source: trunk/tools/bootloader_tsar/boot.c @ 199

Last change on this file since 199 was 188, checked in by alain, 7 years ago

Redefine the PIC device API.

File size: 36.8 KB
Line 
1/*
2 * boot.c - TSAR bootloader implementation.
3 *
4 * Authors :   Alain Greiner / Vu Son  (2016)
5 *
6 * Copyright (c) UPMC Sorbonne Universites
7 *
8 * This file is part of ALMOS-MKH.
9 *
10 * ALMOS-MKH is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2.0 of the License.
13 *
14 * ALMOS-MKH is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/****************************************************************************
25 * This file contains the ALMOS-MKH. boot-loader for the TSAR architecture. *
26 *                                                                          *
27 * It supports clusterised shared memory multi-processor architectures,     *
28 * where each processor core is identified by a composite index [cxy,lid]   *
29 * with one physical memory bank per cluster.                               *
30 *                                                                          *
31 * The 'boot.elf' file (containing the boot-loader binary code) is stored   *
32 * on disk and is loaded into memory by core[0,0] (cxy = 0 / lid = 0),      *
33 * and is copied in each other cluter by the local CP0 (lid = 0].           *
34 *                                                                          *
35 * 1) The boot-loader first phase is executed by core[0,0], while           *
36 *    all other cores are waiting in the preloader.                         *
37 *    It does the following tasks:                                          *
38 *      - load into the memory bank of cluster 0 the 'arch_info.bin'        *
39 *        file (containing the hardware architecture description) and the   *
40 *        'kernel.elf' file, at temporary locations,                        *   
41 *      - initializes the 'boot_info_t' structure in cluster(0,0)           *
42 *        (there is 1 'boot_info_t' per cluster), which contains both       *
43 *        global and cluster specific information that will be used for     *
44 *        kernel initialisation.                                            *
45 *      - activate CP0s in all other clusters, using IPIs.                  *
46 *      - wait completion reports from CP0s on a global barrier.            *
47 *                                                                          *
48 * 2) The boot-loader second phase is then executed in parallel by all      *
49 *    CP0s (other than core[0,0]). Each CP0 performs the following tasks:   *
50 *      - copies into the memory bank of the local cluster the 'boot.elf',  *
51 *        the 'arch_info.bin' (at the same addresses as the 'boot.elf' and  *
52 *        the 'arch_info.bin' in the memory bank of the cluster(0,0), and   *
53 *        the kernel image (at address 0x0),                                *
54 *      - initializes the 'boot_info_t' structure of the local cluster,     *
55 *      - activate all other cores in the same cluster (CPi).               *
56 *      - wait local CPi completion reports on a local barrier.             *
57 *      - report completion to bscpu on the global barrier.                 *
58 *                                                                          *
59 * 3) The boot-loader third phase is executed in parallel by all cores.     *
60 *    After passing the global barrier the bscpu:                           *
61 *      - activates the CPi of cluster(0),                                  *
62 *      - blocks on the local barrier waiting for all local CPi to report   *
63 *        completion on the local barrier,                                  *
64 *      - moves the local kernel image from the temporary location to the   *
65 *        address 0x0, (erasing the preloader code).                        *
66 *                                                                          *
67 * 4) All cores have finished the boot phase, they jump to the kern_init()  *
68 *    function (maybe not at the same time).                                *
69 ****************************************************************************/
70
71#include <elf-types.h>
72#include <hal_types.h>
73
74#include <kernel_config.h>
75#include <boot_config.h>
76
77#include <arch_info.h>
78#include <boot_info.h>
79
80#include <boot_utils.h>
81#include <boot_fat32.h>
82#include <boot_bdv_driver.h>
83#include <boot_hba_driver.h>
84#include <boot_tty_driver.h>
85
86/*****************************************************************************
87 *                                 Macros.                             
88 ****************************************************************************/
89
90#define PAGE_ROUND_DOWN(x)  ((x) & (~PPM_PAGE_SIZE -1))
91#define PAGE_ROUND_UP(x)    (((x) + PPM_PAGE_SIZE-1) &   \
92                            (~(PPM_PAGE_SIZE-1)))
93
94/*****************************************************************************
95 *                             Global variables.                           
96 ****************************************************************************/
97
98// synchronization variables.
