source: trunk/tools/bootloader_tsar/boot.c @ 279

Last change on this file since 279 was 279, checked in by alain, 7 years ago

1) Introduce independant command fields for the various devices in the thread descriptor.
2) Introduce a new dev_pic_enable_ipi() function in the generic PIC device
3) Fix two bugs identified by Maxime in the scheduler initialisation, and in the sched_select().
4) fix several bugs in the TSAR hal_kentry.S.
5) Introduce a third kgiet segment (besides kdata and kcode) in the TSAR bootloader.

File size: 37.8 KB
RevLine 
[6]1/*
2 * boot.c - TSAR bootloader implementation.
3 *
4 * Authors :   Alain Greiner / Vu Son  (2016)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
[1]24/****************************************************************************
[6]25 * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. *
[1]26 *                                                                          *
27 * It supports clusterised shared memory multi-processor architectures,     *
[50]28 * where each processor core is identified by a composite index [cxy,lid]   *
[1]29 * with one physical memory bank per cluster.                               *
30 *                                                                          *
31 * The 'boot.elf' file (containing the boot-loader binary code) is stored   *
[50]32 * on disk and is loaded into memory by core[0,0] (cxy = 0 / lid = 0),      *
33 * and is copied in each other cluter by the local CP0 (lid = 0].           *
[1]34 *                                                                          *
[50]35 * 1) The boot-loader first phase is executed by core[0,0], while           *
[1]36 *    all other cores are waiting in the preloader.                         *
37 *    It does the following tasks:                                          *
[50]38 *      - load into the memory bank of cluster 0 the 'arch_info.bin'        *
[1]39 *        file (containing the hardware architecture description) and the   *
40 *        'kernel.elf' file, at temporary locations,                        *   
41 *      - initializes the 'boot_info_t' structure in cluster(0,0)           *
42 *        (there is 1 'boot_info_t' per cluster), which contains both       *
43 *        global and cluster specific information that will be used for     *
44 *        kernel initialisation.                                            *
45 *      - activate CP0s in all other clusters, using IPIs.                  *
46 *      - wait completion reports from CP0s on a global barrier.            *
47 *                                                                          *
48 * 2) The boot-loader second phase is then executed in parallel by all      *
[50]49 *    CP0s (other than core[0,0]). Each CP0 performs the following tasks:   *
[1]50 *      - copies into the memory bank of the local cluster the 'boot.elf',  *
51 *        the 'arch_info.bin' (at the same addresses as the 'boot.elf' and  *
52 *        the 'arch_info.bin' in the memory bank of the cluster(0,0), and   *
53 *        the kernel image (at address 0x0),                                *
54 *      - initializes the 'boot_info_t' structure of the local cluster,     *
55 *      - activate all other cores in the same cluster (CPi).               *
56 *      - wait local CPi completion reports on a local barrier.             *
57 *      - report completion to bscpu on the global barrier.                 *
58 *                                                                          *
59 * 3) The boot-loader third phase is executed in parallel by all cores.     *
60 *    After passing the global barrier the bscpu:                           *
[50]61 *      - activates the CPi of cluster(0),                                  *
[1]62 *      - blocks on the local barrier waiting for all local CPi to report   *
63 *        completion on the local barrier,                                  *
64 *      - moves the local kernel image from the temporary location to the   *
65 *        address 0x0, (erasing the preloader code).                        *
66 *                                                                          *
67 * 4) All cores have finished the boot phase, they jump to the kern_init()  *
68 *    function (maybe not at the same time).                                *
69 ****************************************************************************/
70
71#include <elf-types.h>
[6]72#include <hal_types.h>
[1]73
[13]74#include <kernel_config.h>
[1]75#include <boot_config.h>
76
77#include <arch_info.h>
78#include <boot_info.h>
79
80#include <boot_utils.h>
81#include <boot_fat32.h>
82#include <boot_bdv_driver.h>
83#include <boot_hba_driver.h>
84#include <boot_tty_driver.h>
85
[6]86/*****************************************************************************
87 *                                 Macros.                             
[1]88 ****************************************************************************/
89
90#define PAGE_ROUND_DOWN(x)  ((x) & (~PPM_PAGE_SIZE -1))
91#define PAGE_ROUND_UP(x)    (((x) + PPM_PAGE_SIZE-1) &   \
92                            (~(PPM_PAGE_SIZE-1)))
93
[6]94/*****************************************************************************
95 *                             Global variables.                           
[1]96 ****************************************************************************/
97
98// synchronization variables.
