///////////////////////////////////////////////////////////////////////////////////////// // File : ksh.c // Date : October 2017 // Author : Alain Greiner ///////////////////////////////////////////////////////////////////////////////////////// // This application implements a minimal shell for ALMOS-MKH. // // This user KSH process contains two POSIX threads: // - the "main" thread contains the infinite loop implementing // the children processes termination monitoring, using the wait syscall. // - the "interactive" thread contains the infinite loop implementing the command // interpreter attached to the TXT terminal, and handling one KSH command // per iteration. // // The children processes are created by the command, and are // attached to the same TXT terminal as the KSH process itself. // A child process can be lauched in foreground or in background: // . when the child process is running in foreground, the KSH process loses // the TXT terminal ownership, that is transfered to the child process. // . when the child process is running in background: the KSH process keeps // the TXT terminal ownership. // // A semaphore is used to synchronize the two KSH threads. At each iteration, // the interactive thread check the semaphore (with a sem_wait). It blocks // and deschedules, if the KSH process loosed the TXT ownership (after a load, // or for any other cause. It unblocks with the following policy: // . if the command is "not a load", the semaphore is incremented by the // cmd_***() function when the command is completed, to allow the KSH interactive() // function to get the next command in the while loop. // . if the command is a "load without &", the TXT is given to the NEW process by the // execve() syscall, and is released to the KSH process when NEW process terminates. // The KSH process is notified and the KSH main() function increments the semahore // to allow the KSH interactive() function to handle commands. // . if the command is a "load with &", the cmd_load() function returns the TXT // to the KSH process and increment the semaphore, when the parent KSH process // returns from the fork() syscall. ///////////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #define CMD_MAX_SIZE (256) // max number of characters in one command #define LOG_DEPTH (32) // max number of registered commands #define MAX_ARGS (32) // max number of arguments in a command #define FIFO_SIZE (1024) // FIFO depth for recursive ls #define KSH_DEBUG 0 #define CMD_LOAD_DEBUG 0 ////////////////////////////////////////////////////////////////////////////////////////// // Structures ////////////////////////////////////////////////////////////////////////////////////////// // one entry in the registered commands array typedef struct log_entry_s { char buf[CMD_MAX_SIZE]; unsigned int count; } log_entry_t; // one entry in the supported command types array typedef struct ksh_cmd_s { char * name; char * desc; void (*fn)( int , char ** ); } ksh_cmd_t; ////////////////////////////////////////////////////////////////////////////////////////// // Global Variables ////////////////////////////////////////////////////////////////////////////////////////// ksh_cmd_t cmd[]; // array of supported commands log_entry_t log_entries[LOG_DEPTH]; // array of registered commands unsigned int ptw; // write pointer in log_entries[] unsigned int ptr; // read pointer in log_entries[] pthread_attr_t attr; // interactive thread attributes sem_t semaphore; // block interactive thread when zero ////////////////////////////////////////////////////////////////////////////////////////// // Shell Commands ////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////// static void cmd_cat( int argc , char **argv ) { char * path; if (argc != 2) { printf(" usage: cat