99
100volatile boot_remote_spinlock_t tty0_lock;       // protect TTY0 access
101volatile boot_remote_barrier_t  global_barrier;  // synchronize CP0 cores
102volatile boot_remote_barrier_t  local_barrier;   // synchronize cores in one cluster
103uint32_t                        active_cp0s_nr;  // number of expected CP0s
104 
105// kernel segments layout variables
106
107uint32_t                        seg_kcode_base;  // kcode segment base address
108uint32_t                        seg_kcode_size;  // kcode segment size (bytes)
109uint32_t                        seg_kdata_base;  // kdata segment base address
110uint32_t                        seg_kdata_size;  // kdata segment size (bytes)
111uint32_t                        kernel_entry;    // kernel entry point
112
113// address used by the WTI to activate remote CP0s
114
115extern void                     boot_entry();    // boot_loader entry point
116
117/*********************************************************************************
118 * This function returns the printable string for each device type
119 ********************************************************************************/
120char * device_type_str( uint32_t dev_type )
121{
122    if     ( dev_type == DEV_TYPE_RAM_SCL ) return "RAM_SCL";
123    else if( dev_type == DEV_TYPE_ROM_SCL ) return "ROM_SCL";
124    else if( dev_type == DEV_TYPE_FBF_SCL ) return "FBF_SCL";
125    else if( dev_type == DEV_TYPE_IOB_TSR ) return "IOB_TSR";
126    else if( dev_type == DEV_TYPE_IOC_BDV ) return "IOC_BDV";
127    else if( dev_type == DEV_TYPE_IOC_HBA ) return "IOC_HBA";
128    else if( dev_type == DEV_TYPE_IOC_SDC ) return "IOC_SDC";
129    else if( dev_type == DEV_TYPE_IOC_SPI ) return "IOC_SPI";
130    else if( dev_type == DEV_TYPE_IOC_RDK ) return "IOC_RDK";
131    else if( dev_type == DEV_TYPE_MMC_TSR ) return "MMC_TSR";
132    else if( dev_type == DEV_TYPE_DMA_SCL ) return "DMA_SCL";
133    else if( dev_type == DEV_TYPE_NIC_CBF ) return "NIC_CBF";
134    else if( dev_type == DEV_TYPE_TIM_SCL ) return "TIM_SCL";
135    else if( dev_type == DEV_TYPE_TXT_TTY ) return "TXT_TTY";
136    else if( dev_type == DEV_TYPE_ICU_XCU ) return "ICU_XCU";
137    else if( dev_type == DEV_TYPE_PIC_TSR ) return "PIC_TSR";
138    else                                    return "undefined";
139}
140
141/************************************************************************************
142 * This function loads the arch_info.bin file into the boot cluster memory.
143 ***********************************************************************************/
144static void boot_archinfo_load()
145{
146    archinfo_header_t* header = (archinfo_header_t*)ARCHINFO_BASE; 
147   
148    // Load file into memory
149    if (boot_fat32_load(ARCHINFO_PATHNAME, ARCHINFO_BASE, ARCHINFO_MAX_SIZE))
150    {
151        boot_printf("\n[BOOT ERROR]: boot_archinfo_load(): "
152                    "<%s> file not found\n",
153                    ARCHINFO_PATHNAME);
154        boot_exit();
155    }
156
157    if (header->signature != ARCHINFO_SIGNATURE)
158    {
159        boot_printf("\n[BOOT_ERROR]: boot_archinfo_load(): "
160                    "<%s> file signature should be %x\n",
161                    ARCHINFO_PATHNAME, ARCHINFO_SIGNATURE);
162        boot_exit();
163    }
164
165#if DEBUG_BOOT_INFO
166boot_printf("\n[BOOT INFO] in %s : file %s loaded at address = %x\n",
167            __FUNCTION__ , ARCHINFO_PATHNAME , ARCHINFO_BASE );
168#endif
169
170} // boot_archinfo_load()
171
172/**************************************************************************************
173 * This function loads the 'kernel.elf' file into the boot cluster memory buffer,
174 * analyzes it, and places the the two seg_kcode & seg_kdata segments at their final
175 * physical adresses (just after the preloader zone).       
176 * It set the global variables defining the kernel layout.
177 *************************************************************************************/
178static void boot_kernel_load()
179{
180    Elf32_Ehdr * elf_header;      // pointer on kernel.elf header. 
181    Elf32_Phdr * program_header;  // pointer on kernel.elf program header.
182    uint32_t     phdr_offset;     // program header offset in kernel.elf file.
183    uint32_t     segments_nb;     // number of segments in kernel.elf file.
184    uint32_t     seg_src_addr;    // segment address in kernel.elf file (source).
185    uint32_t     seg_paddr;       // segment local physical address of segment
186    uint32_t     seg_offset;      // segment offset in kernel.elf file
187    uint32_t     seg_filesz;      // segment size (bytes) in kernel.elf file
188    uint32_t     seg_memsz;       // segment size (bytes) in memory image.
189    bool_t       kcode_found;     // kcode segment found.
190    bool_t       kdata_found;     // kdata segment found.
191    uint32_t     seg_id;          // iterator for segments loop.