99
[6]100volatile boot_remote_spinlock_t tty0_lock;       // protect TTY0 access
101volatile boot_remote_barrier_t  global_barrier;  // synchronize CP0 cores
102volatile boot_remote_barrier_t  local_barrier;   // synchronize cores in one cluster
103uint32_t                        active_cp0s_nr;  // number of expected CP0s
104 
105// kernel segments layout variables
[1]106
[6]107uint32_t                        seg_kcode_base;  // kcode segment base address
108uint32_t                        seg_kcode_size;  // kcode segment size (bytes)
109uint32_t                        seg_kdata_base;  // kdata segment base address
110uint32_t                        seg_kdata_size;  // kdata segment size (bytes)
[279]111uint32_t                        seg_kgiet_base;  // kcode segment base address
112uint32_t                        seg_kgiet_size;  // kcode segment size (bytes)
113
[6]114uint32_t                        kernel_entry;    // kernel entry point
[1]115
[6]116// address used by the WTI to activate remote CP0s
[1]117
[6]118extern void                     boot_entry();    // boot_loader entry point
[1]119
[6]120/*********************************************************************************
121 * This function returns the printable string for each device type
122 ********************************************************************************/
[1]123char * device_type_str( uint32_t dev_type )
124{
[6]125    if     ( dev_type == DEV_TYPE_RAM_SCL ) return "RAM_SCL";
126    else if( dev_type == DEV_TYPE_ROM_SCL ) return "ROM_SCL";
127    else if( dev_type == DEV_TYPE_FBF_SCL ) return "FBF_SCL";
128    else if( dev_type == DEV_TYPE_IOB_TSR ) return "IOB_TSR";
[1]129    else if( dev_type == DEV_TYPE_IOC_BDV ) return "IOC_BDV";
130    else if( dev_type == DEV_TYPE_IOC_HBA ) return "IOC_HBA";
131    else if( dev_type == DEV_TYPE_IOC_SDC ) return "IOC_SDC";
132    else if( dev_type == DEV_TYPE_IOC_SPI ) return "IOC_SPI";
133    else if( dev_type == DEV_TYPE_IOC_RDK ) return "IOC_RDK";
[6]134    else if( dev_type == DEV_TYPE_MMC_TSR ) return "MMC_TSR";
135    else if( dev_type == DEV_TYPE_DMA_SCL ) return "DMA_SCL";
136    else if( dev_type == DEV_TYPE_NIC_CBF ) return "NIC_CBF";
137    else if( dev_type == DEV_TYPE_TIM_SCL ) return "TIM_SCL";
138    else if( dev_type == DEV_TYPE_TXT_TTY ) return "TXT_TTY";
139    else if( dev_type == DEV_TYPE_ICU_XCU ) return "ICU_XCU";
140    else if( dev_type == DEV_TYPE_PIC_TSR ) return "PIC_TSR";
141    else                                    return "undefined";
[1]142}
143
[6]144/************************************************************************************
[1]145 * This function loads the arch_info.bin file into the boot cluster memory.
[6]146 ***********************************************************************************/
[1]147static void boot_archinfo_load()
148{
149    archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; 
150   
151    // Load file into memory
152    if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE))
153    {
154        boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): "
155                    "<%s> file not found\n",
156                    ARCHINFO_PATHNAME);
157        boot_exit();
158    }
159
160    if (header->signature != ARCHINFO_SIGNATURE)
161    {
162        boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): "
163                    "<%s> file signature should be %x\n",
164                    ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE);
165        boot_exit();
166    }
167
168#if DEBUG_BOOT_INFO
[6]169boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n",
170            __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE );
[1]171#endif
172
173} // boot_archinfo_load()
174
[6]175/**************************************************************************************
176 * This function loads the 'kernel.elf' file into the boot cluster memory buffer,
[279]177 * analyzes it, and places the three kcode, kgiet, kdata segments at their final
178 * physical adresses (defined the .elf file).       
[6]179 * It set the global variables defining the kernel layout.
180 *************************************************************************************/
[1]181static void boot_kernel_load()
182{
[6]183    Elf32_Ehdr * elf_header;      // pointer on kernel.elf header. 
184    Elf32_Phdr * program_header;  // pointer on kernel.elf program header.
185    uint32_t     phdr_offset;     // program header offset in kernel.elf file.
186    uint32_t     segments_nb;     // number of segments in kernel.elf file.
187    uint32_t     seg_src_addr;    // segment address in kernel.elf file (source).
188    uint32_t     seg_paddr;       // segment local physical address of segment
189    uint32_t     seg_offset;      // segment offset in kernel.elf file
190    uint32_t     seg_filesz;      // segment size (bytes) in kernel.elf file
191    uint32_t     seg_memsz;       // segment size (bytes) in memory image.
192    bool_t       kcode_found;     // kcode segment found.
193    bool_t       kdata_found;     // kdata segment found.
[279]194    bool_t       kgiet_found;     // kgiet segment found.
[6]195    uint32_t     seg_id;          // iterator for segments loop.