pathname\n"); return; } path = argv[1]; printf(" error: not implemented yet\n", argc, argv ); /* // open the file fd = open( path , O_RDONLY , 0 ); if (fd < 0) { printf(" error: cannot open %s\n", path); goto exit; } // get file size if (stat(path, &st) == -1) { printf(" error: cannot stat %s\n", path); goto exit; } if (S_ISDIR(st.st_mode)) { printf(" error: %s is a directory\n", path); goto exit; } size = st.st_size; // mmap the file buf = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); if (buf == NULL || buf == (char *)-1) { printf(" error: cannot map %s\n", path); goto exit; } // set terminating '0' buf[size-1] = 0; // display the file content printf("%s", buf); exit: if (buf != NULL) munmap(buf, size); if (fd >= 0) close(fd); */ // release semaphore to get next command sem_post( &semaphore ); } // end cmd_cat() //////////////////////////////////////////// static void cmd_cd( int argc , char **argv ) { char * path; if (argc != 2) { printf(" usage: cd pathname\n"); return; } path = argv[1]; printf(" error: not implemented yet\n", argc, argv ); // release semaphore to get next command sem_post( &semaphore ); } // end cmd_cd() ///////////////////////////////////////// static void cmd_cp(int argc, char **argv) { // int src_fd = -1, dst_fd = -1; // char *srcpath, *dstpath; // struct stat st; // size_t size, i; // char buf[1024]; if (argc != 3) { printf(" usage: cp src_pathname dst_pathname\n"); return; } printf(" error: not implemented yet\n", argc, argv ); /* srcpath = argv[1]; dstpath = argv[2]; // open the src file src_fd = open(srcpath, O_RDONLY, 0); if (src_fd < 0) { printf(" error: cannot open %s / err = %d\n", srcpath, errno); goto exit; } // get file size if (stat(srcpath, &st) == -1) { printf(" error: cannot stat %s\n", srcpath); goto exit; } if (S_ISDIR(st.st_mode)) { printf(" error: %s is a directory\n", srcpath); goto exit; } size = st.st_size; // open the dst file dst_fd = open(dstpath, O_CREAT|O_TRUNC|O_RDWR, 0); if (dst_fd < 0) { printf(" error: cannot open %s / err = %d\n", dstpath, errno); goto exit; } if (stat(dstpath, &st) == -1) { printf(" error: cannot stat %s\n", dstpath); goto exit; } if (S_ISDIR(st.st_mode)) { printf(" error: %s is a directory\n", dstpath); goto exit; } i = 0; while (i < size) { size_t rlen = (size - i < 1024 ? size - i : 1024); size_t wlen; ssize_t ret; // read the source ret = read(src_fd, buf, rlen); if (ret == -1) { printf(" error: cannot read from file %s\n", srcpath); goto exit; } rlen = (size_t)ret; // write to the destination ret = write(dst_fd, buf, rlen); if (ret == -1) { printf(" error: cannot write to file %s\n", dstpath); goto exit; } wlen = (size_t)ret; // check if (wlen != rlen) { printf(" error: cannot write on device\n"); goto exit; } i += rlen; } exit: if (src_fd >= 0) close(src_fd); if (dst_fd >= 0) close(dst_fd); */ // release semaphore to get next command sem_post( &semaphore ); } // end cmd_cp() ///////////////////////////////////////////////// static void cmd_display( int argc , char **argv ) { unsigned int cxy; unsigned int lid; unsigned int pid; unsigned int txt_id; if( strcmp( argv[1] , "vmm" ) == 0 ) { if( argc != 4 ) { printf(" usage: display vmm cxy pid\n"); return; } cxy = atoi(argv[2]); pid = atoi(argv[3]); if( display_vmm( cxy , pid ) ) { printf(" error: no process %x in cluster %x\n", pid , cxy ); } } else if( strcmp( argv[1] , "sched" ) == 0 ) { if( argc != 4 ) { printf(" usage: display sched cxy lid\n"); return; } cxy = atoi(argv[2]); lid = atoi(argv[3]); if( display_sched( cxy , lid ) ) { printf(" error: illegal arguments cxy = %x / lid = %d\n", cxy, lid ); } } else if( strcmp( argv[1] , "process" ) == 0 ) { if( argc != 3 ) { printf(" usage: display process cxy\n"); return; } cxy = atoi(argv[2]); if( display_cluster_processes( cxy ) ) { printf(" error: illegal argument cxy = %x\n", cxy ); } } else if( strcmp( argv[1] , "txt" ) == 0 ) { if( argc != 3 ) { printf(" usage: display txt txt_id\n"); return; } txt_id = atoi(argv[2]); if( display_txt_processes( txt_id ) ) { printf(" error: illegal argument txt_id = %d\n", txt_id ); } } else if( strcmp( argv[1] , "vfs" ) == 0 ) { if( argc != 2 ) { printf(" usage: display vfs\n"); return; } display_vfs(); } else if( strcmp( argv[1] , "chdev" ) == 0 ) { if( argc != 2 ) { printf(" usage: display chdev\n"); return; } display_chdev(); } else if( strcmp( argv[1] , "dqdt" ) == 0 ) { if( argc != 2 ) { printf(" usage: display dqdt\n"); return; } display_dqdt(); } else { printf(" usage: display (vmm/sched/process/vfs/chdev/txt) [arg2] [arg3]\n"); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_display() ///////////////////////////////////////// static void cmd_fg(int argc, char **argv) { unsigned int pid; if (argc != 2) { printf(" usage: %s pid\n", argv[0]); return; } pid = atoi( argv[1] ); if( pid == 0 ) { printf(" error: PID cannot be 0\n" ); } if( fg( pid ) ) { printf(" error: cannot find process %x\n", pid ); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_fg() ////////////////////////////////////////////// static void cmd_help( int argc , char **argv ) { unsigned int i; if (argc != 1) { printf(" usage: %s\n", argv[0]); return; } printf("available commands:\n"); for (i = 0 ; cmd[i].name ; i++) { printf("\t%s\t : %s\n", cmd[i].name , cmd[i].desc); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_help() ////////////////////////////////////////////// static void cmd_kill( int argc , char **argv ) { unsigned int pid; if (argc != 2) { printf(" usage: %s pid\n", argv[0]); return; } pid = atoi( argv[1] ); if( pid == 0 ) { printf(" error: kernel process 0 cannot be killed\n" ); } if( kill( pid , SIGKILL ) ) { printf(" error: process %x cannot be killed\n", pid ); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_kill() ////////////////////////////////////////////// static void cmd_load( int argc , char **argv ) { int ret_fork; // return value from fork int ret_exec; // return value from exec unsigned int ksh_pid; // KSH process PID char * pathname; // path to .elf file unsigned int background; // background execution if non zero if( (argc < 2) || (argc > 3) ) { printf(" usage: %s pathname [&] / argc = %d\n", argv[0], argc ); // @@@ return; } pathname = argv[1]; if( argc == 3 ) background = (argv[2][0] == '&'); else background = 0; // get KSH process PID ksh_pid = getpid(); #if CMD_LOAD_DEBUG long long unsigned cycle; get_cycle( &cycle ); printf("\n@@@ %s : KSH PID %x before fork / path %s / background %d / cycle %d\n", __FUNCTION__, ksh_pid, argv[1], background, (int)cycle ); #endif // KSH process fork CHILD process ret_fork = fork(); if ( ret_fork < 0 ) // it is a failure reported to KSH { printf(" error: ksh process unable to fork\n"); return; } else if (ret_fork == 0) // it is the CHILD process { #if CMD_LOAD_DEBUG get_cycle( &cycle ); printf("\n@@@ %s : CHILD_PID %x after fork, before exec / cycle %d\n", __FUNCTION__ , getpid(), (int)cycle ); #endif // CHILD process exec NEW process ret_exec = execve( pathname , NULL , NULL ); #if CMD_LOAD_DEBUG get_cycle( &cycle ); printf("\n@@@ %s : CHILD_PID %x after exec / ret_exec %d / cycle %d\n", __FUNCTION__ , getpid(), ret_exec, (int)cycle ); #endif // this is only executed in case of exec failure if( ret_exec ) { printf(" error: child process unable to exec <%s>\n", pathname ); exit( 0 ); } } else // it is the KSH process : ret_fork is the new process PID { #if CMD_LOAD_DEBUG get_cycle( &cycle ); printf("\n@@@ %s : KSH_PID %x after fork / ret_fork %x / cycle %d\n", __FUNCTION__, getpid(), ret_fork, (int)cycle ); #endif if( background ) // child in