192
193#if DEBUG_BOOT_ELF
194boot_printf("\n[BOOT INFO] %s enters for file %s at cycle %d\n",
195            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
196#endif
197
198    // Load kernel.elf file into memory buffer
199    if ( boot_fat32_load(KERNEL_PATHNAME, KERN_BASE, KERN_MAX_SIZE) )
200    {
201        boot_printf("\n[BOOT ERROR] in %s : <%s> file not found\n",
202                    KERNEL_PATHNAME);
203        boot_exit();
204    }
205
206    // get pointer to kernel.elf header 
207    elf_header = (Elf32_Ehdr*)KERN_BASE;
208
209    // check signature
210    if ((elf_header->e_ident[EI_MAG0] != ELFMAG0)   ||
211        (elf_header->e_ident[EI_MAG1] != ELFMAG1)   ||
212        (elf_header->e_ident[EI_MAG2] != ELFMAG2)   ||
213        (elf_header->e_ident[EI_MAG3] != ELFMAG3))
214    {
215        boot_printf("\n[BOOT_ERROR]: boot_kernel_load(): "
216                    "<%s> is not an ELF file\n",
217                    KERNEL_PATHNAME);
218        boot_exit();
219    }
220
221    // Get program header table offset and number of segments
222    phdr_offset     = elf_header->e_phoff;
223    segments_nb     = elf_header->e_phnum;
224
225    // Get program header table pointer
226    program_header  = (Elf32_Phdr*)(KERN_BASE + phdr_offset);
227
228    // loop on segments
229    kcode_found = false;
230    kdata_found = false;
231    for (seg_id = 0; seg_id < segments_nb; seg_id++) 
232    {
233        if (program_header[seg_id].p_type == PT_LOAD)   // Found one loadable segment
234        {
235            // Get segment attributes.
236            seg_paddr    = program_header[seg_id].p_paddr;   
237            seg_offset   = program_header[seg_id].p_offset;
238            seg_filesz   = program_header[seg_id].p_filesz;
239            seg_memsz    = program_header[seg_id].p_memsz;
240
241            // get segment base address in buffer
242            seg_src_addr = (uint32_t)KERN_BASE + seg_offset;
243
244            // Load segment to its final physical memory address
245            boot_memcpy( (void*)seg_paddr, 
246                         (void*)seg_src_addr, 
247                         seg_filesz );
248
249#if DEBUG_BOOT_ELF
250boot_printf("\n[BOOT INFO] in %s for file %s : found loadable segment\n"
251            "   base = %x / size = %x\n",
252            __FUNCTION__ , KERNEL_PATHNAME , seg_paddr , seg_memsz );
253#endif
254
255            // Fill remaining memory with zero if (filesz < memsz).
256            if( seg_memsz < seg_filesz )
257            {
258                boot_memset( (void*)(seg_paddr + seg_filesz), 0, seg_memsz - seg_filesz);
259            }
260
261            // Note: we suppose that the 'kernel.elf' file contains only 2
262            // loadable segments ktext & kdata and that the main
263            // difference between these two is the WRITE permission: ktext
264            // contains read-only instructions and read_only data,
265            // while kdata contains writable data.
266
267            if ((program_header[seg_id].p_flags & PF_W) == 0)  // kcode segment
268            {
269                if( kcode_found )
270                {
271                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
272                                "   two loadable kcode segments found\n",
273                                __FUNCTION__ , KERNEL_PATHNAME );
274                    boot_exit();
275                } 
276
277                kcode_found     = true;
278                seg_kcode_base = seg_paddr;
279                seg_kcode_size = seg_memsz;
280            }
281            else                                               // kdata segment
282            {
283                if( kdata_found )
284                {
285                    boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
286                                "   two loadable kdata segments found\n",
287                                __FUNCTION__ , KERNEL_PATHNAME );
288                    boot_exit();
289                } 
290
291                kdata_found     = true;
292                seg_kdata_base = seg_paddr;
293                seg_kdata_size = seg_memsz;
294            }
295        }
296    }
297
298    // check kcode & kdata segments found
299    if( kcode_found == false )
300    {
301        boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
302                    "   kcode segment not found\n",
303                    __FUNCTION__ , KERNEL_PATHNAME );
304        boot_exit();
305    }
306    if( kdata_found == false )
307    {
308        boot_printf("\n[BOOT_ERROR] in %s for file %s :\n"
309                    "   kdata segment not found\n",
310                    __FUNCTION__ , KERNEL_PATHNAME );
311        boot_exit();
312    }
313
314    // set entry point
315    kernel_entry = (uint32_t)elf_header->e_entry;
316
317#if DEBUG_BOOT_ELF
318boot_printf("\n[BOOT INFO] %s successfully completed for file %s at cycle %d\n",
319            __FUNCTION__ , KERNEL_PATHNAME , boot_get_proctime() );
320#endif
321
322} // boot_kernel_load()
323
324/*************************************************************************************
325 * This function initializes the  boot_info_t structure for a given cluster.
