Changeset 380 for trunk/hal


Ignore:
Timestamp:
Aug 14, 2017, 6:31:25 PM (4 years ago)
Author:
alain
Message:

Remove the generic kernel/kern/do_exception files to handle exceptions in HAL.
The HAL call only the vmm_handle_page_fault() function if required.

Location:
trunk/hal
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • trunk/hal/generic/hal_exception.h

    r17 r380  
    3232// ALMOS-MKH defines three classes of exceptions:
    3333//
    34 // - NON_FATAL : exceptions such as "page fault" or "FPU unusable" are non fatal.
    35 //   The calling thread resumes execution when the exception has been handled.
     34// - NON_FATAL : exceptions such as "page unmapped" or "FPU unusable" can be non fatal.
     35//   => The hal_do_exception() function call the generic vmm_handle_page_fault(),
     36//      or the fpu_handle_exception() function, and the calling thread resumes execution
     37//      when the exception has been handled.
    3638//
    37 // - USER_ERROR : these exceptions such a "illegal vaddr" or "illegal write access"
    38 //   are fatal. The calling thread process is killed, after an "error" message on the
    39 //   kernel terminal.
     39// - USER_ERROR : exceptions such a "illegal vaddr" or "illegal write access" are fatal.
     40//   => The hal_do_exception() function send a kill signal to the calling thread process,
     41//      and displays an error message on TXT0.
    4042//
    41 // - KERNEL_PANIC : events such as "no memory" or "kernel mistakes" are considered
    42 //   abnormal events. The calling core goes to sleep, after a "panic" message
    43 //   on the kernel terminal.
     43// - KERNEL_PANIC : "kernel mistakes" are abnormal events.
     44//   => The hal_do_exception() function calls the generic panic() function, to display
     45//      a message on TXT0, disable IRQs and call the hal_core_sleep() function.
    4446//
    45 // For all exceptions, the faulty core context has been saved in a registers
    46 // array stored in the user thread descriptor (core in user mode), and in the
    47 // kernel stack (core in kernel mode).
     47// For all exceptions, the faulty core context has been saved in a registers array
     48// stored in the user thread descriptor (for a core in user mode), and in the
     49// kernel stack (for a core in kernel mode).
    4850//
    4951// Any architecture specific implementation must implement this API.
     
    5557
    5658/*****************************************************************************************
    57  * This function implements the ALMOS-MKH exception handler.
    58  * It is called by the hal_kentry function when an exception is detected
    59  * by the hardware for an user thread running on a given core.
     59 * This function is called by the hal_kentry() function when an exception is detected by
     60 * the hardware for a given thread running on a given core.
    6061 *****************************************************************************************
    6162 * @ this      : pointer on the faulty thread descriptor.
    62  * @ regs_tbl  : array containing the core registers values saved by hal_kentry.
     63 * @ regs_tbl  : array containing the core registers values saved by hal_kentry().
    6364 ****************************************************************************************/
    6465void hal_do_exception( struct thread_s * this,
    6566                       reg_t           * regs_tbl );
    6667
    67 /*****************************************************************************************
    68  * This function prints on the kernel terminal the saved context (core registers)
    69  * and the thread state of a faulty thread.
    70  *****************************************************************************************
    71  * @ this      : pointer on the faulty thread descriptor.
    72  * @ regs_tbl  : pointer on the array containing the core registers values.
    73  ****************************************************************************************/
    74 void hal_exception_dump( struct thread_s * this,
    75                          reg_t           * regs_tbl );
    76 
    7768#endif  // _HAL_EXCEPTION_H_
  • trunk/hal/tsar_mips32/core/hal_exception.c

    r317 r380  
    2727#include <thread.h>
    2828#include <printk.h>
     29#include <chdev.h>
    2930#include <vmm.h>
    3031#include <errno.h>
     
