
ON THE SCALABILITY OF IMAGE AND SIGNAL PROCESSING PARALLEL

APPLICATIONS ON EMERGING CC-NUMA MANY-CORES

Ghassan Almaless and Franck Wajsburt

LIP6 - UPMC Sorbonne Universités

4, place Jussieu – Paris, France

firstname.lastname@lip6.fr

Abstract

Nowadays, single-chip cache-coherent multi-cores up to 100

cores are a reality and many-cores of hundreds of cores are

planned in the near future. This technological shift under-

taking by the high-end computer-industry is converging with

the design motivation of other domains like embedded and

HPC industries. In this paper, we propose to investigate the

scalability of the same four unmodified, shared-memory, im-

age and signal processing oriented parallel applications on

two targets: (i) embedded - TSAR, a single-chip 256-cores

based, Cycle-Accurate-Bit-Accurate simulated, cc-NUMA

many-core; and (ii) high-end - an AMD Opteron Interlagos,

64-core based, cc-NUMA many-core. Beside our scalability

results on both cc-NUMA targets, our contributions include

two operating system mechanisms: (i) a distributed, clien-

t/server based, scheduler design allowing the kernel to offer

scalable inter-threads synchronization mechanisms; and (ii)

a kernel-level memory affinity technique named Auto-Next-

Touch allowing the kernel to transparently and automatically

migrate physical pages in order to enforce the locality of

thread’s memory accesses. Although these two mechanisms

are implemented and evaluated in ALMOS (Advanced Lo-

cality Management Operating System) running on the TSAR

target, they remain applicable to other shared-memory oper-

ating systems.

1. INTRODUCTION

Since ten years, the high-end computer manufactures has

reached physical limits regarding the clock-frequency and

the heat-dissipation which forced them to turn to multi-cores

designs [3]. Nowadays, single-chip cache-coherent multi-

cores up to 100 cores are a reality [30, 8] and many-cores of

hundreds of cores are planned in the near future [11]. This

undertaken technological shift is converging with the design

motivation of the embedded-computing industry regarding to

energy efficiency and the already usage of multi/many-cores

to get more parallelism and performances [32, 22, 23, 18, 17].

Meanwhile the HPC industry is looking closely with a high

interest to many-cores as a way to get more performance

and parallelism with lower energy cost [26, 16, 9]. The

single-chip cache-coherent many-cores which are a general-

purpose processors supporting the shared-memory program-

ming paradigm, can constitute a common platform for these

different domains for at least two reasons. The first, they

ensure a soft transition for the software-industry by allowing

legacy applications (sequential and parallel) to continue to

run over the many-cores while new highly multi-threaded ap-

plications are emerging. The second, they reduce the time-to-

market by allowing: (i) the reuse of the same general-purpose

architecture (possibly with some adaptation) in different do-

mains; (ii) the reuse of existing applications or computing

kernels developed/used in other domains; and (iii) the signif-

icant reduction in new applications development time by the

reuse of existing build tools and standard programming lan-

guages. Although the single-chip cache-coherent many-cores

has this important potential, they come with constraints. As

the cores number becomes large and for power efficiency rea-

sons (performance per watt) cores become simpler with small

L1 caches. The bus interconnect, which becomes a bottle-

neck, is replaced by a Network-on-Chip (NoC) interconnect

while the LLC (Last Level Cache) is distributed on the chip.

This causes a non-uniform latency when a core accesses to

the logically-shared but physically-distributed memory (cc-

NUMA). To get efficient use of parallelism offered by these

many-cores, applications must be strongly multi-threaded.

Due to per-core small caches, a thread’s working set has to be

small and this can be achieved by decomposing a big work-

ing set among several threads, ideally, until it meets per-core

cache size. In this cc-NUMA architecture the thread’s data

placement becomes a major issue as a miss placement can

lead to sever performance drawback and more energy con-

sumption (energy by moved bit). To maintain the single-chip

general-purpose many-cores as an attractive point of conver-

gence and to cope with their architectural constraints, a key

point is the operating system regarding to its design, scalabil-

ity and the execution environments which it provides to user

applications.

