/*************************************************************************/ /* */ /* Copyright (c) 1994 Stanford University */ /* */ /* All rights reserved. */ /* */ /* Permission is given to use, copy, and modify this software for any */ /* non-commercial purpose as long as this copyright notice is not */ /* removed. All other uses, including redistribution in whole or in */ /* part, are forbidden without prior written permission. */ /* */ /* This software is provided with absolutely no warranty and no */ /* support. */ /* */ /*************************************************************************/ /////////////////////////////////////////////////////////////////////////// // This port of the SPLASH FFT benchmark on the ALMOS-MKH OS has been // done by Alain Greiner (august 2018). // // This application performs the 1D fast Fourier transfom for an array // of N complex points, using the Cooley-Tuckey FFT method. // The N data points are seen as a 2D array (rootN rows * rootN columns). // Each thread handle (rootN / nthreads) rows. // The N input data points can be initialised in three different modes: // - CONSTANT : all data points have the same [1,0] value // - COSIN : data point n has [cos(n/N) , sin(n/N)] values // - RANDOM : data points have pseudo random values // // The main parameters for this generic application are the following: // - M : N = 2**M = number of data points / M must be an even number. // - T : nthreads = ncores defined by the hardware / must be power of 2. // The number of threads cannot be larger than the number of rows. // // This application uses 3 shared data arrays, that are dynamically // allocated and distributed in clusters, with one sub-buffer per cluster: // - data[N] contains N input data points, // - trans[N] contains N intermediate data points, // - twid[N] contains N coefs : exp(2*pi*i*j/N) / i and j in [0,rootN-1] // Each sub-buffer contains (N/nclusters) entries, with 2 double per entry. // These distributed buffers are allocated and initialised in parallel // by the working threads running on core 0 in each cluster. // // Each working thread allocates also a private coefs[rootN-1] buffer, // that contains all coefs required for a rootN points FFT. // // There is one working thread per core. // The actual number of cores and cluster in a given hardware architecture // is obtained by the get_config() syscall (x_size, y_size, ncores). // The max number of clusters is bounded by (X_MAX * Y_MAX). // The max number of cores per cluster is bounded by CORES_MAX. // // Several configuration parameters can be defined below: // - PRINT_ARRAY : Print out complex data points arrays. // - CHECK : Perform both FFT and inverse FFT to check output/input. // - DEBUG_MAIN : Display intermediate results in main() // - DEBUG_FFT1D : Display intermediate results in FFT1D() // - DEBUG_ROW : Display intermedite results in FFTrow() // // Regarding final instrumentation: // - the sequencial initialisation time (init_time) is computed // by the main thread in the main() function. // - The parallel execution time (parallel_time[i]) is computed by each // working thread(i) in the work() function. // - The synchronisation time related to the barriers (sync_time[i]) // is computed by each thread(i) in the work() function. // The results are displayed on the TXT terminal, and registered on disk. /////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include // constants #define PI 3.14159265359 #define PAGE_SIZE 4096 #define X_MAX 16 // max number of clusters in a row #define Y_MAX 16 // max number of clusters in a column #define CORES_MAX 4 // max number of cores in a cluster #define CLUSTERS_MAX X_MAX * Y_MAX #define THREADS_MAX CLUSTERS_MAX * CORES_MAX #define RANDOM 0 #define COSIN 1 #define CONSTANT 2 // parameters #define DEFAULT_M 18 // 256 K complex points #define USE_DQT_BARRIER 1 // use DDT barrier if non zero #define MODE COSIN // DATA array initialisation mode #define CHECK 0 #define DEBUG_MAIN 1 // trace main() function (detailed if odd) #define DEBUG_WORK 0 // trace work() function (detailed if odd) #define DEBUG_FFT1D 0 // trace FFT1D() function (detailed if odd) #define DEBUG_ROW 0 // trace FFTRow() function (detailed if odd) #define PRINT_ARRAY 0 #define DISPLAY_SCHED_AND_VMM 0 // display final VMM state in all clusters // macro to swap two variables #define SWAP(a,b) { double tmp; tmp = a; a = b; b = tmp; } ///////////////////////////////////////////////////////////////////////////////////// // FFT global variables ///////////////////////////////////////////////////////////////////////////////////// // work function arguments typedef struct work_args_s { unsigned int tid; // thread continuous index unsigned int lid; // core local index unsigned int cid; // cluster continuous index pthread_barrier_t * parent_barrier; // parent barrier to signal completion } work_args_t; unsigned int nthreads; // total number of threads (one