    3738#include <mips32_uzone.h>
    3839
     40
    3941//////////////////////////////////////////////////////////////////////////////////////////
    4042//  Extern global variables
    4143//////////////////////////////////////////////////////////////////////////////////////////
    4244
    43 extern remote_spinlock_t  exception_lock;  // allocated in the do_exception.c file.
     45extern   chdev_directory_t    chdev_dir;  // allocated in the kernel_init.c file.
    4446
    4547//////////////////////////////////////////////////////////////////////////////////////////
     
    5961xcode_values_t;
    6062
    61 ///////////////////////////////////////
     63//////////////////////////////////////////////////////////////////////////////////////////
     64// This static function is called when a FPU Coprocessor Unavailable exception has been
     65// detected for the calling thread.
     66// It enables the FPU, It saves the current FPU context in the current owner thread
     67// descriptor if required, and restore the FPU context from the calling thread descriptor.
     68//////////////////////////////////////////////////////////////////////////////////////////
     69// @ this     : pointer on faulty thread descriptor.
     70// @ return always EXCP_NON_FATAL
     71//////////////////////////////////////////////////////////////////////////////////////////
     72static error_t hal_fpu_exception( thread_t * this )
     73{
     74        core_t   * core = this->core;
     75
     76    // enable FPU 
     77        hal_fpu_enable();
     78
     79    // save FPU context in current owner thread if required
     80        if( core->fpu_owner != NULL )
     81    {
     82        if( core->fpu_owner != this )
     83            {
     84                    hal_fpu_context_save ( core->fpu_owner->fpu_context );
     85        }
     86        }
     87
     88    // attach the FPU to the requesting thread
     89        hal_fpu_context_restore( this->fpu_context );
     90        core->fpu_owner = this;
     91
     92        return EXCP_NON_FATAL;
     93
     94}  // end hal_fpu_exception()
     95
     96//////////////////////////////////////////////////////////////////////////////////////////
     97// This static function is called when an MMU exception has been detected.
     98// It get the relevant exception arguments from the MMU.
     99// It signal a fatal error in case of illegal access. In case of page unmapped
     100// it checks that the faulty address belongs to a registered vseg. It update the local
     101// vseg list from the reference cluster if required, and signal a fatal user error
     102// in case of illegal virtual address. Finally, it updates the local page table from the
     103// reference cluster.
     104//////////////////////////////////////////////////////////////////////////////////////////
     105// @ this     : pointer on faulty thread descriptor.
     106// @ return EXCP_NON_FATAL / EXCP_USER_ERROR / EXCP_KERNEL_PANIC
     107//////////////////////////////////////////////////////////////////////////////////////////
     108static error_t hal_mmu_exception( thread_t * this )
     109{
     110        vseg_t         * vseg;        // vseg containing the bad_vaddr
     111        process_t      * process;     // local process descriptor
     112    error_t          error;       // return value
     113
     114    reg_t            mmu_ins_excp_code;
     115    reg_t            mmu_ins_bad_vaddr;
     116    reg_t            mmu_dat_excp_code;
     117    reg_t            mmu_dat_bad_vaddr;