In this paper, we propose to investigate the scalability



Fig. 1. (a) TSAR clustered architecture with 2D-Mesh NoC; (b) A

cluster of TSAR which contains: a local-interconnect, up to 4-cores,

Network-Interface (NIC) to the NoC, Memory-Cache, multi-timers,

4-channels DMA and an Interrupt Control Unit (ICU).

of the same four unmodified image and signal processing

oriented parallel applications on two targets: (i) embed-

ded - TSAR1 a clusterized, cc-NUMA, single-chip many-

core configured to 256-cores; and (ii) high-end - an AMD

Opteron Interlagos, 64-core based, cc-NUMA many-core.

The TSAR target is software-emulated using a full sys-

tem, Cycle-Accurate-Bit-Accurate (CABA) simulator run-

ning ALMOS (a new research operating system targeting

cc-NUMA many-cores). The AMD target is an industrial

machine running a Linux-based operating system.

Beside our scalability results on both cc-NUMA targets,

our contributions include two operating system mechanisms:

(i) a distributed, client/server based, scheduler design al-

lowing the kernel to offer a scalable inter-threads synchro-

nization mechanisms; and (ii) a kernel-level memory affinity

technique named Auto-Next-Touch allowing the kernel to

transparently and automatically migrate physical pages in

order to enforce the locality of thread’s memory accesses.

Although these two mechanisms are implemented and evalu-

ated in ALMOS (Advanced Locality Management Operating

System) running on TSAR target, they remain applicable to

other shared-memory operating systems.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the experimental testbeds and workloads.

Section 3 presents our two kernel-level mechanisms related

to scheduler design and memory-affinity. Section 4 presents

the scalability results obtained on TSAR and AMD Opteron

Interlagos many-cores while Section 5 reviews related work.

The conclusions and future work are presented in Section 6.

2. TESTBEDS AND WORKLOADS

We conducted our scalability experiment on two platforms:

256-cores TSAR many-core running ALMOS and 64-cores

AMD Opteron Interlagos running Linux. In this section we

first describe the TSAR many-core and its CABA simulator.

Then, we present the ALMOS operating system executed by

the TSAR simulator before describing the AMD Opteron In-

1TSAR (Tera-Scale ARchitecture) is a 4-years, MEDEA+, European

funded project started in 2008, grant #2A718.

terlagos target. Finally, we present the four evaluated image

and signal processing workloads used in this experiment.

2.1. TSAR (Tera Scale ARchitecture)

TSAR [2] is an homogeneous, cc-NUMA (cache-coherent

Non Uniform Memory Access) many-core architecture. It

consists of up to 1024-clusters interconnected by DSPIN

(Distributed, Scalable, Predictable, Integrated Network) a

2D-mesh NoC [21]. This homogeneous many-core has some

common properties with a recent industrial many-core [8]

such as the small L1 cache size, the distributed L2 caches, the

choice of 32-bit cores, and the usage of 2D-mesh NoC with

X-First wormhole packet-routing. Figure 1 illustrates TSAR

clustered architecture.

A cluster of TSAR contains up to 4-cores, each of which

has its own CPU, FPU and L1 separated (instruction and data)

physical cache with MMU. The shared physical address space

is 1 TB (40 bits physical address). It is distributed among

clusters each of which is a home-cluster of its corresponding

segment. The physical memory segment, homed by a given

cluster, is accessed and cached by a specific per-cluster con-

troller named Memory-Cache. The Memory-Cache can be

seen as L2-cache with a coherence-directory and a memory-

controller to access the cluster’s memory segment via a sep-

arate and dedicated NoC. Each L1 can read and write to any

cache-line of physical memory. If the requested physical ad-

dress belongs to the core’s cluster, it is a local request and the

local Memory-Cache handles it. Otherwise, the request is a

remote one and it is routed via the NoC to the target cluster.

The target cluster is determined by decoding the MSB bits of

the requested physical address.