thread per core) unsigned int nclusters; // total number of clusters unsigned int M = DEFAULT_M; // log2(number of points) unsigned int N; // number of points (N = 2^M) unsigned int rootN; // rootN = 2^M/2 unsigned int rows_per_thread; // number of data "rows" handled by a single thread unsigned int points_per_cluster; // number of data points per cluster // arrays of pointers on distributed buffers (one sub-buffer per cluster) double * data[CLUSTERS_MAX]; // original time-domain data double * trans[CLUSTERS_MAX]; // used as auxiliary space for transpose double * twid[CLUSTERS_MAX]; // twiddle factor : exp(-2iPI*k*n/N) double * bloup[CLUSTERS_MAX]; // used as auxiliary space for DFT // instrumentation counters unsigned int pgfault_nr[THREADS_MAX]; // total number of page faults (per thread) unsigned int pgfault_cost[THREADS_MAX]; // total page faults cost (per thread) unsigned int pgfault_max[THREADS_MAX]; // max page faults cost (per thread) unsigned int parallel_time[THREADS_MAX]; // total computation time (per thread) unsigned int sync_time[THREADS_MAX]; // cumulated waiting time in barriers (per thread) unsigned int init_time; // initialisation time (in main) // synchronisation barrier (all threads) pthread_barrier_t barrier; pthread_barrierattr_t barrier_attr; ///////////////////////////////////////////////////////////////////////////////////// // Global variables required by parallel_pthread_create() ///////////////////////////////////////////////////////////////////////////////////// // 2D arrays of input arguments for the threads // These arrays are initialised by the application main thread work_args_t work_args[CLUSTERS_MAX][CORES_MAX]; // work function arguments work_args_t * work_ptrs[CLUSTERS_MAX][CORES_MAX]; // pointers on arguments // 1D array of barriers to allow the threads to signal termination // this array is initialised in each cluster by the thread pthread_barrier_t parent_barriers[CLUSTERS_MAX]; // termination barrier ///////////////////////////////////////////////////////////////////////////////////// // functions declaration ///////////////////////////////////////////////////////////////////////////////////// void work( work_args_t * args ); double CheckSum( void ); void InitD( double ** data , unsigned int mode, unsigned int tid ); void InitT( double ** twid, unsigned int tid ); void InitU( double * coefs ); unsigned int BitReverse( unsigned int k ); void FFT1D( int direction, double ** x, double ** tmp, double * upriv, double ** twid, unsigned int tid, unsigned int MyFirst, unsigned int MyLast ); void TwiddleOneCol( int direction, unsigned int j, double ** u, double ** x, unsigned int offset_x ); void Scale( double ** x, unsigned int offset_x ); void Transpose( double ** src, double ** dest, unsigned int MyFirst, unsigned int MyLast ); void Copy( double ** src, double ** dest, unsigned int MyFirst, unsigned int MyLast ); void Reverse( double ** x, unsigned int offset_x ); void FFTRow( int direction, double * u, double ** x, unsigned int offset_x ); void PrintArray( double ** x, unsigned int size ); void SimpleDft( int direction, unsigned int size, double ** src, unsigned int src_offset, double ** dst, unsigned int dst_offset ); /////////////////////////////////////////////////////////////////// // This main() function execute the sequencial initialisation // launch the parallel execution, and makes the instrumentation. /////////////////////////////////////////////////////////////////// void main ( void ) { int error; unsigned int x_size; // number of clusters per row unsigned int y_size; // number of clusters per column unsigned int ncores; // max number of cores per cluster unsigned int x; // current index for cluster X coordinate unsigned int y; // current index for cluster Y coordinate unsigned int lid; // current index for core in a cluster unsigned int tid; // continuous thread index unsigned int cid; // cluster continuous index unsigned int cxy; // hardware specific cluster identifier char name[64]; // instrumentation file name char path[128]; // instrumentation path name char string[256]; int ret; unsigned long long start_init_cycle; unsigned long long end_init_cycle; #if DEBUG_MAIN unsigned long long debug_cycle; #endif #if CHECK double ck1; // for input/output checking double ck3; // for input/output checking #endif int pid = getpid(); // get FFT application start cycle get_cycle( &start_init_cycle ); // get platform parameters if( get_config( &x_size , &y_size , &ncores ) ) { printf("\n[fft error] cannot get hardware configuration\n"); exit( 0 ); } // check ncores if( (ncores != 1) && (ncores != 2) && (ncores != 4) ) { printf("\n[fft error] number of cores per cluster must be 1/2/4\n"); exit( 0 ); } // check x_size if( (x_size != 1) && (x_size != 2) && (x_size != 4) && (x_size != 8) && (x_size != 16) ) { printf("\n[fft error] x_size must be 1/2/4/8/16\n"); exit( 0 ); } // check y_size if( (y_size != 1) && (y_size != 2) && (y_size != 4) && (y_size != 8) && (y_size != 16) ) { printf("\n[fft error] y_size must be 1/2/4/8/16\n"); exit( 0 ); } // compute nthreads and nclusters nthreads = x_size * y_size * ncores; nclusters = x_size * y_size; // compute covering DQT size an level unsigned int z = (x_size > y_size) ? x_size : y_size; unsigned int root_level = (z == 1) ? 