326 * @ boot_info  : pointer to local boot_info_t structure 
327 * @ cxy        : cluster identifier                   
328 ************************************************************************************/
329static void boot_info_init( boot_info_t * boot_info,
330                            cxy_t         cxy )
331{
332    archinfo_header_t  * header;
333    archinfo_core_t    * core_base;     
334    archinfo_cluster_t * cluster_base; 
335    archinfo_device_t  * device_base;
336    archinfo_irq_t     * irq_base; 
337
338    archinfo_cluster_t * cluster; 
339    archinfo_cluster_t * my_cluster = NULL;   // target cluster
340    archinfo_cluster_t * io_cluster = NULL;   // cluster containing ext. peripherals
341
342    archinfo_core_t    * core;
343    uint32_t             core_id; 
344    archinfo_device_t  * device;
345    uint32_t             device_id;
346    archinfo_irq_t     * irq; 
347    uint32_t             irq_id;
348    uint32_t             end;
349    uint32_t             rsvd_pages; 
350    boot_device_t      * boot_dev; 
351
352    // get pointer on ARCHINFO header  and on the four arch_info arrays
353    header       = (archinfo_header_t*)ARCHINFO_BASE;
354    core_base    = archinfo_get_core_base   (header);
355    cluster_base = archinfo_get_cluster_base(header);
356    device_base  = archinfo_get_device_base (header);
357    irq_base     = archinfo_get_irq_base    (header);
358
359    // Initialize global platform parameters
360    boot_info->x_size       = header->x_size;
361    boot_info->y_size       = header->y_size;
362    boot_info->x_width      = header->x_width;
363    boot_info->y_width      = header->y_width;
364    boot_info->paddr_width  = header->paddr_width;
365    boot_info->io_cxy       = header->io_cxy;
366
367    // Initialize kernel segments from global variables
368    boot_info->kernel_code_start = seg_kcode_base;
369    boot_info->kernel_code_end   = seg_kcode_base + seg_kcode_size;
370    boot_info->kernel_data_start = seg_kdata_base;
371    boot_info->kernel_data_end   = seg_kdata_base + seg_kdata_size;
372
373    // loop on arch_info clusters to get relevant pointers
374    for (cluster =  cluster_base;
375         cluster < &cluster_base[header->x_size * header->y_size];
376         cluster++)
377    {
378        if( cluster->cxy  == cxy )            my_cluster = cluster;
379        if( cluster->cxy  == header->io_cxy ) io_cluster = cluster;
380    }
381
382    if( my_cluster == NULL ) 
383    {
384        boot_printf("\n[ERROR] in %s : cannot found cluster %x in arch_info\n",
385                    __FUNCTION__ , cxy );
386        boot_exit();
387    }
388
389    if( io_cluster == NULL ) 
390    {
391        boot_printf("\n[ERROR] in %s : cannot found io_cluster %x in arch_info\n",
392                    __FUNCTION__ , header->io_cxy );
393        boot_exit();
394    }
395
396    ///////////////////////////////////////////////////
397    // loop on arch-info peripherals in io_cluster,
398    // to initialize the boot_info array of external peripherals
399
400#if DEBUG_BOOT_INFO
401boot_printf("\n[BOOT INFO] %s : external peripherals at cycle %d\n",
402            __FUNCTION__ , boot_get_proctime() );
403#endif
404
405    device_id = 0;
406    for (device = &device_base[io_cluster->device_offset];
407         device < &device_base[io_cluster->device_offset + io_cluster->devices];
408         device++ )
409    {
410        if( device_id >= CONFIG_MAX_EXT_DEV ) 
411        {
412            boot_printf("\n[ERROR] in %s : too much external devices in arch_info\n",
413                        __FUNCTION__ );
414            boot_exit();
415        }
416       
417        // keep only external devices
418        if( (device->type != DEV_TYPE_RAM_SCL) &&
419            (device->type != DEV_TYPE_ICU_XCU) &&
420            (device->type != DEV_TYPE_MMC_TSR) &&
421            (device->type != DEV_TYPE_DMA_SCL) ) 
422        {
423            boot_dev = &boot_info->ext_dev[device_id];
424
425            boot_dev->type     = device->type;
426            boot_dev->base     = device->base;
427            boot_dev->channels = device->channels;
428            boot_dev->param0   = device->arg0;   
429            boot_dev->param1   = device->arg1;   
430            boot_dev->param2   = device->arg2;   
431            boot_dev->param3   = device->arg3;   
432            boot_dev->irqs     = device->irqs;   
433
434            device_id++;
435
436#if DEBUG_BOOT_INFO
437boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
438            device_type_str( device->type ) , device->base , device->size ,
439            device->channels , device->irqs );   
440#endif
441        }
442   
443        // handle IRQs for PIC
444        if (device->type == DEV_TYPE_PIC_TSR) 
445        {
446            for (irq_id = 0; irq_id < CONFIG_MAX_EXTERNAL_IRQS ; irq_id++)
447            {
448                boot_dev->irq[irq_id].valid  = 0;
449            }
450
451            for (irq = &irq_base[device->irq_offset];
452                 irq < &irq_base[device->irq_offset + device->irqs];
453                 irq++)
454            {
455                boot_dev->irq[irq->port].valid    = 1;