In TSAR, cores can be of any simple RISC type. That

is, a single-issue, short pipeline without neither branch pre-

dictor nor out-of-order execution. TSAR memory subsys-

tem is independent of cores type and there is a defined in-

terface between the TSAR L1-cache and the used core. Each

L1 has its own MMU with separated (instructions and data)

TLBs. The TLB MISSes are handled by a hardware table-

walk. TSAR page tables have two-levels where two page

sizes are supported (2 MiB and 4 KiB). The coherence of L1

caches and their TLBs is guaranteed by a distributed directory

based cache-coherence protocol named DHCCP (Distributed

Hybrid Cache Coherence Protocol). If a given L1 writes to

address X , the write is propagated (write-through strategy) to

the home Memory-Cache of X cache-line. If the cache-line

is not shared (references counter equal to 1) then the write

is done. If the cache-line is shared with N L1-caches, then

the write is blocked by the Memory-Cache until it takes the

appropriate action. It sends a multicast-update command to

L1-caches if N < λ, otherwise it sends a broadcast-invalidate

command to all L1-caches. The size of the cache-line is 64

bytes. An L1 can issue one to four words of 32bits in one

write request. A cache miss issued by an L1 is always one



cache line size.

TSAR architecture is prototyped with a Cycle-Accurate-

Bit-Accurate (CABA) SystemC [14] based simulator. This

simulator is able to do accurate full-system simulation start-

ing from reset interrupt. At the command line, the simulator

takes the X and Y widths of the clusters mesh and the num-

ber of cores per cluster. All TSAR components are writing in

RTL equivalent SystemC and they are used to co-simulated

TSAR in SystemC and VHDL. The advantage of such accu-

racy is the precision in the results, which include all hardware

resources contention. The drawback is the simulation time

(2000 simulated cycles per second). In this study we use the

flowing TSAR configuration: (i) core type is MIPS32; (ii)

L1-I and L1-D are each of 16 Kb, 4-ways; (iii) TLB-I and

TLB-D are each of 16 entries, 4-ways; (iv) Memory-Cache of

256 Kb, 16-ways; and (v) Mesh of 8x8 = 64 clusters. This

configuration is the same for all discussed experiments.

2.2. ALMOS

ALMOS [1] stands for Advanced Locality Management Op-

erating System. It is a new research operating system tar-

geting cc-NUMA many-core with hundreds of cores. It is

intended to investigate the scalability of an operating system

components on large-scale cc-NUMA many-cores [4]. The

locality of memory access impacts directly both the scalabil-

ity and the power consumption. The main challenge is to

enforce the locality of memory access made by threads of

parallel applications. Although the locality enforcing needs

a fine management of hardware resources (mainly cores and

physical memory), ALMOS aims to hide the hardware topol-

ogy and its resources management to applications. This al-

lows POSIX shared-memory, parallel applications as well as

legacy applications to benefit from performances offered by

many-cores. ALMOS is a UNIX-like, POSIX compatible op-

erating system. It currently has a fairly complete C library, a

math library, a fairly complete PThreads library and the GNU

OpenMP run-time. The kernel of ALMOS has the primordial

subsystems related to tasks, virtual memory and files man-

agement. The PThreads implementation has a native support

from the kernel and it has 1:1 threading model as in Linux.

In this experimental study we use ALMOS for three reasons:

(i) it is optimized and naturally available for TSAR; (ii) we

have a fine control on its kernel and its behavior is fully pre-

dictable; and (iii) it has a similar threading model and im-

plementation as a more complete and mature shared-memory

operating system like Linux.

2.3. AMD Opteron Interlagos target

Our second target is a high-end many-core machine based on

AMD Opteron Interlagos processor 6282 SE running Linux

2.6.39-4. This target is illustrated by the figure 2. Each Node

consists of 4 computing modules. Each computing module

has 2 cores having a common L1 instruction, per-core L1 data

Fig. 2. AMD Opteron Interlagos 6282 SE. 4 chips interconnected

by a full crossbar. The internal links are half bandwidth of the outer

ones. Each chip has 2 nodes each of which has 8 cores.

and a unified L2 cache. All of the for L2 caches share the

node’s L3 cache. The sizes of these caches are : 64 KB, 16

KB, 2048 KB, 12288 KB respectively. The system is made

from 4 Interlagos processors interconnected with a full cross-

bar of Hyper-Transport-3.0 links (6.4GT/s). Each processor

has the a total of 16 cores (2 nodes). It is made with 32nm

technology and its consumption is estimated to 140 W. From

operating system viewpoint, Linux detects 8 NUMA nodes of

8 cores each. In our experiment we pin explicitly threads to

cores using Linux pthread setaffinity np function call.