background => KSH must keep TXT ownership { // execve() tranfered TXT ownership to child => give it back to KSH fg( ksh_pid ); // release semaphore to get next command sem_post( &semaphore ); } } } // end cmd_load ///////////////////////////////////////////// static void cmd_log( int argc , char **argv ) { unsigned int i; if (argc != 1) { printf(" usage: %s\n", argv[0], argc ); return; } printf("--- registered commands ---\n"); for (i = 0; i < LOG_DEPTH; i++) { printf(" - %d\t: %s\n", i, &log_entries[i].buf); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_log() //////////////////////////////////////////// static void cmd_ls( int argc , char **argv ) { char * path; // struct dirent * file; // DIR *dir; if (argc == 1) { path = "."; } else if (argc == 2) { path = argv[1]; } else { printf(" usage: ls [path]\n"); return; } printf(" error: not implemented yet\n"); /* dir = opendir( path ); while ((file = readdir(dir)) != NULL) { printf(" %s\n", file->d_name); } closedir(dir); */ // release semaphore to get next command sem_post( &semaphore ); } // end cmd_ls() /////////////////////////////////////////////// static void cmd_mkdir( int argc , char **argv ) { char * pathname; if (argc != 2) { printf(" usage: mkdir pathname\n"); return; } pathname = argv[1]; printf(" error: not implemented yet\n"); // release semaphore to get next command sem_post( &semaphore ); } // end cmd_mkdir() //////////////////////////////////////////// static void cmd_mv( int argc , char **argv ) { if (argc < 3) { printf(" usage : %s src_pathname dst_pathname\n", argv[0]); return; } printf(" error: not implemented yet\n"); // release semaphore to get next command sem_post( &semaphore ); } // end cmd_mv ///////////////////////////////////////////// static void cmd_pwd( int argc , char **argv ) { char buf[1024]; if (argc != 1) { printf(" usage: %s\n", argv[0]); return; } if ( getcwd( buf , 1024 ) ) { printf(" error: unable to get current directory\n"); } else { printf("%s\n", buf); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_pwd() //////////////////////////////////////////// static void cmd_rm( int argc , char **argv ) { char * pathname; if (argc != 2) { printf(" usage: %s pathname\n", argv[0]); return; } pathname = argv[1]; printf(" error: not implemented yet\n"); // release semaphore to get next command sem_post( &semaphore ); } // end_cmd_rm() /////////////////////////////////////////////// static void cmd_rmdir( int argc , char **argv ) { // same as cmd_rm() cmd_rm(argc, argv); } /////////////////////////////////////////////// static void cmd_trace( int argc , char **argv ) { unsigned int cxy; unsigned int lid; if (argc != 3) { printf(" usage: trace cxy lid \n"); return; } cxy = atoi(argv[1]); lid = atoi(argv[2]); if( trace( 1 , cxy , lid ) ) { printf(" error: core[%x,%d] not found\n", cxy, lid ); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_trace /////////////////////////////////////////////// static void cmd_untrace( int argc , char **argv ) { unsigned int cxy; unsigned int lid; if (argc != 3) { printf(" usage: untrace cxy lid \n"); return; } cxy = atoi(argv[1]); lid = atoi(argv[2]); if( trace( 0 , cxy , lid ) ) { printf(" error: core[%x,%d] not found\n", cxy, lid ); } // release semaphore to get next command sem_post( &semaphore ); } // end cmd_untrace() /////////////////////////////////////////////////////////////////////////////////// // Array of commands /////////////////////////////////////////////////////////////////////////////////// ksh_cmd_t cmd[] = { { "cat", "display file content", cmd_cat }, { "cd", "change current directory", cmd_cd }, { "cp", "replicate a file in file system", cmd_cp }, { "fg", "put a process in foreground", cmd_fg }, { "display", "display vmm/sched/process/vfs/chdev/txt", cmd_display }, { "load", "load an user application", cmd_load }, { "help", "list available commands", cmd_help }, { "kill", "kill a process (all threads)", cmd_kill }, { "log", "list registered commands", cmd_log }, { "ls", "list directory entries", cmd_ls }, { "mkdir", "create a new directory", cmd_mkdir }, { "mv", "move a file in file system", cmd_mv }, { "pwd", "print current working directory", cmd_pwd }, { "rm", "remove a file from file system", cmd_rm }, { "rmdir", "remove a directory from file system", cmd_rmdir }, { "trace", "activate trace for a given core", cmd_trace }, { "untrace", "desactivate trace for a given core", cmd_untrace }, { NULL, NULL, NULL } }; //////////////////////////////////////////////////////////////////////////////////// // This function analyses one command (with arguments), executes it, and returns. //////////////////////////////////////////////////////////////////////////////////// static void __attribute__ ((noinline)) parse( char * buf ) { int argc = 0; char *argv[MAX_ARGS]; int i; int len = strlen(buf); // build argc/argv for (i = 0; i < len; i++) { if (buf[i] == ' ') { buf[i] = '\0'; } else if (i == 0 || buf[i - 1] == '\0') { if (argc < MAX_ARGS) { argv[argc] = &buf[i]; argc++; } } } // analyse command type if (argc > 0) { int found = 0; argv[argc] = NULL; // try to match typed command for (i = 0 ; cmd[i].name ; i++) { if (strcmp(argv[0], cmd[i].name) == 0) { cmd[i].fn(argc, argv); found = 1; break; } } if (!found) // undefined command { printf(" error : undefined command <%s>\n", argv[0]); // release semaphore to get next command sem_post( &semaphore ); } } } // end parse() ///////////////////////// static void interactive( void ) { char c; // read character char buf[CMD_MAX_SIZE]; // buffer for one command unsigned int end_command; // last character found in a command unsigned int count; // pointer in command buffer unsigned int i; // index for loops unsigned int state; // escape sequence state /* This can be used to remove interactive mode for( i=1 ; 1 ; i += 2) { if( sem_wait( &semaphore ) ) { printf("\n[ksh error] cannot found semafore\n" ); exit( 1 ); } else { printf("\n[ksh] %d for sort\n", i ); } strcpy( buf , "load /bin/user/sort.elf" ); parse( buf ); if( sem_wait( &semaphore ) ) { printf("\n[ksh error] cannot found semafore\n" ); exit( 1 ); } else { printf("\n[ksh] %d for fft\n", i+1 ); } strcpy( buf , "load /bin/user/fft.elf" ); parse( buf ); } */ enum fsm_states { NORMAL = 0, ESCAPE = 1, BRAKET = 2, }; // This lexical analyser writes one command line in the command buffer. // It is implemented as a 3 states FSM to handle the following escape sequences: // - ESC [ A : up arrow // - ESC [ B : down arrow // - ESC [ C : right arrow // - ESC [ D : left arrow // The three states have the following semantic: // - NORMAL : no (ESC) character has been found // - ESCAPE : the character (ESC) has been found // - BRAKET : the wo characters (ESC,[) have been found // external loop on the commands // the in teractive thread should not exit this loop while (1) { // initialize command buffer memset( buf, 0x20 , sizeof(buf) ); // TODO useful ? count = 0; state = NORMAL; // decrement semaphore, and block if the KSH process is not the TXT owner if ( sem_wait( &semaphore ) ) { printf("\n[ksh error] cannot found semafore\n" ); exit( 1 ); } // display prompt on a new line printf("\n[ksh] "); end_command = 0; // internal loop on characters in one command while( end_command == 0 ) { // get one character from TXT_RX c = (char)getchar(); if( c == 0 ) continue; if( state == NORMAL ) // we are not in an escape sequence { if ((c == '\b') || (c == 0x7F)) // backspace => remove one character { if (count > 0) { printf("\b \b"); count--; } } else if (c == '\n') // new line => end of command { if (count > 0) // analyse & execute command { // complete command with NUL character buf[count] = 0; count++; // register command in log arrays strcpy(log_entries[ptw].buf, buf); log_entries[ptw].count = count; ptw = (ptw + 1) % LOG_DEPTH; ptr = ptw; // echo character putchar( c ); // call parser to analyse and execute command parse( buf ); } else // no command registered { // release semaphore to get next command sem_post( &semaphore ); } // exit internal loop on characters end_command = 1; } else if (c == '\t') // tabulation => do nothing { } else if (c == (char)0x1B) // ESC => start an escape sequence { state = ESCAPE; } else // normal character { if (count < sizeof(buf) - 1) { // register character in command buffer buf[count] = c; count++; // echo character putchar( c ); } } } else if( state == ESCAPE ) { if (c == '[') // valid sequence => continue { state = BRAKET; } else // invalid sequence => do nothing { state = NORMAL; } } else if( state == BRAKET ) { if (c == 'D') // valid LEFT sequence => move buf pointer left { if (count > 0) { printf("\b"); count--; } // get next user char state = NORMAL; } else if (c == 'C') // valid RIGHT sequence => move buf pointer right { if (count < sizeof(buf) - 1) { printf("%c", buf[count]); count++; } // get next user char state = NORMAL; } else if (c == 'A') // valid UP sequence => move log pointer backward { // cancel current command for (i = 0; i < count; i++) printf("\b \b"); count = 0; // copy log command into buf ptr = (ptr - 1) % LOG_DEPTH; strcpy(buf, log_entries[ptr].buf); count = log_entries[ptr].count - 1; // display log command printf("%s", buf); // get next user char state = NORMAL; } else if (c == 'B') // valid DOWN sequence => move log pointer forward { // cancel current command for (i = 0 ; i < count; i++) printf("\b \b"); count = 0; // copy log command into buf ptr = (ptr + 1) % LOG_DEPTH; strcpy(buf, log_entries[ptr].buf); count = log_entries[ptr].count; // display log command printf("%s", buf); // get next user char state = NORMAL; } else // other character => do nothing { // get next user char state = NORMAL; } } } // end internal while loop on characters } // end external while loop on commands } // end interactive() ////////// int main( void ) { unsigned int cxy; // owner cluster identifier for this KSH process unsigned int lid; // core identifier for this KSH main thread int status; // child process termination status int child_pid; // child process identifier int parent_pid; // parent process identifier (i.e. this process) pthread_t trdid; // interactive thread identifier (unused) unsigned int is_owner; // non-zero if KSH process is TXT owner // initialize log buffer memset( &log_entries , 0, sizeof(log_entries)); ptw = 0; ptr = 0; // get KSH process pid and core parent_pid = getpid(); get_core( &cxy , &lid ); // initializes the semaphore used to unblock the interactive thread if ( sem_init( &semaphore , 0 , 1 ) ) { printf("\n[KSH ERROR] cannot initialize semaphore\n" ); exit( 1 ); } // initialize interactive thread attributes attr.attributes = PT_ATTR_DETACH | PT_ATTR_CLUSTER_DEFINED; attr.cxy = cxy; // lauch the interactive thread pthread_create( &trdid, &attr, &interactive, // entry function NULL ); // enter infinite loop monitoring children processes termination while( 1 ) { // wait children termination child_pid = wait( &status ); #if KSH_DEBUG if( WIFEXITED (status) ) printf("\n[KSH] child process %x exited\n" , child_pid ); if( WIFSIGNALED(status) ) printf("\n[KSH] child process %x killed\n" , child_pid ); if( WIFSTOPPED (status) ) printf("\n[KSH] child process %x stopped\n", child_pid ); #endif // release semaphore if KSH process is TXT owner, to unblock interactive thread is_fg( parent_pid , &is_owner ); if( is_owner ) sem_post( &semaphore ); } } // end main()