456                boot_dev->irq[irq->port].dev_type = irq->dev_type;
457                boot_dev->irq[irq->port].channel  = irq->channel;
458                boot_dev->irq[irq->port].is_rx    = irq->is_rx;
459
460#if DEBUG_BOOT_INFO
461boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
462            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
463#endif
464            }
465        }
466    }   // end loop on io_cluster peripherals
467
468    // initialize number of external peripherals
469    boot_info->ext_dev_nr = device_id;
470
471    // Initialize cluster specific resources
472    boot_info->cxy  = my_cluster->cxy;
473
474#if DEBUG_BOOT_INFO
475boot_printf("\n[BOOT INFO] %s : cores in cluster %x\n", __FUNCTION__ , cxy );
476#endif
477
478    ////////////////////////////////////////
479    // Initialize array of core descriptors
480    core_id = 0;
481    for (core = &core_base[my_cluster->core_offset];
482         core < &core_base[my_cluster->core_offset + my_cluster->cores];
483         core++ )
484    {
485        boot_info->core[core_id].gid = (gid_t)core->gid;
486        boot_info->core[core_id].lid = (lid_t)core->lid; 
487        boot_info->core[core_id].cxy = (cxy_t)core->cxy;
488
489#if DEBUG_BOOT_INFO
490boot_printf("  - core_gid = %x : cxy = %x / lid = %d\n", 
491            core->gid , core->cxy , core->lid );
492#endif
493        core_id++;
494    }
495
496    // Initialize number of cores in my_cluster
497    boot_info->cores_nr = core_id;
498
499    //////////////////////////////////////////////////////////////////////
500    // initialise boot_info array of internal devices (RAM, ICU, MMC, DMA)
501
502#if DEBUG_BOOT_INFO
503boot_printf("\n[BOOT INFO] %s : internal peripherals in cluster %x\n", __FUNCTION__ , cxy );
504#endif
505
506    device_id = 0;
507    for (device = &device_base[my_cluster->device_offset];
508         device < &device_base[my_cluster->device_offset + my_cluster->devices];
509         device++ )
510    {
511        // keep only internal devices
512        if( (device->type == DEV_TYPE_RAM_SCL) ||
513            (device->type == DEV_TYPE_ICU_XCU) ||
514            (device->type == DEV_TYPE_MMC_TSR) ||
515            (device->type == DEV_TYPE_DMA_SCL) ) 
516        {
517            if (device->type == DEV_TYPE_RAM_SCL)   // RAM
518            {
519                // set number of physical memory pages
520                boot_info->pages_nr   = device->size >> CONFIG_PPM_PAGE_SHIFT;
521
522#if DEBUG_BOOT_INFO
523boot_printf("  - RAM : %x pages\n", boot_info->pages_nr );
524#endif
525            }
526            else                                    // ICU / MMC / DMA
527            {
528                if( device_id >= CONFIG_MAX_INT_DEV ) 
529                {
530                    boot_printf("\n[ERROR] in %s : too much internal devices in cluster %x\n",
531                                __FUNCTION__ , cxy );
532                    boot_exit();
533                }
534       
535                boot_dev = &boot_info->int_dev[device_id];
536
537                boot_dev->type     = device->type;
538                boot_dev->base     = device->base;
539                boot_dev->channels = device->channels;
540                boot_dev->param0   = device->arg0;   
541                boot_dev->param1   = device->arg1;   
542                boot_dev->param2   = device->arg2;   
543                boot_dev->param3   = device->arg3;   
544                boot_dev->irqs     = device->irqs; 
545
546                device_id++;
547
548#if DEBUG_BOOT_INFO
549boot_printf("  - %s : base = %l / size = %l / channels = %d / irqs = %d\n",
550            device_type_str( device->type ) , device->base , device->size ,
551            device->channels , device->irqs );   
552#endif
553
554                // handle IRQs for ICU
555                if (device->type == DEV_TYPE_ICU_XCU) 
556                {
557                    for (irq_id = 0; irq_id < CONFIG_MAX_INTERNAL_IRQS ; irq_id++)
558                    {
559                        boot_dev->irq[irq_id].valid  = 0;
560                    }
561
562                    for (irq = &irq_base[device->irq_offset];
563                         irq < &irq_base[device->irq_offset + device->irqs] ; irq++)
564                    {
565                        boot_dev->irq[irq->port].valid    = 1;
566                        boot_dev->irq[irq->port].dev_type = irq->dev_type;
567                        boot_dev->irq[irq->port].channel  = irq->channel;
568                        boot_dev->irq[irq->port].is_rx    = irq->is_rx;
569
570#if DEBUG_BOOT_INFO
571boot_printf("    . irq_port = %d / source = %s / channel = %d / is_rx = %d\n",
572            irq->port , device_type_str( irq->dev_type ) , irq->channel , irq->is_rx );
573#endif
574
575                    }
576                }
577            }
578        }
579    }  // end loop on local peripherals
580
581    // initialize number of external peripherals
582    boot_info->int_dev_nr = device_id;
583
584   // Get the top address of the kernel segments
585    end = (boot_info->kernel_code_end > boot_info->kernel_data_end ) ?