     118
     119    intptr_t         bad_vaddr;
     120    uint32_t         excp_code;
     121       
     122    process     = this->process;
     123
     124    // get relevant values from MMU
     125        hal_get_mmu_excp( &mmu_ins_excp_code,
     126                          &mmu_ins_bad_vaddr,
     127                          &mmu_dat_excp_code,
     128                          &mmu_dat_bad_vaddr );
     129
     130    // get exception code and faulty vaddr
     131    if( mmu_ins_excp_code )
     132    {
     133        excp_code = mmu_ins_excp_code;
     134        bad_vaddr = mmu_ins_bad_vaddr;
     135    }
     136    else if( mmu_dat_excp_code )
     137    {
     138        excp_code = mmu_dat_excp_code;
     139        bad_vaddr = mmu_dat_bad_vaddr;
     140    }
     141    else
     142    {
     143         return EXCP_NON_FATAL;
     144    }
     145
     146        vmm_dmsg("\n[INFO] %s : enters for thread %x / process %x"
     147             " / bad_vaddr = %x / excep_code = %x\n",
     148                     __FUNCTION__, this->trdid , process->pid , bad_vaddr , excp_code );
     149
     150    // a kernel thread should not rise an MMU exception
     151        if( this->type != THREAD_USER )
     152        {
     153                printk("\n[PANIC] in %s : thread %x is a kernel thread / vaddr = %x\n",
     154                       __FUNCTION__ , this->trdid , bad_vaddr );
     155                return EXCP_KERNEL_PANIC;
     156        }
     157 
     158    // enable IRQs
     159        hal_enable_irq( NULL );
     160
     161    // vaddr must be contained in a registered vseg
     162    vseg = vmm_get_vseg( process , bad_vaddr );
     163
     164    if( vseg == NULL )   // vseg not found in local cluster
     165        {
     166        // get extended pointer on reference process
     167        xptr_t ref_xp = process->ref_xp;
     168
     169        // get cluster and local pointer on reference process
     170        cxy_t       ref_cxy = GET_CXY( ref_xp );
     171        process_t * ref_ptr = (process_t *)GET_PTR( ref_xp );
     172
     173        if( local_cxy != ref_cxy )   // reference process is remote
     174        {
     175            // get extended pointer on reference vseg
     176            xptr_t vseg_xp;
     177            rpc_vmm_get_ref_vseg_client( ref_cxy , ref_ptr , bad_vaddr , &vseg_xp );
     178           
     179       
     180            if( vseg == NULL )          // vseg not found => illegal user vaddr
     181            {
     182                printk("\n[ERROR] in %s for thread %x : illegal vaddr = %x\n",
     183                       __FUNCTION__ , this->trdid , bad_vaddr );
     184
     185                hal_disable_irq( NULL );
     186                        return EXCP_USER_ERROR;
     187            }
     188            else                        // vseg found => make a local copy
     189            {
     190                // allocate a vseg in local cluster
     191                vseg = vseg_alloc();
     192
     193                if( vseg == NULL )
     194                {
     195                            printk("\n[PANIC] in %s : no memory for vseg / thread = %x\n",
     196                                   __FUNCTION__ , this->trdid );
     197                    hal_disable_irq( NULL );
     198                            return EXCP_KERNEL_PANIC;
     199                }
     200
     201                // initialise local vseg from reference
     202                vseg_init_from_ref( vseg , ref_xp );