2.4. Evaluated Workloads

In order to evaluate the scalability of image and signal pro-

cessing parallel applications on emerging cc-NUMA many-

cores, we selected this four applications: SPLASH-2 FFT,

EPFilter, Histogram and Tachyon. All of these applications

are written in C and use PThreads. The FFT program is a

complex, one-dimensional version of the ”Six-Step” FFT de-

scribed by Bailey et al. [6]. The EPFilter is an industrial med-

ical image noise-filtering application provided by Philips. It

consists of applying a convolution filter of 201x35 pixels on

its input image of 2-bytes per-pixel. The Histogram appli-

cation, from Standford Phoenix project [24], generates the

histogram of frequencies of pixel values in the red, green, and

blue channels of a bitmap picture. The Tachyon application

[28] is highly parallel ray tracing. Table refparam shows the

input parameters used for these workloads. All of these appli-

cations follow the treatments scheme shown in figure 5.

3. KERNEL-LEVEL MECHANISMS

In this section we describe our two kernel-level contributions

implemented in the kernel of ALMOS regarding the schedul-

ing and physical pages placement. We first describe the dis-

tributed, client/server based, scheduler. Then we describe the

memory affinity mechanism name Auto-Next-Touch.



Table 1. Input parameters of the evaluated workloads

Abbreviation Comment

Histo8-A Histogram executed on the target ALMOS/TSAR

with 8.7 Mpix input image

Histo8-L

Histo34-L

Histogram executed on the target Linux/AMD

Opteron with an input image of 8.7 and 34.8 Mpix

EP1024-A

EP2048-A

EPFilter executed on the target ALMOS/TSAR

with an input image of 1 and 4.2 Mpix

EP1024-L

EP2048-L

EPFilter executed on the target Linux/AMD

Opteron with an input image of 1 and 4.2 Mpix

M18-A FFT executed on the target ALMOS/TSAR with

262144 complex points

M18-L

M20-L

FFT executed on the target Linux/AMD Opteron

with 262144 and 1048576 complex points

512-A

1024-A

2048-A

Tachyon executed on the target ALMOS/TSAR

with a scene (2 balls) resolution of 512x512,

1024x1024 and 2048x2048

512-L

1024-L

2048-L

Tachyon executed on the target Linux/AMD

Opteron with a scene (2 balls) resolution of

512x512, 1024x1024 and 2048x2048

3.1. Distributed client/server based scheduler

Threads scheduling functionality provided by the kernel of

an operating system allows, mainly, to temporally multiplex

the execution of runnable threads on the available cores. To

reduce the contention on the ready queue of threads (where

runnable threads are attached), current SMP kernels, like

Linux, has a ready queue by core protected by a lock to en-

sure the mutual exclusion in the case of contention. This

contention can occur while two threads running on two dif-

ferent cores try to update (insert/delete) a core’s ready queue.

For instance, if a thread running on core A wants to wakeup

another thread X belonging to a core B, it has to take first

the lock protecting the ready queue of core’s B scheduler.

Then it has to: detach the thread X from core’s B waiting

queue; update thread X timing information; compute thread

X new priority before inserting it to the ready queue of core

B. Finally, it has to release the taken lock. These steps con-

stitute the wakeup scheduling primitive (figre 3 (a)). Another

scheduling primitive which needs to be executed in mutual

exclusion is the election of a runnable thread for the next exe-

cution quantum. This scheduling primitive is executed when

a thread wants to yield its current core or it is going to sleep.

The kernel provides user applications synchronization mech-

anisms, like condition variables and barriers, which involve

potentially all application’s threads. The cost of executing the

wakeup scheduling primitive for each application’s sleeping

thread can be substantial, specially in a cc-NUMA many-core

because of the locking and the manipulation of remote data

of each target scheduler.

In order to minimize the cost of scheduling primitives

and to provide a scalable synchronization mechanisms, we

a

c

b

Fig. 3. Pseudo code showing the a summary of steps to do

while executing wakeup operation in two approaches: (a)

classical one with lock protection; (b/c) distributed one where

(b) denotes the client side while (c) denotes the server side.

propose in the kernel of ALMOS, a distributed client/server

based scheduler. The main idea is to separate the wakeup

event notification from its effective execution. If a thread run-

ning on a core A needs to wakeup a thread X belonging to

core B, it just write a wakeup event to core B scheduler (fig-

ure 3 (b)). In a second time, the scheduler of core B executes

this pending event (figure 3 (c)). Upon this scheme, the per-

core scheduler acts as a server. It assigns to each thread, at the

affectation time, a local identifier. All of the scheduling prim-

itives are executed only by threads belonging to this scheduler

at various scheduling points (e.g. when a thread yields its core

or in the occurrence of clock interrupt). In this scheme, the

clients are any thread looking to wakeup another thread.