586          boot_info->kernel_code_end : boot_info->kernel_data_end;
587
588    // Set number of pages occupied by the kernel code
589    boot_info->pages_offset = ( (end & CONFIG_PPM_PAGE_MASK) == 0 ) ?
590                 (end >> CONFIG_PPM_PAGE_SHIFT) : (end >> CONFIG_PPM_PAGE_SHIFT) + 1;
591
592    // No "reserved zones" for the TSAR architecture
593    boot_info->rsvd_nr = 0;
594
595    // set boot_info signature
596    boot_info->signature = BOOT_INFO_SIGNATURE;
597
598} // boot_info_init()
599
600/***********************************************************************************
601 * This function check the local boot_info_t structure for a given core.
602 * @ boot_info  : pointer to local 'boot_info_t' structure to be checked.
603 * @ lid        : core local identifier, index the core descriptor table.
604 **********************************************************************************/
605static void boot_check_core( boot_info_t * boot_info, 
606                             lid_t         lid)
607{
608    gid_t         gid;        // global hardware identifier of this core
609    boot_core_t * this;       // BOOT_INFO core descriptor of this core. 
610
611    // Get core hardware identifier
612    gid = (gid_t)boot_get_procid();
613
614    // get pointer on core descriptor
615    this = &boot_info->core[lid];
616
617    if ( (this->gid != gid) ||  (this->cxy != boot_info->cxy) )
618    {
619        boot_printf("\n[BOOT ERROR] in boot_check_core() :\n"
620                    " - boot_info cxy = %x\n"
621                    " - boot_info lid = %d\n"
622                    " - boot_info gid = %x\n"
623                    " - actual    gid = %x\n",
624                    this->cxy , this->lid , this->gid , gid );
625        boot_exit();
626    }
627
628} // boot_check_core()
629
630/*********************************************************************************
631 * This function is called by CP0 in cluster(0,0) to activate all other CP0s.
632 * It returns the number of CP0s actually activated.
633 ********************************************************************************/
634static uint32_t boot_wake_all_cp0s()
635{
636    archinfo_header_t*  header;         // Pointer on ARCHINFO header
637    archinfo_cluster_t* cluster_base;   // Pointer on ARCHINFO clusters base
638    archinfo_cluster_t* cluster;        // Iterator for loop on clusters
639    archinfo_device_t*  device_base;    // Pointer on ARCHINFO devices base
640    archinfo_device_t*  device;         // Iterator for loop on devices
641    uint32_t            cp0_nb = 0;     // CP0s counter
642
643    header       = (archinfo_header_t*)ARCHINFO_BASE;
644    cluster_base = archinfo_get_cluster_base(header);
645    device_base  = archinfo_get_device_base (header); 
646
647    // loop on all clusters
648    for (cluster = cluster_base;
649         cluster < &cluster_base[header->x_size * header->y_size];
650         cluster++)
651    {
652        // Skip boot cluster.
653        if (cluster->cxy == BOOT_CORE_CXY)
654            continue;
655           
656        // Skip clusters without core (thus without CP0).
657        if (cluster->cores == 0)
658            continue;
659
660        // Skip clusters without device (thus without XICU).
661        if (cluster->devices == 0)
662            continue;
663
664        // search XICU device associated to CP0, and send a WTI to activate it
665        for (device = &device_base[cluster->device_offset];
666             device < &device_base[cluster->device_offset + cluster->devices];
667             device++)
668        {
669            if (device->type == DEV_TYPE_ICU_XCU)
670            {
671
672#if DEBUG_BOOT_WAKUP
673boot_printf("\n[BOOT] core[%x][0] activated at cycle %d\n",
674            cluster->cxy , boot_get_proctime );
675#endif
676
677                boot_remote_sw((xptr_t)device->base, (uint32_t)boot_entry);
678                cp0_nb++;
679            }
680        }
681    }
682    return cp0_nb;
683
684} // boot_wake_cp0()
685
686/*********************************************************************************
687 * This function is called by all CP0 to activate the other CPi cores.