[1]196
[6]197#if DEBUG_BOOT_ELF
198boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n",
199            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
200#endif
[1]201
[6]202    // Load kernel.elf file into memory buffer
203    if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) )
[1]204    {
[6]205        boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n",
[1]206                    KERNEL_PATHNAME);
207        boot_exit();
208    }
209
[6]210    // get pointer to kernel.elf header 
[1]211    elf_header = (Elf32_Ehdr*)KERN_BASE;
212
[6]213    // check signature
[1]214    if ((elf_header->e_ident[EI_MAG0] != ELFMAG0)   ||
215        (elf_header->e_ident[EI_MAG1] != ELFMAG1)   ||
216        (elf_header->e_ident[EI_MAG2] != ELFMAG2)   ||
217        (elf_header->e_ident[EI_MAG3] != ELFMAG3))
218    {
219        boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): "
220                    "<%s> is not an ELF file\n",
221                    KERNEL_PATHNAME);
222        boot_exit();
223    }
224
[6]225    // Get program header table offset and number of segments
[1]226    phdr_offset     = elf_header->e_phoff;
227    segments_nb     = elf_header->e_phnum;
228
[6]229    // Get program header table pointer
[1]230    program_header  = (Elf32_Phdr*)(KERN_BASE + phdr_offset);
231
[6]232    // loop on segments
233    kcode_found = false;
234    kdata_found = false;
[279]235    kgiet_found = false;
[1]236    for (seg_id = 0; seg_id < segments_nb; seg_id++) 
237    {
[6]238        if (program_header[seg_id].p_type == PT_LOAD)   // Found one loadable segment
[1]239        {
[6]240            // Get segment attributes.
[1]241            seg_paddr    = program_header[seg_id].p_paddr;   
242            seg_offset   = program_header[seg_id].p_offset;
243            seg_filesz   = program_header[seg_id].p_filesz;
244            seg_memsz    = program_header[seg_id].p_memsz;
245
[6]246            // get segment base address in buffer
[1]247            seg_src_addr = (uint32_t)KERN_BASE + seg_offset;
248
[6]249            // Load segment to its final physical memory address
250            boot_memcpy( (void*)seg_paddr, 
251                         (void*)seg_src_addr, 
252                         seg_filesz );
253
254#if DEBUG_BOOT_ELF
255boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n"
256            "   base = %x / size = %x\n",
257            __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz );
258#endif
259
[1]260            // Fill remaining memory with zero if (filesz < memsz).
[6]261            if( seg_memsz < seg_filesz )
[1]262            {
[6]263                boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz);
[1]264            }
265
[279]266            // Note: we suppose that the 'kernel.elf' file contains exactly
267            // three loadable segments ktext, kgiet, & kdata:
268            // - the kcode segment is read-only and base < 0x80000000
269            // - the kgiet segment is read-only and base >= 0x8000000
[6]270
[279]271            if( ((program_header[seg_id].p_flags & PF_W) == 0) &&
272                 (program_header[seg_id].p_paddr < 0x80000000) )     // kcode segment
[1]273            {
[6]274                if( kcode_found )
275                {
276                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
[279]277                                "   two kcode segments found\n",
[6]278                                __FUNCTION__ , KERNEL_PATHNAME );
279                    boot_exit();
280                } 
281
282                kcode_found     = true;
283                seg_kcode_base = seg_paddr;
284                seg_kcode_size = seg_memsz;
[1]285            }
[279]286            else if( program_header[seg_id].p_paddr >= 0x80000000 ) // kgiet segment
[6]287            {
[279]288                if( kgiet_found )
289                {
290                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
291                                "   two kgiet segments found\n",
292                                __FUNCTION__ , KERNEL_PATHNAME );
293                    boot_exit();
294                } 
295
296                kgiet_found     = true;
297                seg_kgiet_base = seg_paddr;
298                seg_kgiet_size = seg_memsz;
299            }
300            else                                                    // kdata segment
301            {
[6]302                if( kdata_found )
303                {
304                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
305                                "   two loadable kdata segments found\n",
306                                __FUNCTION__ , KERNEL_PATHNAME );
307                    boot_exit();
308                } 
309
310                kdata_found     = true;
311                seg_kdata_base = seg_paddr;
312                seg_kdata_size = seg_memsz;
313            }
[1]314        }
315    }
316
[6]317    // check kcode & kdata segments found
318    if( kcode_found == false )
319    {
[279]320        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kcode not found\n",
[6]321                    __FUNCTION__ , KERNEL_PATHNAME );
322        boot_exit();
323    }
[279]324    if( kgiet_found == false )
325    {
326        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kgiet not found\n",
327                    __FUNCTION__ , KERNEL_PATHNAME );
328        boot_exit();
329    }
[6]330    if( kdata_found == false )
331    {
[279]332        boot_printf("\n[BOOT_ERROR] in %s for file %s : seg_kdata not found\n",
[6]333                    __FUNCTION__ , KERNEL_PATHNAME );
334        boot_exit();
335    }
336
337    // set entry point
[1]338    kernel_entry = (uint32_t)elf_header->e_entry;
339
[6]340#if DEBUG_BOOT_ELF
[279]341boot_printf("\n[BOOT INFO] %s completed for file %s at cycle %d\n",
[6]342            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
343#endif
344
[1]345} // boot_kernel_load()
346
[6]347/*************************************************************************************
348 * This function initializes the  boot_info_t structure for a given cluster.