The direct benefits of this organization are: (i) the sched-

uler becomes lock-free; (ii) the wakeup scheduling operation

can be done in parallel with yield/sleep operations without

any contention; and (iii) the reduction in latency and intercon-

nect traffics thanks to remote data manipulation avoidance.

In order to verify experimentally the scalability and per-

formance of this distributed approach, we implemented, in

the kernel of ALMOS, the two scheduler versions: the lock-

based one named (v0) and the distributed lock-free (v1). In

both versions the scheduling algorithm is round-robin with

fixed priority and one ready queue per core. Using a 256-core

TSAR, the figure 4 shows the cost of 3 barriers notification

of the bench M18-A (table 1) for a threads number ranging

from 4 to 256. The results show the efficiency and the scala-

bility of the distributed client/server based scheduler over the

lock-based one.

3.2. Memory affinity Auto-Next-Touch

We begin by identifying two problems related to the initial-

ization phase in a typical treatment scheme that can be found

in a parallel multi-threaded application. Then, we present a

current solution Next-Touch which solve one of them. How-

ever, we show that this solution does not solve the second one



Fig. 4. Cost of barrier notification

Fig. 5. A typical parallel treatment scheme.

and raises itself two new limitations. Finally, we present our

solution, Auto-Next-Touch that overcomes these limitations

and meet all of these problems.

A typical treatment scheme of a parallel multi-threaded

application, shown in Figure 2, begins with a sequential ini-

tialization phase followed by parallel processing phase. The

initial data are prepared in the initialization phase executed by

a single thread. In order to control the placement of a phys-

ical page, the kernel use the First-Touch strategy. According

to this strategy, when a thread accesses to a virtual address

for the first time, the kernel allocates the requested physical

page from the memory of the cluster in which the thread runs.

Although the First-Touch strategy is adopted by default in all

kernels, it has two problems. The first, it ignores the existence

of a temporary sequential phase found in the majority of par-

allel programs. All physical page allocations needed to ini-

tialize global data are done locally from the cluster of the ini-

tiator thread but during the parallel phase, each worker thread

will access remotely its own subset of these initial data in or-

der to process them. These remote access during the parallel

phase seriously impact the performance in a NUMA architec-

ture. The second, it does not anticipate the memory needs of

worker threads during the parallel phase. During the initial-

ization phase, the memory allocations made by the initiator

thread can potentially generate a local shortage of physical

memory. This will impact the locality of memory allocations

made in the parallel phase by threads assigned to the same

cluster as the initiator one. This situation will cause the ker-

nel to remotely allocate their requested physical pages, thus

causing another performances drawback.

The idea of the Next-Touch strategy is to let to the pro-

grammer the care of explicitly indicating to the kernel, at the

end of the initialization phase, the memory areas (virtual ad-

dresses) that are subject of parallel processing. The kernel

does a page tables traversal of the process and marks each

existing physical page corresponding to the virtual area for a

migration on the next access. Thus, during the parallel phase,

the physical pages containing the data to be processed by a

thread will be migrated to local memory of the thread. How-

ever, beside the fact that this technique is absent on most oper-

ating systems because it is not standard (i.e not POSIX com-

pliant), it has two limitations: (i) complexity of use, because

the programmer must consider the memory access profile and

informs the kernel about addresses of memory areas to be mi-

grated on the next access; (ii) compatibility, because it needs

to rewrite the existing applications. On the other hand, it

does not solve the problem of potential dispersion of mem-

ory allocations during the parallel phase due to local physical

memory shortage during the initialisation phase. Even though

threads will ends up migrating their physical pages, the order

in which new memory requests and page migrations arrives

may not be priory known.

We propose a new solution that we call Auto-Next-Touch.