688 * @ boot_info  : pointer to local 'boot_info_t' structure.
689 *********************************************************************************/
690static void boot_wake_local_cores(boot_info_t * boot_info)
691{
692    unsigned int     core_id;       
693
694    // get pointer on XCU device descriptor in boot_info
695    boot_device_t *  xcu = &boot_info->int_dev[0];
696 
697    // loop on cores
698    for (core_id = 1; core_id < boot_info->cores_nr; core_id++)
699    {
700
701#if DEBUG_BOOT_WAKUP
702boot_printf("\n[BOOT] core[%x][%d] activated at cycle %d\n",
703             boot_info->cxy , core_id , boot_get_proctime() );
704#endif
705        // send an IPI
706        boot_remote_sw( (xptr_t)(xcu->base + (core_id << 2)) , (uint32_t)boot_entry ); 
707    }
708} // boot_wake_local_cores()
709
710
711/*********************************************************************************
712 * This main function of the boot-loader is called by the  boot_entry() 
713 * function, and executed by all cores.
714 * The arguments values are computed by the boot_entry code.
715 * @ lid    : core local identifier,
716 * @ cxy    : cluster identifier,
717 *********************************************************************************/
718void boot_loader( lid_t lid, 
719                  cxy_t cxy )
720{
721    boot_info_t * boot_info;       // pointer on local boot_info_t structure
722
723    if (lid == 0) 
724    {
725        /****************************************************
726         * PHASE A : only CP0 in boot cluster executes it
727         ***************************************************/
728        if (cxy == BOOT_CORE_CXY)
729        {
730            boot_printf("\n[BOOT] core[%x][%d] enters at cycle %d\n",
731                        cxy , lid , boot_get_proctime() );
732
733            // Initialize IOC driver
734            if      (USE_IOC_BDV) boot_bdv_init();
735            else if (USE_IOC_HBA) boot_hba_init();
736            // else if (USE_IOC_SDC) boot_sdc_init();
737            // else if (USE_IOC_SPI) boot_spi_init();
738            else if (!USE_IOC_RDK)
739            {
740                boot_printf("\n[BOOT ERROR] in %s : no IOC driver\n");
741                boot_exit();
742            }
743
744            // Initialize FAT32.
745            boot_fat32_init();
746
747            // Load the 'kernel.elf' file into memory from IOC, and set   
748            // the global variables defining the kernel layout     
749            boot_kernel_load();
750
751            boot_printf("\n[BOOT] core[%x][%d] loaded kernel at cycle %d\n",
752                        cxy , lid , boot_get_proctime() );
753
754            // Load the arch_info.bin file into memory.
755            boot_archinfo_load();
756
757            // Get local boot_info_t structure base address.
758            // It is the first structure in the .kdata segment.
759            boot_info = (boot_info_t *)seg_kdata_base;
760
761            // Initialize local boot_info_t structure.
762            boot_info_init( boot_info , cxy );
763
764            // check boot_info signature
765            if (boot_info->signature != BOOT_INFO_SIGNATURE)
766            {
767                boot_printf("\n[BOOT ERROR] in %s reported by core[%x][%d]\n"
768                            "  illegal boot_info signature / should be %x\n",
769                            __FUNCTION__ , cxy , lid , BOOT_INFO_SIGNATURE );
770                boot_exit();
771            }
772
773            boot_printf("\n[BOOT] core[%x][%d] loaded boot_info at cycle %d\n",
774                        cxy , lid , boot_get_proctime() );
775
776            // Check core information.
777            boot_check_core(boot_info, lid);
778
779            // Activate other CP0s / get number of active CP0s
780            active_cp0s_nr = boot_wake_all_cp0s() + 1;
781
782            // Wait until all clusters (i.e all CP0s) ready to enter kernel.
783            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) ,
784                                 active_cp0s_nr );
785
786            // activate other local cores
787            boot_wake_local_cores( boot_info );
788
789            // Wait until all local cores in cluster ready
790            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
791                                 boot_info->cores_nr );
792        }
793        /******************************************************************
794         * PHASE B : all CP0s other than CP0 in boot cluster execute it
795         *****************************************************************/
796        else
797        {
798            // at this point, all INSTRUCTION address extension registers
799            // point on cluster(0,0), but the DATA extension registers point
800            // already on the local cluster to use the local stack.
801            // To access the bootloader global variables we must first copy
802            // the boot code (data and instructions) in the local cluster.