     203
     204                // register local vseg in local VMM
     205                error = vseg_attach( &process->vmm , vseg );
     206            }
     207        }
     208        else                   // reference is local => illegal user vaddr
     209        {
     210            printk("\n[ERROR] in %s for thread %x : illegal vaddr = %x\n",
     211                   __FUNCTION__ , this->trdid , bad_vaddr );
     212
     213            hal_disable_irq( NULL );
     214                    return EXCP_USER_ERROR;
     215        }
     216    }
     217
     218        vmm_dmsg("\n[INFO] %s : found vseg for thread %x / vseg_min = %x / vseg_max = %x\n",
     219                         __FUNCTION__ , this->trdid , vseg->min , vseg->max );
     220
     221    // analyse exception code
     222    if( excp_code & MMU_EXCP_PAGE_UNMAPPED )
     223    {
     224        // try to map the unmapped PTE
     225        error = vmm_handle_page_fault( process,
     226                                       vseg,
     227                                       bad_vaddr >> CONFIG_PPM_PAGE_SHIFT );  // vpn
     228
     229        if( error )
     230        {
     231            printk("\n[PANIC] in %s for thread %x : cannot map legal vaddr = %x\n",
     232               __FUNCTION__ , this->trdid , bad_vaddr );
     233
     234            hal_disable_irq( NULL );
     235                    return EXCP_KERNEL_PANIC;
     236        }
     237        else
     238        {
     239            vmm_dmsg("\n[INFO] %s : page fault handled for vaddr = %x in thread %x\n",
     240                             __FUNCTION__ , bad_vaddr , this->trdid );
     241 
     242            // page fault successfully handled
     243            hal_disable_irq( NULL );
     244            return EXCP_NON_FATAL;
     245        }
     246    }
     247    else if( excp_code & MMU_EXCP_USER_PRIVILEGE )
     248    {
     249        printk("\n[ERROR] in %s for thread %x : user access to kernel vseg at vaddr = %x\n",
     250               __FUNCTION__ , this->trdid , bad_vaddr );
     251
     252        hal_disable_irq( NULL );
     253        return EXCP_USER_ERROR;
     254    }
     255    else if( excp_code & MMU_EXCP_USER_EXEC )
     256    {
     257        printk("\n[ERROR] in %s for thread %x : access to non-exec vseg at vaddr = %x\n",
     258               __FUNCTION__ , this->trdid , bad_vaddr );
     259
     260        hal_disable_irq( NULL );
     261        return EXCP_USER_ERROR;
     262    }
     263    else if( excp_code & MMU_EXCP_USER_WRITE )
     264    {
     265        printk("\n[ERROR] in %s for thread %x : write to non-writable vseg at vaddr = %x\n",
     266               __FUNCTION__ , this->trdid , bad_vaddr );
     267
     268        hal_disable_irq( NULL );
     269        return EXCP_USER_ERROR;
     270    }
     271
     272    else  // this is a kernel error => panic   
     273    {
     274        printk("\n[PANIC] in %s for thread %x : kernel exception = %x / vaddr = %x\n",
     275               __FUNCTION__ , this->trdid , excp_code , bad_vaddr );
     276
     277        hal_disable_irq( NULL );
     278        return EXCP_KERNEL_PANIC;
     279    }
     280 
     281} // end hal_mmu_exception()
     282
     283//////////////////////////////////////////////////////////////////////////////////////////
     284// This static function prints on the kernel terminal the saved context (core registers)
     285// and the thread state of a faulty thread.