It allows to (i) relieve the programmer from the task of spec-

ifying the memory areas to migrate during parallel phase;

(ii) run an existing multi-threaded applications without any

prior modifications; and (iii) ensure the availability of a local

physical memory for parallel processing phase by imposing

a memory allocation policy. Our solution relies on two tech-

niques. The first one is to detect the moment when a single

threaded process goes multi-threaded. At this point, the ker-

nel automatically and transparently look for all process virtual

regions belonging to the heap and the privately mapped. For

each region it marks the page tables entries of all correspond-

ing and existing physical pages to be migrated on the next

access. The second one is to limit the amount of physical

memory that a thread can locally allocates when it is the only

thread of its process and to release the remaining when the

process becomes multi-threads. This limitation of local phys-

ical memory quantities has the disadvantage of penalizing the

performance of a single threaded application, since it intro-

duces a dispersion of memory allocations and thus greatly

degrades the locality of memory accesses. We have chosen

to pay this price because we believe that the large majority of

applications designed to run on many-cores architectures are

multi-threaded.

In order to verify experimentally the relevance of this so-

lution, we implemented it in the kernel of ALMOS. During

the sequential initialization phase of SPLASH-2 FFT (M18-

A), a set of memory areas are allocated and initialized. This

implies a corresponding physical pages allocations from the

local memory to the core on which the initiator thread runs.

Figure 6 shows the speedup evaluation when executing the

same unmodified application in two cases: when the Auto-

Next-Touch is enabled in ALMOS kernel and when it is dis-

abled which is the default behavior without any migration as it

can be found in other kernels like Linux. The results show: (i)

There is a scalability limitation beyond 16 cores in the case of

a default kernel behavior preventing any farther performance;

and (ii) This scalability limitation is resolved by the use of the

kernel-level Auto-Next-Touch mechanism transparently, that



Fig. 6. Evaluation of Auto-Next-Touch technique (x-axis:

number of cores; y-axis: speedup)

is, without any prior modification of the user application.

4. EXPERIMENTAL RESULTS

In this section we present the experimental evaluation of four

shared-memory, image and signal processing applications on

two targets: (i) embedded - TSAR configured to 256-cores

and running ALMOS operating system; and (ii) high-end -

AMD Opteron Interlagos 64-cores running Linux 2.6.39-4.

The evaluated application were not modified and they are

compiled using gcc 4.4.3, MIPS32 barre-metal, cross com-

piler for the first target; and gcc 4.4.6, x86 64 on the second

target. The gcc optimisation level used is -O3.

Although this experimental evaluation involves two dif-

ferent targets including different hardwares and operating sys-

tems, it aims to put some light about the adequation of each

target to the same unmodified image and signal processing

applications. This adequation is merely in term of scalability

and performances per Watt.

Figure 7 shows the speedup results on the ALMOS/TSAR

target. The results show a very good quasi-linear scalability

for the four application up to 64 cores. The EPFilter appli-

cation (EP1024-A) has the best speedup of 215 on 256 cores.

The speedup of SPLASH2 FFT (M18-A) and Tachyon ray

tracer on 256 cores are respectively 142 and 136 while the

Histogram’s one is of 112. These preliminary results shows

a promising potential of a signal-chip, cc-NUMA embedded

many-core to run unmodified shared-memory image and sig-

nal processing applications when using an optimized operat-

ing system.

Figure 9 shows the speedup of the same unmodified ap-

plications on both ALMOS/TSAR and Linux/AMD with

various sizes. This comparison shows: (i) the same applica-

tions have best scalability on the target ALMOS/TSAR than

the Linux/AMD; (ii) increasing the input size gives better

speedup only for Histogram and Tachyon on Linux/AMD

while it gives near the same speedup curve for EPFilter and

Tachyon on ALMOS/TSAR; and (iii) As the applications

are the same in both cases, the scalability drawback can be

caused by Linux or the AMD 64 cores architecture.

Fig. 7. Speedup evaluation on ALMOS/TSAR (x-axis: num-

ber of cores; y-axis: speedup)

Figure 8 shows the comparison between the time of ex-

ecution in million of cycles for the four applications. For

a small configuration involving up to 2 NUMA nodes (16

cores) and as each AMD core is a superscalar, multi-issues,

the target Linux/AMD gives the best execution time. Nev-

ertheless, ALMOS/TSAR is able to reach almost the same

results as soon as the number of cores reaches 64. This shows

that the embedded target, with its 32 bits simple cores and

small caches gives a good performance by power envelop in

comparison with the high-end Linux/AMD target with 64bits

cores and big caches. An AMD processor (16 cores) measures

315 mm2 in 32 nm technology and consumes 140 W while a

cluster (4 cores) of TSAR measure less than 2 mm2 in the

same technology. The cumulative surface (without taking in

consideration all the packaging and interconnection stuffs) of

the 4 AMD processors which gives 64 cores is about 1260

mm2 while the surface of the single-chip TSAR many-core

processor having 64 cores is about 32 mm2.