0 : (z == 2) ? 1 : (z == 4) ? 2 : (z == 8) ? 3 : 4; // compute various constants depending on N and T N = 1 << M; rootN = 1 << (M / 2); rows_per_thread = rootN / nthreads; points_per_cluster = N / nclusters; // check N versus T if( rootN < nthreads ) { printf("\n[fft error] sqrt(N) must be larger than T\n"); exit( 0 ); } printf("\n[fft] starts / %d points / %d thread(s) / PID %x / cycle %d\n", N, nthreads, pid, (unsigned int)start_init_cycle ); // build instrumentation file name if( USE_DQT_BARRIER ) snprintf( name , 64 , "p_fft_dqt_%d_%d_%d", N , x_size * y_size , ncores ); else snprintf( name , 64 , "p_fft_smp_%d_%d_%d", N , x_size * y_size , ncores ); // build pathname snprintf( path , 128 , "/home/%s", name ); // open instrumentation file FILE * f = fopen( path , NULL ); if ( f == NULL ) { printf("\n[fft error] cannot open instrumentation file <%s>\n", path ); exit( 0 ); } #if DEBUG_MAIN get_cycle( &debug_cycle ); printf("\n[fft] main open file <%s> at cycle %d\n", path, (unsigned int)debug_cycle ); #endif #if CHECK ck1 = CheckSum(); #endif #if PRINT_ARRAY printf("\nData values / base = %x\n", &data[0][0] ); PrintArray( data , N ); printf("\nTwiddle values / base = %x\n", &twid[0][0] ); PrintArray( twid , N ); SimpleDft( 1 , N , data , 0 , bloup , 0 ); printf("\nExpected results / base = %x\n", &bloup[0][0] ); PrintArray( bloup , N ); #endif // initialise barrier synchronizing all threads if( USE_DQT_BARRIER ) { barrier_attr.x_size = x_size; barrier_attr.y_size = y_size; barrier_attr.nthreads = ncores; error = pthread_barrier_init( &barrier, &barrier_attr , nthreads ); } else { error = pthread_barrier_init( &barrier, NULL , nthreads ); } if( error ) { printf("\n[fft error] cannot initialize barrier\n"); exit( 0 ); } #if DEBUG_MAIN get_cycle( &debug_cycle ); printf("\n[fft] main completes barrier init at cycle %d\n", (unsigned int)debug_cycle ); #endif // build array of arguments for the threads for (x = 0 ; x < x_size ; x++) { for (y = 0 ; y < y_size ; y++) { // compute cluster identifier cxy = HAL_CXY_FROM_XY( x , y ); for ( lid = 0 ; lid < ncores ; lid++ ) { // compute cluster continuous index cid = (x * y_size) + y; // compute work thread continuous index tid = (cid * ncores) + lid; // initialize 2D array of arguments work_args[cxy][lid].tid = tid; work_args[cxy][lid].lid = lid; work_args[cxy][lid].cid = cid; work_args[cxy][lid].parent_barrier = &parent_barriers[cxy]; // initialize 2D array of pointers work_ptrs[cxy][lid] = &work_args[cxy][lid]; } } } // register sequencial time get_cycle( &end_init_cycle ); init_time = (unsigned int)(end_init_cycle - start_init_cycle); #if DEBUG_MAIN printf("\n[fft] main completes threads arguments at cycle %d\n", (unsigned int)end_init_cycle ); #endif // create and execute the working threads if( pthread_parallel_create( root_level, &work, &work_ptrs[0][0], &parent_barriers[0] ) ) { printf("\n[fft error] creating threads\n"); exit( 0 ); } #if DEBUG_MAIN get_cycle( &debug_cycle ); printf("\n[fft] main resume for instrumentation at cycle %d\n", (unsigned int)debug_cycle) ; #endif #if PRINT_ARRAY printf("\nData values after FFT:\n"); PrintArray( data , N ); #endif #if CHECK ck3 = CheckSum(); printf("\n*** Results ***\n"); printf("Checksum difference is %f (%f, %f)\n", ck1 - ck3, ck1, ck3); if (fabs(ck1 - ck3) < 0.001) printf("Results OK\n"); else printf("Results KO\n"); #endif // display header on terminal, and save to file printf("\n----- %s -----\n", name ); ret = fprintf( f , "\n----- %s -----\n", name ); if( ret < 0 ) { printf("\n[fft error] cannot write header to file <%s>\n", path ); exit(0); } // initializes global (all threads) instrumentation values unsigned int time_para = parallel_time[0]; unsigned int time_sync = sync_time[0]; unsigned int pgfaults_nr = 0; unsigned int pgfaults_cost = 0; unsigned int pgfaults_max = pgfault_max[0]; // loop on threads to compute global instrumentation results for (tid = 0 ; tid < nthreads ; tid++) { snprintf( string , 256 , "- tid %d : Seq %d / Para %d / Sync %d / Pgfaults %d ( cost %d / max %d )\n", tid, init_time, parallel_time[tid], sync_time[tid], pgfault_nr[tid], (pgfault_cost[tid] / pgfault_nr[tid]) , pgfault_max[tid] ); // save to instrumentation file fprintf( f , "%s" , string ); if( ret < 0 ) { printf("\n[fft error] cannot save thread %d results to file <%s>\n", tid, path ); printf("%s", string ); exit(0); } // compute global values if (parallel_time[tid] > time_para) time_para = parallel_time[tid]; if (sync_time[tid] > time_sync) time_sync = sync_time[tid]; pgfaults_nr += pgfault_nr[tid]; pgfaults_cost += pgfault_cost[tid]; if (pgfault_max[tid] > pgfaults_max) pgfaults_max = pgfault_max[tid]; } // display global values on terminal and save to file snprintf( string , 256 , "\nSeq %d / Para %d / Sync %d / Pgfaults %d ( cost %d / max %d )\n", init_time, time_para, time_sync, pgfaults_nr, (pgfaults_cost / pgfaults_nr), pgfaults_max ); printf("%s", string ); // save global values to file ret = fprintf( f , "%s", string ); if( ret < 0 ) { printf("\n[fft error] cannot save global results to file <%s>\n", path ); exit(0); } // close instrumentation file ret = fclose( f ); if( ret < 0 ) { printf("\n[fft error] cannot close file <%s>\n", path ); exit(0); } #if DEBUG_MAIN get_cycle( &debug_cycle ); printf("\n[fft] main exit <%s> at cycle %d\n", path, (unsigned int)debug_cycle ); #endif exit( 0 ); } // end main() ///////////////////////////////////////////////////////////////// // This function is executed in parallel by all threads. ///////////////////////////////////////////////////////////////// void work( work_args_t * args ) { unsigned int tid; // this thread continuous index unsigned int lid; // core local index unsigned int cid; // cluster continuous index pthread_barrier_t * parent_barrier; // pointer on parent barrier unsigned int MyFirst; // index first row allocated to thread unsigned int MyLast; // index last row allocated to thread double * upriv; // private array of FFT coefs unsigned long long parallel_start; unsigned long long parallel_stop; unsigned long long barrier_start; unsigned long long barrier_stop; // get thread arguments tid = args->tid; lid = args->lid; cid = args->cid; parent_barrier = args->parent_barrier; get_cycle( ¶llel_start ); #if DEBUG_WORK printf("\n[fft] %s : thread %d enter / cycle %d\n", __FUNCTION__, tid, (unsigned int)parallel_start ); #endif // thread on core 0 allocates memory from the local cluster // for the distributed data[], trans[], twid[] buffers if( lid == 0 ) { unsigned int data_size = (N / nclusters) * 2 * sizeof(double); data[cid] = (double *)malloc( data_size ); if( data[cid] == NULL ) { printf("\n[fft_error] in work : cannot allocate data[%d] buffer\n", cid ); pthread_barrier_wait( parent_barrier ); pthread_exit( NULL ); } trans[cid] = (double *)malloc( data_size ); if( trans[cid] == NULL ) { printf("\n[fft_error] in work : cannot allocate trans[%d] buffer\n", cid ); pthread_barrier_wait( parent_barrier ); pthread_exit( NULL ); } twid[cid] = (double *)malloc( data_size ); if( twid[cid] == NULL ) { printf("\n[fft_error] in work : cannot allocate twid[%d] buffer\n", cid ); pthread_barrier_wait( parent_barrier ); pthread_exit( NULL ); } } // BARRIER to wait distributed buffers allocation get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); sync_time[tid] += (unsigned int)(barrier_stop - barrier_start); #if DEBUG_WORK printf("\n[fft] %s : thread %d exit barrier for buffer allocation / cycle %d\n", __FUNCTION__, tid, (unsigned int)barrier_stop ); #endif #if DISPLAY_SCHED_AND_VMM unsigned int x_size; unsigned int y_size; unsigned int ncores; get_config( &x_size , &y_size , &ncores ); unsigned int x = cid / y_size; unsigned int y = cid % y_size; unsigned int cxy = HAL_CXY_FROM_XY( x , y ); display_sched( cxy , lid ); if( lid == 0 ) display_vmm( cxy , getpid() , 0 ); #endif // all threads contribute to data[] local array initialisation InitD( data , MODE , tid ); // all threads contribute to data[] local array initialisation InitT( twid , tid ); // BARRIER to wait distributed buffers initialisation get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); sync_time[tid] += (unsigned int)(barrier_stop - barrier_start); #if DEBUG_WORK printf("\n[fft] %s : thread %d exit barrier for buffer initialisation / cycle %d\n", __FUNCTION__, tid, (unsigned int)barrier_stop ); #endif // all threads allocate memory from the local cluster // for the private upriv[] buffer upriv = (double *)malloc( (rootN - 1) * 2 * sizeof(double) ); if( upriv == NULL ) { printf("\n[fft_error] in work : cannot allocate trans[%d] buffer\n", cid ); pthread_barrier_wait( parent_barrier ); pthread_exit( NULL ); } // all threads initialise the private upriv[] array InitU( upriv ); // all threads compute first and last rows handled by the thread MyFirst = rootN * tid / nthreads; MyLast = rootN * (tid + 1) / nthreads; // all threads perform forward FFT FFT1D( 1 , data , trans , upriv , twid , tid , MyFirst , MyLast ); #if CHECK get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); sync_time[tid] += (unsigned int)(barrier_stop - barrier_start); FFT1D( -1 , data , trans , upriv , twid , tid , MyFirst , MyLast ); #endif get_cycle( ¶llel_stop ); // register parallel time in instrumentation counters parallel_time[tid] = (unsigned int)(parallel_stop - parallel_start); // get work thread info for page faults thread_info_t info; get_thread_info( &info ); // register page faults in instrumentation counters pgfault_nr[tid] = info.false_pgfault_nr + info.local_pgfault_nr + info.global_pgfault_nr; pgfault_cost[tid] = info.false_pgfault_cost + info.local_pgfault_cost + info.global_pgfault_cost; pgfault_max[tid] = info.false_pgfault_max + info.local_pgfault_max + info.global_pgfault_max; #if DEBUG_WORK printf("\n[fft] %s : thread %d completes fft / p_start %d / p_stop %d\n", __FUNCTION__, tid, (unsigned int)parallel_start, (unsigned int)parallel_stop ); #endif // work thread signals completion to main pthread_barrier_wait( parent_barrier ); #if DEBUG_WORK printf("\n[fft] %s : thread %d exit\n", __FUNCTION__, tid ); #endif #if DISPLAY_SCHED_AND_VMM printf("\n[fft] %s : thread %d exit\n", __FUNCTION__, tid ); if( lid == 0 ) display_vmm( cxy , getpid() , 0 ); #endif // work thread exit pthread_exit( NULL ); } // end work() //////////////////////////////////////////////////////////////////////////////////////// // This function makes the DFT from the src[nclusters][points_per_cluster] distributed // buffer, to the dst[nclusters][points_per_cluster] distributed buffer. //////////////////////////////////////////////////////////////////////////////////////// void SimpleDft( int direction, // 1 direct / -1 reverse unsigned int size, // number of points double ** src, // source distributed buffer unsigned int src_offset, // offset in source array double ** dst, // destination distributed buffer unsigned int dst_offset ) // offset in destination array { unsigned int n , k; double phi; // 2*PI*n*k/N double u_r; // cos( phi ) double u_c; // sin( phi ) double d_r; // Re(data[n]) double d_c; // Im(data[n]) double accu_r; // Re(accu) double accu_c; // Im(accu) unsigned int c_id; // distributed buffer cluster index unsigned int c_offset; // offset in distributed buffer for ( k = 0 ; k < size ; k++ ) // loop on the output data points { // initialise accu accu_r = 0; accu_c = 0; for ( n = 0 ; n < size ; n++ ) // loop on the input data points { // compute coef phi = (double)(2*PI*n*k) / size; u_r = cos( phi ); u_c = -sin( phi ) * direction; // get input data point c_id = (src_offset + n) / (points_per_cluster); c_offset = (src_offset + n) % (points_per_cluster); d_r = src[c_id][2*c_offset]; d_c = src[c_id][2*c_offset+1]; // increment accu accu_r += ((u_r*d_r) - (u_c*d_c)); accu_c += ((u_r*d_c) + (u_c*d_r)); } // scale for inverse DFT if ( direction == -1 ) { accu_r /= size; accu_c /= size; } // set output data point c_id = (dst_offset + k) / (points_per_cluster); c_offset = (dst_offset + k) % (points_per_cluster); dst[c_id][2*c_offset] = accu_r; dst[c_id][2*c_offset+1] = accu_c; } } // end SimpleDft() /////////////////////// double CheckSum( void ) { unsigned int i , j; unsigned int c_id; unsigned int c_offset; double cks; cks = 0.0; for (j = 0; j < rootN ; j++) { for (i = 0; i < rootN ; i++) { c_id = (rootN * j + i) / (points_per_cluster); c_offset = (rootN * j + i) % (points_per_cluster); cks += data[c_id][2*c_offset] + data[c_id][2*c_offset+1]; } } return(cks); } ////////////////////////////////////////////////////////////////////////////////////// // Each working thread contributes to initialize (rootN / nthreads) rows, // in the shared - and distributed - array. ////////////////////////////////////////////////////////////////////////////////////// void InitD(double ** data, unsigned int mode, unsigned int tid ) { unsigned int i , j; unsigned int c_id; unsigned int c_offset; unsigned int index; // compute row_min and row_max unsigned int row_min = tid * rows_per_thread; unsigned int row_max = row_min + rows_per_thread; for ( j = row_min ; j < row_max ; j++ ) // loop on rows { for ( i = 0 ; i < rootN ; i++ ) // loop on points in a row { index = j * rootN + i; c_id = index / (points_per_cluster); c_offset = index % (points_per_cluster); // complex input signal is random if ( mode == RANDOM ) { data[c_id][2*c_offset] = ( (double)rand() ) / 65536; data[c_id][2*c_offset+1] = ( (double)rand() ) / 65536; } // complex input signal is cos(n/N) / sin(n/N) if ( mode == COSIN ) { double phi = (double)( 2 * PI * index) / N; data[c_id][2*c_offset] = cos( phi ); data[c_id][2*c_offset+1] = sin( phi ); } // complex input signal is constant if ( mode == CONSTANT ) { data[c_id][2*c_offset] = 1.0; data[c_id][2*c_offset+1] = 0.0; } } } } /////////////////////////////////////////////////////////////////////////////////////// // Each working thread contributes to initialize (rootN / nthreads) rows, // in the shared - and distributed - array. /////////////////////////////////////////////////////////////////////////////////////// void InitT( double ** twid, unsigned int tid ) { unsigned int i, j; unsigned int index; unsigned int c_id; unsigned int c_offset; double phi; // compute row_min and row_max unsigned int row_min = tid * rows_per_thread; unsigned int row_max = row_min + rows_per_thread; for ( j = row_min ; j < row_max ; j++ ) // loop on rows { for ( i = 0 ; i < rootN ; i++ ) // loop on points in a row { index = j * rootN + i; c_id = index / (points_per_cluster); c_offset = index % (points_per_cluster); phi = (double)(2.0 * PI * i * j) / N; twid[c_id][2*c_offset] = cos( phi ); twid[c_id][2*c_offset+1] = -sin( phi ); } } } /////////////////////////////////////////////////////////////////////////////////////// // Each working thread initialize the private array / (rootN - 1) entries. /////////////////////////////////////////////////////////////////////////////////////// void InitU( double * upriv ) { unsigned int q; unsigned int j; unsigned int base; unsigned int n1; double phi; for (q = 0 ; ((unsigned int)(1 << q) < N) ; q++) { n1 = 1 << q; // n1 == 2**q base = n1 - 1; for (j = 0; (j < n1) ; j++) { if (base + j > rootN - 1) return; phi = (double)(2.0 * PI * j) / (2 * n1); upriv[2*(base+j)] = cos( phi ); upriv[2*(base+j)+1] = -sin( phi ); } } } //////////////////////////////////////////////////////////////////////////////////////// // This function returns an index value that is the bit reverse of the input value. //////////////////////////////////////////////////////////////////////////////////////// unsigned int BitReverse( unsigned int k ) { unsigned int i; unsigned int j; unsigned int tmp; j = 0; tmp = k; for (i = 0; i < M/2 ; i++) { j = 2 * j + (tmp & 0x1); tmp = tmp >> 1; } return j; } //////////////////////////////////////////////////////////////////////////////////////// // This function perform the in place (direct or inverse) FFT on the N data points // contained in the distributed buffers x[nclusters][points_per_cluster]. // It handles the (N) points 1D array as a (rootN*rootN) points 2D array. // 1) it transpose (rootN/nthreads ) rows from x to tmp. // 2) it make (rootN/nthreads) FFT on the tmp rows and apply the twiddle factor. // 3) it transpose (rootN/nthreads) columns from tmp to x. // 4) it make (rootN/nthreads) FFT on the x rows. // It calls the FFTRow() 2*(rootN/nthreads) times to perform the in place FFT // on the rootN points contained in a row. //////////////////////////////////////////////////////////////////////////////////////// void FFT1D( int direction, // direct 1 / inverse -1 double ** x, // input & output distributed data points array double ** tmp, // auxiliary distributed data points array double * upriv, // local array containing coefs for rootN FFT double ** twid, // distributed arrays containing N twiddle factors unsigned int tid, // thread continuous index unsigned int MyFirst, unsigned int MyLast ) { unsigned int j; unsigned long long barrier_start; unsigned long long barrier_stop; #if DEBUG_FFT1D unsigned long long cycle; get_cycle( &cycle ); printf("\n[fft] %s : thread %d enter / first %d / last %d / cycle %d\n", __FUNCTION__, tid, MyFirst, MyLast, (unsigned int)cycle ); #endif // transpose (rootN/nthreads) rows from x to tmp Transpose( x , tmp , MyFirst , MyLast ); #if( DEBUG_FFT1D & 1 ) get_cycle( &cycle ); printf("\n[fft] %s : thread %d after first transpose / cycle %d\n", __FUNCTION__, tid, (unsigned int)cycle ); if( PRINT_ARRAY ) PrintArray( tmp , N ); #endif // BARRIER get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); sync_time[tid] = (unsigned int)(barrier_stop - barrier_start); #if( DEBUG_FFT1D & 1 ) get_cycle( &cycle ); printf("\n[fft] %s : thread %d exit barrier after first transpose / cycle %d\n", __FUNCTION__, tid, (unsigned int)cycle ); #endif // do FFTs on rows of tmp (i.e. columns of x) and apply twiddle factor for (j = MyFirst; j < MyLast; j++) { FFTRow( direction , upriv , tmp , j * rootN ); TwiddleOneCol( direction , j , twid , tmp , j * rootN ); } #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %d after first twiddle\n", __FUNCTION__, tid); if( PRINT_ARRAY ) PrintArray( tmp , N ); #endif // BARRIER get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %d exit barrier after first twiddle\n", __FUNCTION__, tid); #endif sync_time[tid] += (unsigned int)(barrier_stop - barrier_start); // transpose tmp to x Transpose( tmp , x , MyFirst , MyLast ); #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %d after second transpose\n", __FUNCTION__, tid); if( PRINT_ARRAY ) PrintArray( x , N ); #endif // BARRIER get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %d exit barrier after second transpose\n", __FUNCTION__, tid); #endif sync_time[tid] += (unsigned int)(barrier_stop - barrier_start); // do FFTs on rows of x and apply the scaling factor for (j = MyFirst; j < MyLast; j++) { FFTRow( direction , upriv , x , j * rootN ); if (direction == -1) Scale( x , j * rootN ); } #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %d after FFT on rows\n", __FUNCTION__, tid); if( PRINT_ARRAY ) PrintArray( x , N ); #endif // BARRIER get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %d exit barrier after FFT on rows\n", __FUNCTION__, tid); #endif sync_time[tid] += (unsigned int)(barrier_stop - barrier_start); // transpose x to tmp Transpose( x , tmp , MyFirst , MyLast ); #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %x after third