     286//////////////////////////////////////////////////////////////////////////////////////////
     287// @ this     : pointer on faulty thread descriptor.
     288// @ regs_tbl : pointer on register array.
     289// @ return always EXCP_NON_FATAL
     290//////////////////////////////////////////////////////////////////////////////////////////
     291static void hal_exception_dump( thread_t * this,
     292                                reg_t    * regs_tbl )
     293{
     294    uint32_t  save_sr;
     295
     296    // get pointers on TXT0 chdev
     297    xptr_t    txt0_xp  = chdev_dir.txt[0];
     298    cxy_t     txt0_cxy = GET_CXY( txt0_xp );
     299    chdev_t * txt0_ptr = GET_PTR( txt0_xp );
     300
     301    // get extended pointer on remote TXT0 chdev lock
     302    xptr_t  lock_xp = XPTR( txt0_cxy , &txt0_ptr->wait_lock );
     303
     304    // get TXT0 lock in busy waiting mode
     305    remote_spinlock_lock_busy( lock_xp , &save_sr );
     306
     307    if( this->type == THREAD_USER )
     308    nolock_printk("\n================= USER ERROR / cycle %d ====================\n",
     309           hal_time_stamp() );
     310    else
     311    nolock_printk("\n================= KERNEL PANIC / cycle %d ==================\n",
     312           hal_time_stamp() );
     313
     314        nolock_printk("  thread type = %s / trdid = %x / pid %x / core[%x,%d]\n"
     315           "  local locks = %d / remote locks = %d / blocked_vector = %X\n\n",
     316           thread_type_str(this->type), this->trdid, this->process->pid, local_cxy,
     317           this->core->lid, this->local_locks, this->remote_locks, this->blocked );
     318
     319        nolock_printk("CR    %X  EPC   %X  SR    %X  SP     %X\n",
     320                   regs_tbl[UZ_CR], regs_tbl[UZ_EPC], regs_tbl[UZ_SR], regs_tbl[UZ_SP]);
     321
     322    nolock_printk("at_1  %X  v0_2  %X  v1_3  %X  a0_4   %X  a1_5   %X\n",
     323               regs_tbl[UZ_AT], regs_tbl[UZ_V0], regs_tbl[UZ_V1], regs_tbl[UZ_A0], regs_tbl[UZ_A1]);
     324
     325    nolock_printk("a2_6  %X  a3_7  %X  t0_8  %X  t1_9   %X  t2_10  %X\n",
     326                   regs_tbl[UZ_A2],regs_tbl[UZ_A3],regs_tbl[UZ_T0],regs_tbl[UZ_T1],regs_tbl[UZ_T2]);
     327 
     328    nolock_printk("t3_11 %X  t4_12 %X  t5_13 %X  t6_14  %X  t7_15  %X\n",
     329                   regs_tbl[UZ_T3],regs_tbl[UZ_T4],regs_tbl[UZ_T5],regs_tbl[UZ_T6],regs_tbl[UZ_T7]);
     330
     331    nolock_printk("t8_24 %X  t9_25 %X  gp_28 %X  c0_hi  %X  c0_lo  %X\n",
     332                   regs_tbl[UZ_T8],regs_tbl[UZ_T9],regs_tbl[UZ_GP],regs_tbl[UZ_HI],regs_tbl[UZ_LO]);
     333
     334    nolock_printk("s0_16 %X  s1_17 %X  s2_18 %X  s3_19  %X  s4_20  %X\n",
     335                   regs_tbl[UZ_S0],regs_tbl[UZ_S1],regs_tbl[UZ_S2],regs_tbl[UZ_S3],regs_tbl[UZ_S4]);
     336 
     337    nolock_printk("s5_21 %X  s6_22 %X  s7_23 %X  s8_30  %X  ra_31  %X\n",
     338               regs_tbl[UZ_S5],regs_tbl[UZ_S6],regs_tbl[UZ_S7],regs_tbl[UZ_S8],regs_tbl[UZ_RA]);
     339
     340    // release the lock
     341    remote_spinlock_unlock_busy( lock_xp , save_sr );
     342
     343}  // end hal_exception_dump()
     344
     345
     346///////////////////////////////////////////////////////////////////////////////
     347// TODO replace the hal_core_sleep() by the generic panic() function.
     348///////////////////////////////////////////////////////////////////////////////
    62349void hal_do_exception( thread_t * this,
    63350                       reg_t    * regs_tbl )
     