349 * @ boot_info  : pointer to local boot_info_t structure 
350 * @ cxy        : cluster identifier                   
351 ************************************************************************************/
[1]352static void boot_info_init( boot_info_t * boot_info,
353                            cxy_t         cxy )
354{
[6]355    archinfo_header_t  * header;
[1]356    archinfo_core_t    * core_base;     
357    archinfo_cluster_t * cluster_base; 
358    archinfo_device_t  * device_base;
359    archinfo_irq_t     * irq_base; 
360
361    archinfo_cluster_t * cluster; 
[6]362    archinfo_cluster_t * my_cluster = NULL;   // target cluster
363    archinfo_cluster_t * io_cluster = NULL;   // cluster containing ext. peripherals
364
[1]365    archinfo_core_t    * core;
366    uint32_t             core_id; 
367    archinfo_device_t  * device;
368    uint32_t             device_id;
369    archinfo_irq_t     * irq; 
370    uint32_t             irq_id;
[50]371    uint32_t             end;
[1]372    boot_device_t      * boot_dev; 
373
[6]374    // get pointer on ARCHINFO header  and on the four arch_info arrays
375    header       = (archinfo_header_t*)ARCHINFO_BASE;
376    core_base    = archinfo_get_core_base   (header);
377    cluster_base = archinfo_get_cluster_base(header);
378    device_base  = archinfo_get_device_base (header);
379    irq_base     = archinfo_get_irq_base    (header);
380
[1]381    // Initialize global platform parameters
382    boot_info->x_size       = header->x_size;
383    boot_info->y_size       = header->y_size;
384    boot_info->x_width      = header->x_width;
385    boot_info->y_width      = header->y_width;
386    boot_info->paddr_width  = header->paddr_width;
387    boot_info->io_cxy       = header->io_cxy;
388
[50]389    // Initialize kernel segments from global variables
[6]390    boot_info->kernel_code_start = seg_kcode_base;
391    boot_info->kernel_code_end   = seg_kcode_base + seg_kcode_size;
392    boot_info->kernel_data_start = seg_kdata_base;
393    boot_info->kernel_data_end   = seg_kdata_base + seg_kdata_size;
[1]394
[6]395    // loop on arch_info clusters to get relevant pointers
[1]396    for (cluster =  cluster_base;
397         cluster < &cluster_base[header->x_size * header->y_size];
398         cluster++)
399    {
[6]400        if( cluster->cxy  == cxy )            my_cluster = cluster;
401        if( cluster->cxy  == header->io_cxy ) io_cluster = cluster;
402    }
[1]403
[6]404    if( my_cluster == NULL ) 
405    {
406        boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n",
407                    __FUNCTION__ , cxy );
408        boot_exit();
409    }
[1]410
[6]411    if( io_cluster == NULL ) 
412    {
413        boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n",
414                    __FUNCTION__ , header->io_cxy );
415        boot_exit();
416    }
417
[204]418    //////////////////////////////////////////////////////////
419    // initialize the boot_info array of external peripherals
[6]420
[1]421#if DEBUG_BOOT_INFO
[13]422boot_printf("\n[BOOT INFO] %s : external peripherals at cycle %d\n",
[188]423            __FUNCTION__ , boot_get_proctime() );
[1]424#endif
[6]425
426    device_id = 0;
427    for (device = &device_base[io_cluster->device_offset];
428         device < &device_base[io_cluster->device_offset + io_cluster->devices];
429         device++ )
430    {
[188]431        if( device_id >= CONFIG_MAX_EXT_DEV ) 
432        {
433            boot_printf("\n[ERROR] in %s : too much external devices in arch_info\n",
434                        __FUNCTION__ );
435            boot_exit();
436        }
437       
438        // keep only external devices
[6]439        if( (device->type != DEV_TYPE_RAM_SCL) &&
440            (device->type != DEV_TYPE_ICU_XCU) &&
441            (device->type != DEV_TYPE_MMC_TSR) &&
442            (device->type != DEV_TYPE_DMA_SCL) ) 
[1]443        {
[6]444            boot_dev = &boot_info->ext_dev[device_id];
[1]445
[6]446            boot_dev->type     = device->type;
447            boot_dev->base     = device->base;
448            boot_dev->channels = device->channels;
449            boot_dev->param0   = device->arg0;   
450            boot_dev->param1   = device->arg1;   
451            boot_dev->param2   = device->arg2;   
452            boot_dev->param3   = device->arg3;   
453            boot_dev->irqs     = device->irqs;   
454
455            device_id++;
456
[1]457#if DEBUG_BOOT_INFO
[6]458boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
459            device_type_str( device->type ) , device->base , device->size ,
460            device->channels , device->irqs );   
[1]461#endif
[13]462        }
[6]463   
[188]464        // handle IRQs for PIC
[6]465        if (device->type == DEV_TYPE_PIC_TSR) 
466        {
[188]467            for (irq_id = 0; irq_id < CONFIG_MAX_EXTERNAL_IRQS ; irq_id++)
[6]468            {
469                boot_dev->irq[irq_id].valid  = 0;
470            }
[1]471
[6]472            for (irq = &irq_base[device->irq_offset];
473                 irq < &irq_base[device->irq_offset + device->irqs];
474                 irq++)
475            {
476                boot_dev->irq[irq->port].valid    = 1;
