wiki:WikiStart

Version 16 (modified by alain, 6 years ago) (diff)

--

ALMOS-MK Specification

Ce document vise à spécifier les principes généraux de l'introduction des thread dans ALMOS-MK, qui est un système d'exploitation visant des architectures manycore à espace d'adressage partagé de type CC-NUMA (Cache Cohérent, Non Uniforme Memory Access), telles que l'architecture TSAR, qui peut supporter jusqu'à 1024 coeurs. Ces architectures sont clusterisées, avec un banc mémoire physique par cluster. On vise tout particulièrement des applications parallèles multi-thread respectant la norme POSIX.

Le système ALMOS-MK est l'héritier du système ALMOS, développé par Ghassan Almaless. Les principes généraux du système ALMOS sont décrits dans sa thèse. La première version de ALMOS-MK, et en particulier le système de fichiers distribué et le mécanisme de communication par RPC ont été développés par Mohamed Karaoui, Les principes généraux sont décrits dans sa thèse, mais cette première version ne supporte pas les threads.

Pour garantir le passage à l'échelle, et favoriser la distribution des services système, ALMOS-MK repose sur l'approche Multi-Kernel, dans laquelle il existe une instance du noyau dans chaque cluster de l'architecture, qui contrôle les ressources locales (mémoire et périphériques). Ces multiples instances coopèrent entre elles pour donner aux applications l'image d'un unique système contrôlant l'ensemble des ressources. Elles communiquent entre elles sur le modèle client /serveur en utilisant des RPCs (Remote Procédure Call).

Pour réduire la consommation énergétique, ALMOS-MK supporte des architectures utilisant des processeurs 32 bits. Dans ce cas, chaque cluster possède un espace d'adressage physique 32 bits. Pour accéder à l'ensemble de l'espace adressage physique des architectures cibles (40 bits dans le cas de TSAR), ALMOS-MK s'exécute entièrement en adressage physique (la MMU paginée des coeurs est désactivée dès qu'on entre dans le noyau. Pour permettre au noyau d'un cluster K d'accéder directement à la mémoire de n'importe quel autre cluster, ALMOS-MK suppose l'existence de primitives remote_read et remote_write utilisant des adresses physiques étendues (CID / PTR) sur 64 bits (où CID est l'index du cluster sur 32 bits, et PTR est l'adresse physique locale dans le cluster sur 32 bits). Ces primitives sont en particulier utilisées pour implémenter le mécanisme RPC, mais peuvent aussi être utilisées pour accélérer certains mécanismes critiques en performance.

A) Réplication et distribution des données

Cette section définit les principes de la politique de réplication / distribution des informations sur les différents bancs mémoire physiques. Cette politique vise deux objectifs : renforcer la localité des accès mémoire, et SURTOUT minimiser la contention.

  • Pour les informations read-only (segments de type CODE), on les réplique dans tous les clusters où elles sont utilisées.
  • Pour les données non partagées (segments de type STACK) on les place dans le même cluster que le thread utilisateur.
  • Pour les données partagées (segments de type DATA, HEAP, MMAP), on cherche à les distribuer le plus uniformément possible dans tous les clusters pour éviter la contention.

La technique générale permettant à l'OS de contrôler le placement et la réplication des informations sur les bancs mémoire physiques est la mémoire virtuelle paginée.

B) Réplication des tables de pages

Pour minimiser la contention lors du traitement des MISS TLB, ALMOS-MK réplique - partiellement - les tables de page d'une application parallèle multi-thread dans tous les clusters de l'architecture contenant au moins un thread de cette application. Cette section analyse le mécanisme de construction dynamique de ces tables de pages distribuées et partiellement répliquées, et le protocole permettant de garantir la cohérence de ces tables de pages.

C) Création/destruction des processus et des thread

Toujours pour minimiser la contention ALMOS-MK réplique - partiellement - les descripteurs de processus dans tous les clusters de l'architecture contenant au moins un thread de l'application. Cette section décrit les mécanismes de création et de destruction des processus et des thread, et précise les informations contenues dans les structures de données task_t (processus) et thread_t (thread).

D) Ordonnancement des threads

Dans ALMOS, on utilise des listes doublement chaînées internes pour représenter l'ensemble des thread en attente d'une même ressource. Ces listes doivent être modifiées à chaque opération d'ordonnancement qui modifie l'état d'un thread. Puisque les thread d'une même application parallèle multi-thread peuvent être distribués sur tous les clusters de l'architecture, ces files d'attentes sont donc trans-cluster, ce qui est contradictoire avec la politique multi-kernel d'ALMOS-MK. Cette section analyse le problème et propose différentes solutions.