
185a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
186a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
187a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
188a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
189a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
190a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
191a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
192a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
193a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
194a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
195tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
196tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
197/* tt = -(tail of tf) */
198tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
199t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
200t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
201t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
202t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
203t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
204t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
205t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
206t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
207t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
208t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
209t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
210t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
211t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
212t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
213t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
214u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
215u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
216u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
217u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
218u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
219u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
220v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
221v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
222v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
223v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
224v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
225s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
226s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
227s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
228s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
229s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
230s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
231s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
232r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
233r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
234r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
235r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
236r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
237r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
238w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
239w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
240w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
241w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
242w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
243w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
244w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
245
246#ifdef __STDC__
247static const double zero=  0.00000000000000000000e+00;
248#else
249static double zero=  0.00000000000000000000e+00;
250#endif
251
252#ifdef __STDC__
253        static double sin_pi(double x)
254#else
255        static double sin_pi(x)
256        double x;
257#endif
258{
259        double y,z;
260        __int32_t n,ix;
261
262        GET_HIGH_WORD(ix,x);
263        ix &= 0x7fffffff;
264
265        if(ix<0x3fd00000) return sin(pi*x);
266        y = -x;         /* x is assume negative */
267
268    /*
269     * argument reduction, make sure inexact flag not raised if input
270     * is an integer
271     */
272        z = floor(y);
273        if(z!=y) {                              /* inexact anyway */
274            y  *= 0.5;
275            y   = 2.0*(y - floor(y));           /* y = |x| mod 2.0 */
276            n   = (__int32_t) (y*4.0);
277        } else {
278            if(ix>=0x43400000) {
279                y = zero; n = 0;                 /* y must be even */
280            } else {
281                if(ix<0x43300000) z = y+two52;  /* exact */
282                GET_LOW_WORD(n,z);
283                n &= 1;
284                y  = n;
285                n<<= 2;
286            }
287        }
288        switch (n) {
289            case 0:   y =  sin(pi*y); break;
290            case 1:   
291            case 2:   y =  cos(pi*(0.5-y)); break;
292            case 3: 
293            case 4:   y =  sin(pi*(one-y)); break;
294            case 5:
295            case 6:   y = -cos(pi*(y-1.5)); break;
296            default:  y =  sin(pi*(y-2.0)); break;
297            }
298        return -y;
299}
300
301
302#ifdef __STDC__
303        double lgamma_r(double x, int *signgamp)
304#else
305        double lgamma_r(x,signgamp)
306        double x; int *signgamp;
307#endif
308{
309        double t,y,z,nadj,p,p1,p2,p3,q,r,w;
310        __int32_t i,hx,lx,ix;
311
312        nadj = 0;
313
314        EXTRACT_WORDS(hx,lx,x);
315
316    /* purge off +-inf, NaN, +-0, and negative arguments */
317        *signgamp = 1;
318        ix = hx&0x7fffffff;
319        if(ix>=0x7ff00000) return x*x;
320        if((ix|lx)==0) return one/zero;
321        if(ix<0x3b900000) {     /* |x|<2**-70, return -log(|x|) */
322            if(hx<0) {
323                *signgamp = -1;
324                return -log(-x);
325            } else return -log(x);
326        }
327        if(hx<0) {
328            if(ix>=0x43300000)  /* |x|>=2**52, must be -integer */
329                return one/zero;
330            t = sin_pi(x);
331            if(t==zero) return one/zero; /* -integer */
332            nadj = log(pi/fabs(t*x));
333            if(t<zero) *signgamp = -1;
334            x = -x;
335        }
336
337    /* purge off 1 and 2 */
338        if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
339    /* for x < 2.0 */
340        else if(ix<0x40000000) {
341            if(ix<=0x3feccccc) {        /* lgamma(x) = lgamma(x+1)-log(x) */
342                r = -log(x);
343                if(ix>=0x3FE76944) {y = one-x; i= 0;}
344                else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
345                else {y = x; i=2;}
346            } else {
347                r = zero;
348                if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
349                else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
350                else {y=x-one;i=2;}
351            }
352            switch(i) {
353              case 0:
354                z = y*y;
355                p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
356                p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
357                p  = y*p1+p2;
358                r  += (p-0.5*y); break;
359              case 1:
360                z = y*y;
361                w = z*y;
362                p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
363                p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
364                p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
365                p  = z*p1-(tt-w*(p2+y*p3));
366                r += (tf + p); break;
367              case 2:   
368                p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
369                p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
370                r += (-0.5*y + p1/p2);
371            }
372        }
373        else if(ix<0x40200000) {                        /* x < 8.0 */
374            i = (__int32_t)x;
375            t = zero;
376            y = x-(double)i;
377            p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
378            q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
379            r = half*y+p/q;
380            z = one;    /* lgamma(1+s) = log(s) + lgamma(s) */
381            switch(i) {
382            case 7: z *= (y+6.0);       /* FALLTHRU */
383            case 6: z *= (y+5.0);       /* FALLTHRU */
384            case 5: z *= (y+4.0);       /* FALLTHRU */
385            case 4: z *= (y+3.0);       /* FALLTHRU */
386            case 3: z *= (y+2.0);       /* FALLTHRU */
387                    r += log(z); break;
388            }
389    /* 8.0 <= x < 2**58 */
390        } else if (ix < 0x43900000) {
391            t = log(x);
392            z = one/x;
393            y = z*z;
394            w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
395            r = (x-half)*(t-one)+w;
396        } else 
397    /* 2**58 <= x <= inf */
398            r =  x*(log(x)-one);
399        if(hx<0) r = nadj - r;
400        return r;
401}
402
403double
404lgamma(double x)
405{
406  return lgamma_r(x, &(_REENT_SIGNGAM(_REENT)));
407}
Note: See TracBrowser for help on using the repository browser.