477                boot_dev->irq[irq->port].dev_type = irq->dev_type;
478                boot_dev->irq[irq->port].channel  = irq->channel;
479                boot_dev->irq[irq->port].is_rx    = irq->is_rx;
480
481#if DEBUG_BOOT_INFO
482boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
483            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
484#endif
485            }
[1]486        }
[13]487    }   // end loop on io_cluster peripherals
[1]488
[6]489    // initialize number of external peripherals
490    boot_info->ext_dev_nr = device_id;
491
492    // Initialize cluster specific resources
493    boot_info->cxy  = my_cluster->cxy;
494
495#if DEBUG_BOOT_INFO
[188]496boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ , cxy );
[6]497#endif
498
[188]499    ////////////////////////////////////////
[6]500    // Initialize array of core descriptors
501    core_id = 0;
502    for (core = &core_base[my_cluster->core_offset];
503         core < &core_base[my_cluster->core_offset + my_cluster->cores];
504         core++ )
505    {
506        boot_info->core[core_id].gid = (gid_t)core->gid;
507        boot_info->core[core_id].lid = (lid_t)core->lid; 
508        boot_info->core[core_id].cxy = (cxy_t)core->cxy;
509
510#if DEBUG_BOOT_INFO
511boot_printf("  - core_gid = %x : cxy = %x / lid = %d\n", 
512            core->gid , core->cxy , core->lid );
513#endif
514        core_id++;
515    }
516
517    // Initialize number of cores in my_cluster
518    boot_info->cores_nr = core_id;
519
[188]520    //////////////////////////////////////////////////////////////////////
521    // initialise boot_info array of internal devices (RAM, ICU, MMC, DMA)
[6]522
523#if DEBUG_BOOT_INFO
[188]524boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", __FUNCTION__ , cxy );
[6]525#endif
526
[188]527    device_id = 0;
[6]528    for (device = &device_base[my_cluster->device_offset];
529         device < &device_base[my_cluster->device_offset + my_cluster->devices];
530         device++ )
531    {
[188]532        // keep only internal devices
533        if( (device->type == DEV_TYPE_RAM_SCL) ||
534            (device->type == DEV_TYPE_ICU_XCU) ||
535            (device->type == DEV_TYPE_MMC_TSR) ||
536            (device->type == DEV_TYPE_DMA_SCL) ) 
[6]537        {
[188]538            if (device->type == DEV_TYPE_RAM_SCL)   // RAM
539            {
540                // set number of physical memory pages
541                boot_info->pages_nr   = device->size >> CONFIG_PPM_PAGE_SHIFT;
[6]542
[1]543#if DEBUG_BOOT_INFO
[50]544boot_printf("  - RAM : %x pages\n", boot_info->pages_nr );
[1]545#endif
[188]546            }
547            else                                    // ICU / MMC / DMA
548            {
549                if( device_id >= CONFIG_MAX_INT_DEV ) 
550                {
551                    boot_printf("\n[ERROR] in %s : too much internal devices in cluster %x\n",
552                                __FUNCTION__ , cxy );
553                    boot_exit();
554                }
555       
556                boot_dev = &boot_info->int_dev[device_id];
[13]557
[188]558                boot_dev->type     = device->type;
559                boot_dev->base     = device->base;
560                boot_dev->channels = device->channels;
561                boot_dev->param0   = device->arg0;   
562                boot_dev->param1   = device->arg1;   
563                boot_dev->param2   = device->arg2;   
564                boot_dev->param3   = device->arg3;   
565                boot_dev->irqs     = device->irqs; 
[13]566
[188]567                device_id++;
568
[13]569#if DEBUG_BOOT_INFO
[188]570boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
571            device_type_str( device->type ) , device->base , device->size ,
572            device->channels , device->irqs );   
[13]573#endif
574
[188]575                // handle IRQs for ICU
576                if (device->type == DEV_TYPE_ICU_XCU) 
577                {
578                    for (irq_id = 0; irq_id < CONFIG_MAX_INTERNAL_IRQS ; irq_id++)
579                    {
580                        boot_dev->irq[irq_id].valid  = 0;
581                    }
[1]582
[188]583                    for (irq = &irq_base[device->irq_offset];
584                         irq < &irq_base[device->irq_offset + device->irqs] ; irq++)
585                    {
586                        boot_dev->irq[irq->port].valid    = 1;
587                        boot_dev->irq[irq->port].dev_type = irq->dev_type;
588                        boot_dev->irq[irq->port].channel  = irq->channel;
589                        boot_dev->irq[irq->port].is_rx    = irq->is_rx;
[1]590
591#if DEBUG_BOOT_INFO
592boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
593            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
594#endif
595
[188]596                    }
597                }
[1]598            }
599        }
[188]600    }  // end loop on local peripherals
[1]601
[204]602    // initialize number of internal peripherals
[188]603    boot_info->int_dev_nr = device_id;
[1]604
[188]605   // Get the top address of the kernel segments
[50]606    end = (boot_info->kernel_code_end > boot_info->kernel_data_end ) ?