803            boot_remote_memcpy( XPTR( cxy           , BOOT_BASE ),
804                                XPTR( BOOT_CORE_CXY , BOOT_BASE ),
805                                BOOT_MAX_SIZE );
806
807            // from now, it is safe to refer to the boot code global variables
808            boot_printf("\n[BOOT] core[%x][%d] replicated boot code at cycle %d\n",
809                        cxy , lid , boot_get_proctime() );
810
811            // switch to the INSTRUCTION local memory space, to avoid contention.
812            asm volatile("mtc2  %0, $25" :: "r"(cxy));
813
814            // Copy the arch_info.bin file into the local memory.
815            boot_remote_memcpy(XPTR(cxy,           ARCHINFO_BASE),
816                               XPTR(BOOT_CORE_CXY, ARCHINFO_BASE),
817                               ARCHINFO_MAX_SIZE );
818
819            boot_printf("\n[BOOT] core[%x][%d] replicated arch_info at cycle %d\n",
820                        cxy , lid , boot_get_proctime() );
821
822            // Copy the kcode segment into local memory
823            boot_remote_memcpy( XPTR( cxy           , seg_kcode_base ),
824                                XPTR( BOOT_CORE_CXY , seg_kcode_base ),
825                                seg_kcode_size );
826
827            // Copy the kdata segment into local memory
828            boot_remote_memcpy( XPTR( cxy           , seg_kdata_base ),
829                                XPTR( BOOT_CORE_CXY , seg_kdata_base ),
830                                seg_kdata_size );
831
832            boot_printf("\n[BOOT] core[%x][%d] replicated kernel code at cycle %d\n",
833                        cxy , lid , boot_get_proctime() );
834
835            // Get local boot_info_t structure base address.
836            boot_info = (boot_info_t*)seg_kdata_base;
837
838            // Initialize local boot_info_t structure.
839            boot_info_init( boot_info , cxy );
840
841            // Check core information.
842            boot_check_core( boot_info , lid );
843
844            // get number of active clusters from BOOT_CORE cluster
845            uint32_t count = boot_remote_lw( XPTR( BOOT_CORE_CXY , &active_cp0s_nr ) );
846
847            // Wait until all clusters (i.e all CP0s) ready to enter kernel
848            boot_remote_barrier( XPTR( BOOT_CORE_CXY , &global_barrier ) , count );
849
850            // activate other local cores
851            boot_wake_local_cores( boot_info );
852
853            // Wait until all local cores in cluster ready
854            boot_remote_barrier( XPTR( cxy , &local_barrier ) , 
855                                 boot_info->cores_nr );
856        }
857    }
858    else
859    {
860        /***************************************************************
861         * PHASE C: all non CP0 cores in all clusters execute it
862         **************************************************************/
863
864        // Switch to the INSTRUCTIONS local memory space
865        // to avoid contention at the boot cluster.
866        asm volatile("mtc2  %0, $25" :: "r"(cxy));
867
868        // Get local boot_info_t structure base address.
869        boot_info = (boot_info_t *)seg_kdata_base;
870
871        // Check core information
872        boot_check_core(boot_info, lid);
873
874        // Wait until all local cores in cluster ready
875        boot_remote_barrier( XPTR( cxy , &local_barrier ) , boot_info->cores_nr );
876    }
877
878    // Ech core compute stack pointer to the kernel idle-thread descriptor.
879    // The array of idle-thread descriptors is allocated in the kdata segment,
880    // just after the boot_info structure
881
882    uint32_t sp;
883    uint32_t base;
884    uint32_t offset = sizeof( boot_info_t );
885    uint32_t pmask  = CONFIG_PPM_PAGE_MASK;
886    uint32_t psize  = CONFIG_PPM_PAGE_SIZE;
887
888    // compute base address of idle thread descriptors array
889    if( offset & pmask ) base = seg_kdata_base + (offset & ~pmask) + psize;
890    else                 base = seg_kdata_base + offset;
891
892    // compute stack pointer
893    sp = base + ((lid + 1) * CONFIG_THREAD_DESC_SIZE) - 16;
894
895    // Each cores initialise stack pointer,
896    // reset the BEV bit in status register,
897    // register "boot_info" argument in a0,
898    // and jump to kernel_entry.
899    asm volatile( "mfc0  $27,  $12           \n"
900                  "lui   $26,  0xFFBF        \n"
901                  "ori   $26,  $26,  0xFFFF  \n"
902                  "and   $27,  $27,  $26     \n"
903                  "mtc0  $27,  $12           \n" 
904                  "move  $4,   %0            \n"
905                  "move  $29,  %1            \n"
906                  "jr    %2                  \n"
907                  :: "r"(boot_info) , "r"(sp) , "r"(kernel_entry) );
908
909} // boot_loader()
Note: See TracBrowser for help on using the repository browser.