transpose\n", __FUNCTION__, tid); if( PRINT_ARRAY ) PrintArray( x , N ); #endif // BARRIER get_cycle( &barrier_start ); pthread_barrier_wait( &barrier ); get_cycle( &barrier_stop ); #if( DEBUG_FFT1D & 1 ) printf("\n[fft] %s : thread %d exit barrier after third transpose\n", __FUNCTION__, tid); #endif sync_time[tid] += (unsigned int)(barrier_stop - barrier_start); sync_time[tid] += (long)(barrier_stop - barrier_start); // copy tmp to x Copy( tmp , x , MyFirst , MyLast ); #if DEBUG_FFT1D printf("\n[fft] %s : thread %d completed\n", __FUNCTION__, tid); if( PRINT_ARRAY ) PrintArray( x , N ); #endif } // end FFT1D() ///////////////////////////////////////////////////////////////////////////////////// // This function multiply all points contained in a row (rootN points) of the // x[] array by the corresponding twiddle factor, contained in the u[] array. ///////////////////////////////////////////////////////////////////////////////////// void TwiddleOneCol( int direction, unsigned int j, // y coordinate in 2D view of coef array double ** u, // coef array base address double ** x, // data array base address unsigned int offset_x ) // first point in N points data array { unsigned int i; double omega_r; double omega_c; double x_r; double x_c; unsigned int c_id; unsigned int c_offset; for (i = 0; i < rootN ; i++) // loop on the rootN points { // get coef c_id = (j * rootN + i) / (points_per_cluster); c_offset = (j * rootN + i) % (points_per_cluster); omega_r = u[c_id][2*c_offset]; omega_c = direction * u[c_id][2*c_offset+1]; // access data c_id = (offset_x + i) / (points_per_cluster); c_offset = (offset_x + i) % (points_per_cluster); x_r = x[c_id][2*c_offset]; x_c = x[c_id][2*c_offset+1]; x[c_id][2*c_offset] = omega_r*x_r - omega_c * x_c; x[c_id][2*c_offset+1] = omega_r*x_c + omega_c * x_r; } } // end TwiddleOneCol() //////////////////////////// void Scale( double ** x, // data array base address unsigned int offset_x ) // first point of the row to be scaled { unsigned int i; unsigned int c_id; unsigned int c_offset; for (i = 0; i < rootN ; i++) { c_id = (offset_x + i) / (points_per_cluster); c_offset = (offset_x + i) % (points_per_cluster); x[c_id][2*c_offset] /= N; x[c_id][2*c_offset + 1] /= N; } } /////////////////////////////////// void Transpose( double ** src, // source buffer (array of pointers) double ** dest, // destination buffer (array of pointers) unsigned int MyFirst, // first row allocated to the thread unsigned int MyLast ) // last row allocated to the thread { unsigned int row; // row index unsigned int point; // data point index in a row unsigned int index_src; // absolute index in the source N points array unsigned int c_id_src; // cluster for the source buffer unsigned int c_offset_src; // offset in the source buffer unsigned int index_dst; // absolute index in the dest N points array unsigned int c_id_dst; // cluster for the dest buffer unsigned int c_offset_dst; // offset in the dest buffer // scan all data points allocated to the thread // (between MyFirst row and MyLast row) from the source buffer // and write these points to the destination buffer for ( row = MyFirst ; row < MyLast ; row++ ) // loop on the rows { for ( point = 0 ; point < rootN ; point++ ) // loop on points in row { index_src = row * rootN + point; c_id_src = index_src / (points_per_cluster); c_offset_src = index_src % (points_per_cluster); index_dst = point * rootN + row; c_id_dst = index_dst / (points_per_cluster); c_offset_dst = index_dst % (points_per_cluster); dest[c_id_dst][2*c_offset_dst] = src[c_id_src][2*c_offset_src]; dest[c_id_dst][2*c_offset_dst+1] = src[c_id_src][2*c_offset_src+1]; } } } // end Transpose() ////////////////////////////// void Copy( double ** src, // source buffer (array of pointers) double ** dest, // destination buffer (array of pointers) unsigned int MyFirst, // first row allocated to the thread unsigned int MyLast ) // last row allocated to the thread { unsigned int row; // row index unsigned int point; // data point index in a row unsigned int index; // absolute index in the N points array unsigned int c_id; // cluster index unsigned int c_offset; // offset in local buffer // scan all data points allocated to the thread for ( row = MyFirst ; row < MyLast ; row++ ) // loop on the rows { for ( point = 0 ; point < rootN ; point++ ) // loop on points in row { index = row * rootN + point; c_id = index / (points_per_cluster); c_offset = index % (points_per_cluster); dest[c_id][2*c_offset] = src[c_id][2*c_offset]; dest[c_id][2*c_offset+1] = src[c_id][2*c_offset+1]; } } } // end Copy() /////////////////////////////// void Reverse( double ** x, unsigned int offset_x ) { unsigned int j, k; unsigned int c_id_j; unsigned int c_offset_j; unsigned int c_id_k; unsigned int c_offset_k; for (k = 0 ; k < rootN ; k++) { j = BitReverse( k ); if (j > k) { c_id_j = (offset_x + j) / (points_per_cluster); c_offset_j = (offset_x + j) % (points_per_cluster); c_id_k = (offset_x + k) / (points_per_cluster); c_offset_k = (offset_x + k) % (points_per_cluster); SWAP(x[c_id_j][2*c_offset_j] , x[c_id_k][2*c_offset_k]); SWAP(x[c_id_j][2*c_offset_j+1], x[c_id_k][2*c_offset_k+1]); } } } ///////////////////////////////////////////////////////////////////////////// // This function makes the in-place FFT on all points contained in a row // (i.e. rootN points) of the x[nclusters][points_per_cluster] array. ///////////////////////////////////////////////////////////////////////////// void FFTRow( int direction, // 1 direct / -1 inverse double * u, // private coefs array double ** x, // array of pointers on distributed buffers unsigned int offset_x ) // absolute offset in the x array { unsigned int j; unsigned int k; unsigned int q; unsigned int L; unsigned int r; unsigned int Lstar; double * u1; unsigned int offset_x1; // index first butterfly input unsigned int offset_x2; // index second butterfly output double omega_r; // real part butterfy coef double omega_c; // complex part butterfly coef double tau_r; double tau_c; double d1_r; // real part first butterfly input double d1_c; // imag part first butterfly input double d2_r; // real part second butterfly input double d2_c; // imag part second butterfly input unsigned int c_id_1; // cluster index for first butterfly input unsigned int c_offset_1; // offset for first butterfly input unsigned int c_id_2; // cluster index for second butterfly input unsigned int c_offset_2; // offset for second butterfly input #if DEBUG_ROW unsigned int p; printf("\n[fft] ROW data in / %d points / offset = %d\n", rootN , offset_x ); for ( p = 0 ; p < rootN ; p++ ) { unsigned int index = offset_x + p; unsigned int c_id = index / (points_per_cluster); unsigned int c_offset = index % (points_per_cluster); printf("%f , %f | ", x[c_id][2*c_offset] , x[c_id][2*c_offset+1] ); } printf("\n"); #endif // This makes the rootN input points reordering Reverse( x , offset_x ); #if DEBUG_ROW printf("\n[fft] ROW data after reverse / %d points / offset = %d\n", rootN , offset_x ); for ( p = 0 ; p < rootN ; p++ ) { unsigned int index = offset_x + p; unsigned int c_id = index / (points_per_cluster); unsigned int c_offset = index % (points_per_cluster); printf("%f , %f | ", x[c_id][2*c_offset] , x[c_id][2*c_offset+1] ); } printf("\n"); #endif // This implements the multi-stages, in place Butterfly network for (q = 1; q <= M/2 ; q++) // loop on stages { L = 1 << q; // number of points per subset for current stage r = rootN / L; // number of subsets Lstar = L / 2; u1 = &u[2 * (Lstar - 1)]; for (k = 0; k < r; k++) // loop on the subsets { offset_x1 = offset_x + (k * L); // index first point offset_x2 = offset_x + (k * L + Lstar); // index second point #if (DEBUG_ROW & 1) printf("\n ### q = %d / k = %d / x1 = %d / x2 = %d\n", q , k , offset_x1 , offset_x2 ); #endif // makes all in-place butterfly(s) for subset for (j = 0; j < Lstar; j++) { // get coef omega_r = u1[2*j]; omega_c = direction * u1[2*j+1]; // get d[x1] address and value c_id_1 = (offset_x1 + j) / (points_per_cluster); c_offset_1 = (offset_x1 + j) % (points_per_cluster); d1_r = x[c_id_1][2*c_offset_1]; d1_c = x[c_id_1][2*c_offset_1+1]; // get d[x2] address and value c_id_2 = (offset_x2 + j) / (points_per_cluster); c_offset_2 = (offset_x2 + j) % (points_per_cluster); d2_r = x[c_id_2][2*c_offset_2]; d2_c = x[c_id_2][2*c_offset_2+1]; #if (DEBUG_ROW & 1) printf("\n ### d1_in = (%f , %f) / d2_in = (%f , %f) / coef = (%f , %f)\n", d1_r , d1_c , d2_r , d2_c , omega_r , omega_c); #endif // tau = omega * d[x2] tau_r = omega_r * d2_r - omega_c * d2_c; tau_c = omega_r * d2_c + omega_c * d2_r; // set new value for d[x1] = d[x1] + omega * d[x2] x[c_id_1][2*c_offset_1] = d1_r + tau_r; x[c_id_1][2*c_offset_1+1] = d1_c + tau_c; // set new value for d[x2] = d[x1] - omega * d[x2] x[c_id_2][2*c_offset_2] = d1_r - tau_r; x[c_id_2][2*c_offset_2+1] = d1_c - tau_c; #if (DEBUG_ROW & 1) printf("\n ### d1_out = (%f , %f) / d2_out = (%f , %f)\n", d1_r + tau_r , d1_c + tau_c , d2_r - tau_r , d2_c - tau_c ); #endif } } } #if DEBUG_ROW printf("\n[fft] ROW data out / %d points / offset = %d\n", rootN , offset_x ); for ( p = 0 ; p < rootN ; p++ ) { unsigned int index = offset_x + p; unsigned int c_id = index / (points_per_cluster); unsigned int c_offset = index % (points_per_cluster); printf("%f , %f | ", x[c_id][2*c_offset] , x[c_id][2*c_offset+1] ); } printf("\n"); #endif } // end FFTRow() /////////////////////////////////////// void PrintArray( double ** array, unsigned int size ) { unsigned int i; unsigned int c_id; unsigned int c_offset; // float display for (i = 0; i < size ; i++) { c_id = i / (points_per_cluster); c_offset = i % (points_per_cluster); printf(" %f %f |", array[c_id][2*c_offset], array[c_id][2*c_offset+1]); if ( (i+1) % 4 == 0) printf("\n"); } printf("\n"); } // Local Variables: // tab-width: 4 // c-basic-offset: 4 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4