607          boot_info->kernel_code_end : boot_info->kernel_data_end;
608
[279]609    // compute number of physical pages occupied by the kernel code
[68]610    boot_info->pages_offset = ( (end & CONFIG_PPM_PAGE_MASK) == 0 ) ?
[50]611                 (end >> CONFIG_PPM_PAGE_SHIFT) : (end >> CONFIG_PPM_PAGE_SHIFT) + 1;
612
[279]613    // set one reserved zone for giet code
614    uint32_t first_page = seg_kgiet_base >> CONFIG_PPM_PAGE_SHIFT;
615    uint32_t last_page  = (seg_kgiet_base + seg_kgiet_size - 1) >> CONFIG_PPM_PAGE_SHIFT;
[50]616
[279]617    boot_info->rsvd_nr = 1;
618    boot_info->rsvd[0].first_page = first_page;
619    boot_info->rsvd[0].npages     = last_page - first_page + 1;
620
[6]621    // set boot_info signature
622    boot_info->signature = BOOT_INFO_SIGNATURE;
623
[1]624} // boot_info_init()
625
[6]626/***********************************************************************************
627 * This function check the local boot_info_t structure for a given core.
628 * @ boot_info  : pointer to local 'boot_info_t' structure to be checked.
629 * @ lid        : core local identifier, index the core descriptor table.
630 **********************************************************************************/
[1]631static void boot_check_core( boot_info_t * boot_info, 
632                             lid_t         lid)
633{
634    gid_t         gid;        // global hardware identifier of this core
635    boot_core_t * this;       // BOOT_INFO core descriptor of this core. 
636
637    // Get core hardware identifier
638    gid = (gid_t)boot_get_procid();
639
640    // get pointer on core descriptor
641    this = &boot_info->core[lid];
642
643    if ( (this->gid != gid) ||  (this->cxy != boot_info->cxy) )
644    {
645        boot_printf("\n[BOOT ERROR] in boot_check_core() :\n"
646                    " - boot_info cxy = %x\n"
647                    " - boot_info lid = %d\n"
648                    " - boot_info gid = %x\n"
649                    " - actual    gid = %x\n",
650                    this->cxy , this->lid , this->gid , gid );
651        boot_exit();
652    }
653
654} // boot_check_core()
655
[6]656/*********************************************************************************
657 * This function is called by CP0 in cluster(0,0) to activate all other CP0s.
[1]658 * It returns the number of CP0s actually activated.
[6]659 ********************************************************************************/
660static uint32_t boot_wake_all_cp0s()
[1]661{
[6]662    archinfo_header_t*  header;         // Pointer on ARCHINFO header
663    archinfo_cluster_t* cluster_base;   // Pointer on ARCHINFO clusters base
664    archinfo_cluster_t* cluster;        // Iterator for loop on clusters
665    archinfo_device_t*  device_base;    // Pointer on ARCHINFO devices base
666    archinfo_device_t*  device;         // Iterator for loop on devices
667    uint32_t            cp0_nb = 0;     // CP0s counter
[1]668
669    header       = (archinfo_header_t*)ARCHINFO_BASE;
670    cluster_base = archinfo_get_cluster_base(header);
671    device_base  = archinfo_get_device_base (header); 
672
673    // loop on all clusters
674    for (cluster = cluster_base;
675         cluster < &cluster_base[header->x_size * header->y_size];
676         cluster++)
677    {
678        // Skip boot cluster.
679        if (cluster->cxy == BOOT_CORE_CXY)
680            continue;
681           
682        // Skip clusters without core (thus without CP0).
683        if (cluster->cores == 0)
684            continue;
685
686        // Skip clusters without device (thus without XICU).
687        if (cluster->devices == 0)
688            continue;
689
[6]690        // search XICU device associated to CP0, and send a WTI to activate it
[1]691        for (device = &device_base[cluster->device_offset];
692             device < &device_base[cluster->device_offset + cluster->devices];
693             device++)
694        {
[6]695            if (device->type == DEV_TYPE_ICU_XCU)
[1]696            {
[6]697
698#if DEBUG_BOOT_WAKUP
699boot_printf("\n[BOOT] core[%x][0] activated at cycle %d\n",
700            cluster->cxy , boot_get_proctime );
701#endif
702
[1]703                boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry);
704                cp0_nb++;
705            }
706        }
707    }
708    return cp0_nb;
709
710} // boot_wake_cp0()
711
[6]712/*********************************************************************************
[188]713 * This function is called by all CP0 to activate the other CPi cores.