    72359        {
    73360        case XCODE_DBE:     // can be non fatal
    74             case XCODE_IBE:     // call generic excepton handler for a MMU exception
    75         {
    76                     error = do_exception( this , true );
     361            case XCODE_IBE:     // can be non fatal
     362        {
     363                    error = hal_mmu_exception( this );
    77364        }
    78365                break;
    79366
    80367            case XCODE_CPU:    // can be non fatal
    81                            // call generic excepton handler for a FPU exception
    82368        {
    83369            if( ((regs_tbl[UZ_CR] >> 28) & 0x3) == 1 )  // unavailable FPU
    84370            {
    85                 error = do_exception( this , false );
     371                error = hal_fpu_exception( this );
    86372            }
    87373            else
     
    92378                break;
    93379
    94         case XCODE_OVR:   // user fatal error
    95         case XCODE_RI:    // user fatal error
    96         case XCODE_ADEL:  // user fatal error
    97         case XCODE_ADES:  // kill process
     380        case XCODE_OVR:    // user fatal error
     381        case XCODE_RI:     // user fatal error
     382        case XCODE_ADEL:   // user fatal error
     383        case XCODE_ADES:   // user fatal error
    98384        {
    99385                    error = EXCP_USER_ERROR;
     
    120406}  // end hal_do_exception()
    121407
    122 /////////////////////////////////////////
    123 void hal_exception_dump( thread_t * this,
    124                          reg_t    * regs_tbl )
    125 {
    126     // take the exception_lock located in io_cluster
    127     remote_spinlock_lock( XPTR( LOCAL_CLUSTER->io_cxy , &exception_lock ) );
    128 
    129     if( this->type == THREAD_USER )
    130     printk("\n================= USER ERROR / cycle %d ====================\n",
    131            hal_time_stamp() );
    132     else
    133     printk("\n================= KERNEL PANIC / cycle %d ==================\n",
    134            hal_time_stamp() );
    135 
    136         printk("  thread type = %s / trdid = %x / pid %x / core[%x,%d]\n"
    137            "  local locks = %d / remote locks = %d / blocked_vector = %X\n\n",
    138            thread_type_str(this->type), this->trdid, this->process->pid, local_cxy,
    139            this->core->lid, this->local_locks, this->remote_locks, this->blocked );
    140 
    141         printk("CR    %X  EPC   %X  SR    %X  SP     %X\n",
    142                    regs_tbl[UZ_CR], regs_tbl[UZ_EPC], regs_tbl[UZ_SR], regs_tbl[UZ_SP]);
    143 
    144     printk("at_1  %X  v0_2  %X  v1_3  %X  a0_4   %X  a1_5   %X\n",
    145                regs_tbl[UZ_AT], regs_tbl[UZ_V0], regs_tbl[UZ_V1], regs_tbl[UZ_A0], regs_tbl[UZ_A1]);
    146 
    147     printk("a2_6  %X  a3_7  %X  t0_8  %X  t1_9   %X  t2_10  %X\n",
    148                    regs_tbl[UZ_A2],regs_tbl[UZ_A3],regs_tbl[UZ_T0],regs_tbl[UZ_T1],regs_tbl[UZ_T2]);
    149  
    150     printk("t3_11 %X  t4_12 %X  t5_13 %X  t6_14  %X  t7_15  %X\n",
    151                    regs_tbl[UZ_T3],regs_tbl[UZ_T4],regs_tbl[UZ_T5],regs_tbl[UZ_T6],regs_tbl[UZ_T7]);
    152 
    153     printk("t8_24 %X  t9_25 %X  gp_28 %X  c0_hi  %X  c0_lo  %X\n",
    154                    regs_tbl[UZ_T8],regs_tbl[UZ_T9],regs_tbl[UZ_GP],regs_tbl[UZ_HI],regs_tbl[UZ_LO]);
    155 
    156     printk("s0_16 %X  s1_17 %X  s2_18 %X  s3_19  %X  s4_20  %X\n",
    157                    regs_tbl[UZ_S0],regs_tbl[UZ_S1],regs_tbl[UZ_S2],regs_tbl[UZ_S3],regs_tbl[UZ_S4]);
    158  
    159     printk("s5_21 %X  s6_22 %X  s7_23 %X  s8_30  %X  ra_31  %X\n",
    160                regs_tbl[UZ_S5],regs_tbl[UZ_S6],regs_tbl[UZ_S7],regs_tbl[UZ_S8],regs_tbl[UZ_RA]);
    161 
    162     // release the exception_lock
    163     remote_spinlock_unlock( XPTR( LOCAL_CLUSTER->io_cxy , &exception_lock ) );
    164 
    165 }  // end hal_exception_dump()
    166 
     408
  • trunk/hal/tsar_mips32/drivers/soclib_pic.c

    r337 r380  
    491491    uint32_t * base = soclib_pic_xcu_base();
    492492
    493     // set period value in XCU
    494     base[(XCU_PTI_PER << 5) | lid] = period;
     493    // set period value in XCU (in cycles)
     494    uint32_t cycles = period * SOCLIB_CYCLES_PER_MS * CONFIG_SCHED_TICK_MS_PERIOD;
     495    base[(XCU_PTI_PER << 5) | lid] = cycles;
    495496
    496497    // enable PTI in local XCU controller
  • trunk/hal/tsar_mips32/drivers/soclib_pic.h

    r279 r380  
    9090#define SOCLIB_MAX_PTI         16
    9191
     92#define SOCLIB_CYCLES_PER_MS   1000    // for a SystemC virtual prototype
     93
    9294/******************************************************************************************
    9395 * This define the registers offsets for the  external SOCLIB_IOPIC component.
     
    231233 * The <period> argument define the number of cycles between IRQs.
    232234 ******************************************************************************************
    233  * @ period      : number of cycles between IRQs.
     235 * @ period      : number of ticks between IRQs.
    234236 *****************************************************************************************/
    235237void soclib_pic_enable_timer( uint32_t period );
Note: See TracChangeset for help on using the changeset viewer.