714 * @ boot_info  : pointer to local 'boot_info_t' structure.
[6]715 *********************************************************************************/
716static void boot_wake_local_cores(boot_info_t * boot_info)
[1]717{
[188]718    unsigned int     core_id;       
[1]719
[188]720    // get pointer on XCU device descriptor in boot_info
721    boot_device_t *  xcu = &boot_info->int_dev[0];
[13]722 
723    // loop on cores
724    for (core_id = 1; core_id < boot_info->cores_nr; core_id++)
[1]725    {
[6]726
727#if DEBUG_BOOT_WAKUP
728boot_printf("\n[BOOT] core[%x][%d] activated at cycle %d\n",
729             boot_info->cxy , core_id , boot_get_proctime() );
730#endif
[188]731        // send an IPI
732        boot_remote_sw( (xptr_t)(xcu->base + (core_id << 2)) , (uint32_t)boot_entry ); 
[1]733    }
734} // boot_wake_local_cores()
735
736
[6]737/*********************************************************************************
[1]738 * This main function of the boot-loader is called by the  boot_entry() 
739 * function, and executed by all cores.
740 * The arguments values are computed by the boot_entry code.
[6]741 * @ lid    : core local identifier,
[1]742 * @ cxy    : cluster identifier,
[6]743 *********************************************************************************/
[1]744void boot_loader( lid_t lid, 
745                  cxy_t cxy )
746{
[6]747    boot_info_t * boot_info;       // pointer on local boot_info_t structure
[1]748
749    if (lid == 0) 
750    {
[6]751        /****************************************************
752         * PHASE A : only CP0 in boot cluster executes it
753         ***************************************************/
[1]754        if (cxy == BOOT_CORE_CXY)
755        {
[6]756            boot_printf("\n[BOOT] core[%x][%d] enters at cycle %d\n",
757                        cxy , lid , boot_get_proctime() );
[1]758
759            // Initialize IOC driver
760            if      (USE_IOC_BDV) boot_bdv_init();
761            else if (USE_IOC_HBA) boot_hba_init();
[6]762            // else if (USE_IOC_SDC) boot_sdc_init();
763            // else if (USE_IOC_SPI) boot_spi_init();
[1]764            else if (!USE_IOC_RDK)
765            {
[6]766                boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n");
[1]767                boot_exit();
768            }
769
[6]770            // Initialize FAT32.
[1]771            boot_fat32_init();
772
[6]773            // Load the 'kernel.elf' file into memory from IOC, and set   
774            // the global variables defining the kernel layout     
775            boot_kernel_load();
776
777            boot_printf("\n[BOOT] core[%x][%d] loaded kernel at cycle %d\n",
778                        cxy , lid , boot_get_proctime() );
779
[1]780            // Load the arch_info.bin file into memory.
781            boot_archinfo_load();
782
[6]783            // Get local boot_info_t structure base address.
[1]784            // It is the first structure in the .kdata segment.
[6]785            boot_info = (boot_info_t *)seg_kdata_base;
[1]786
[6]787            // Initialize local boot_info_t structure.
788            boot_info_init( boot_info , cxy );
789
790            // check boot_info signature
[1]791            if (boot_info->signature != BOOT_INFO_SIGNATURE)
792            {
[6]793                boot_printf("\n[BOOT ERROR] in %s reported by core[%x][%d]\n"
794                            "  illegal boot_info signature / should be %x\n",
795                            __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE );
[1]796                boot_exit();
797            }
798
[6]799            boot_printf("\n[BOOT] core[%x][%d] loaded boot_info at cycle %d\n",
800                        cxy , lid , boot_get_proctime() );
[1]801
802            // Check core information.
803            boot_check_core(boot_info, lid);
804
[6]805            // Activate other CP0s / get number of active CP0s
806            active_cp0s_nr = boot_wake_all_cp0s() + 1;
[1]807
[6]808            // Wait until all clusters (i.e all CP0s) ready to enter kernel.
809            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) ,
810                                 active_cp0s_nr );
[1]811
[6]812            // activate other local cores
813            boot_wake_local_cores( boot_info );
[1]814
[6]815            // Wait until all local cores in cluster ready
816            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
817                                 boot_info->cores_nr );
[1]818        }
[6]819        /******************************************************************
820         * PHASE B : all CP0s other than CP0 in boot cluster execute it
821         *****************************************************************/
[1]822        else
823        {
[6]824            // at this point, all INSTRUCTION address extension registers
825            // point on cluster(0,0), but the DATA extension registers point
826            // already on the local cluster to use the local stack.
827            // To access the bootloader global variables we must first copy
828            // the boot code (data and instructions) in the local cluster.
829            boot_remote_memcpy( XPTR( cxy           , BOOT_BASE ),
830                                XPTR( BOOT_CORE_CXY , BOOT_BASE ),
831                                BOOT_MAX_SIZE );
[1]832
[6]833            // from now, it is safe to refer to the boot code global variables
834            boot_printf("\n[BOOT] core[%x][%d] replicated boot code at cycle %d\n",
835                        cxy , lid , boot_get_proctime() );
[1]836
[6]837            // switch to the INSTRUCTION local memory space, to avoid contention.
[1]838            asm volatile("mtc2  %0, $25" :: "r"(cxy));
839
[6]840            // Copy the arch_info.bin file into the local memory.
[1]841            boot_remote_memcpy(XPTR(cxy,           ARCHINFO_BASE),
842                               XPTR(BOOT_CORE_CXY, ARCHINFO_BASE),
[6]843                               ARCHINFO_MAX_SIZE );
[1]844
[6]845            boot_printf("\n[BOOT] core[%x][%d] replicated arch_info at cycle %d\n",
846                        cxy , lid , boot_get_proctime() );
[1]847
[6]848            // Copy the kcode segment into local memory
849            boot_remote_memcpy( XPTR( cxy           , seg_kcode_base ),
850                                XPTR( BOOT_CORE_CXY , seg_kcode_base ),
851                                seg_kcode_size );
[1]852
[6]853            // Copy the kdata segment into local memory
854            boot_remote_memcpy( XPTR( cxy           , seg_kdata_base ),
855                                XPTR( BOOT_CORE_CXY , seg_kdata_base ),
856                                seg_kdata_size );
857
858            boot_printf("\n[BOOT] core[%x][%d] replicated kernel code at cycle %d\n",
859                        cxy , lid , boot_get_proctime() );
860
861            // Get local boot_info_t structure base address.
862            boot_info = (boot_info_t*)seg_kdata_base;
863
[1]864            // Initialize local boot_info_t structure.
[6]865            boot_info_init( boot_info , cxy );
[1]866
867            // Check core information.
[6]868            boot_check_core( boot_info , lid );
[1]869
[6]870            // get number of active clusters from BOOT_CORE cluster
871            uint32_t count = boot_remote_lw( XPTR( BOOT_CORE_CXY , &active_cp0s_nr ) );
[1]872
[6]873            // Wait until all clusters (i.e all CP0s) ready to enter kernel
874            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count );
[1]875
[6]876            // activate other local cores
877            boot_wake_local_cores( boot_info );
878
879            // Wait until all local cores in cluster ready
880            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
881                                 boot_info->cores_nr );
[1]882        }
883    }
884    else
885    {
886        /***************************************************************
[6]887         * PHASE C: all non CP0 cores in all clusters execute it
[1]888         **************************************************************/
889
[6]890        // Switch to the INSTRUCTIONS local memory space
891        // to avoid contention at the boot cluster.
892        asm volatile("mtc2  %0, $25" :: "r"(cxy));
[1]893
[6]894        // Get local boot_info_t structure base address.
895        boot_info = (boot_info_t *)seg_kdata_base;
[1]896
[6]897        // Check core information
898        boot_check_core(boot_info, lid);
[1]899
[6]900        // Wait until all local cores in cluster ready
901        boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr );
[1]902    }
903
[13]904    // Ech core compute stack pointer to the kernel idle-thread descriptor.
905    // The array of idle-thread descriptors is allocated in the kdata segment,
906    // just after the boot_info structure
[1]907
[13]908    uint32_t sp;
909    uint32_t base;
910    uint32_t offset = sizeof( boot_info_t );
911    uint32_t pmask  = CONFIG_PPM_PAGE_MASK;
912    uint32_t psize  = CONFIG_PPM_PAGE_SIZE;
913
914    // compute base address of idle thread descriptors array
915    if( offset & pmask ) base = seg_kdata_base + (offset & ~pmask) + psize;
916    else                 base = seg_kdata_base + offset;
917
918    // compute stack pointer
919    sp = base + ((lid + 1) * CONFIG_THREAD_DESC_SIZE) - 16;
920
921    // Each cores initialise stack pointer,
[6]922    // reset the BEV bit in status register,
923    // register "boot_info" argument in a0,
924    // and jump to kernel_entry.
925    asm volatile( "mfc0  $27,  $12           \n"
926                  "lui   $26,  0xFFBF        \n"
927                  "ori   $26,  $26,  0xFFFF  \n"
928                  "and   $27,  $27,  $26     \n"
929                  "mtc0  $27,  $12           \n" 
930                  "move  $4,   %0            \n"
931                  "move  $29,  %1            \n"
932                  "jr    %2                  \n"
[13]933                  :: "r"(boot_info) , "r"(sp) , "r"(kernel_entry) );
[6]934
[1]935} // boot_loader()
Note: See TracBrowser for help on using the repository browser.