5. RELATED WORK

The locality of memory access is an important factor in the

performance of NUMA machines. This factor depends on

the strategies for resource allocation, processors and memory,

and is known [25] since the first machines NUMA, CM* [29]

Rely on the operating system and virtual memory man-

agement allows to implements solutions around migration

and replication of physical pages [27] [10]. The approach

requires information provided by the hardware such as cache

miss and TLB miss.

Use a method of allocating physical pages to the appli-

cation or ”first-touch” at the core and make use from user

mode while relying on hardware trace information has been

explored by [20].

Instead of trying to establish the location in a dynamic

way, other studies show the importance of taking into account

the topology of the architecture and exploiting it during the

allocation of memory and processors [13].

The effectiveness of Next-Touch strategy has been stud-



Fig. 8. Execution time in million of cycles on the two targets (x-axis: million of cycles; y-axis: number of cores)

Fig. 9. Speedup on ALMOS/TSAR and Linux/AMD with several input sizes (x-axis: number of cores; y-axis: speedup)

ied [19] and its implementation in Linux has been sug-

gested [15]. We proposed our kernel level solution, Auto-

Next-Touch, to overcome the limitations of this strategy and

making it automatic and transparent to user applications.

Research in operating systems has not stopped evolving

since the early NUMA machines. Several recent research

projects exist such as: the K42 [5] system based on micro-

kernel, Barrelfish [7] which introduces the concept of multi-

kernel or Corey [12] that allows the user to control the place-

ment of some kernel data structures. Based on a micro-kernel

approach FOS [31] argues for processors spatial partitioning

between the system and user applications rather than share

them temporally (timeslicing). The monolithic distributed de-

sign approach, used in the kernel of ALMOS, is different from

the multi-kernel, the micro-kernel or the exo-kernel. Instead

ALMOS has a monolithic kernel in shared memory. AL-

MOS shares some of K42[5] design goals regarding the im-

portance of locality for the scalability and the organization in

distributed objects. Both of ALMOS and Linux operating sys-

tem are shared-memory, Unix-like, POSIX-compatible oper-

ating systems. Our contributions in ALMOS kernel can be

reused in other shared-memory operating systems.

At the best of our knowledge, we are the first to ex-

perimentally evaluate the scalability of the four selected,

shared-memory, PThreads-based, image and signal process-

ing on single-chip, cc-NUMA, 256 cores based many-core

and compare the results on the recent AMD Opteron 64-cores

many-core.

6. CONCLUSION AND FUTURE WORK

In this paper, we have presented an experimental evalua-
tion of the scalability of four unmodified shared-memory,
PThreads-based, image and signal processing applications on
both embedded and high-end many-cores. Our results show a
good scalability of these applications on ALMOS/TSAR up
to 256 cores. These preliminary results indicate the potential
of general-purpose single chip cc-NUMA many-cores to run
image and signal processing oriented applications with ease-
of-use from the programmer point of view (the applications
were not modified). From the other hand, our evaluations
of the same applications on the Linux/AMD target indicate
a scalability drawback due to Linux, the AMD Opteron ar-
chitecture or both of them regarding these applications. By
our two kernel-level contributions, we emphasis the impor-
tance of the operating system design to efficiency use the
parallelism offered by an emerging single-chip, cc-NUMA
many-core. Our evaluation of the distributed client/server
scheduler design showed its relevance against the a lock-
based scheduler design. Our Auto-Next-Touch mechanism is
promising. We are currently working on a more generalized
dynamic memory affinity solution and looking for results on
TSAR configured to 512 cores.

7. REFERENCES

[1] Almos (advanced locality management operating system).

www.almos.fr.

[2] Tera-scale architecture. https://www-

asim.lip6.fr/trac/tsar/wiki.

[3] V. Agarwal and al. Clock rate versus ipc: the end of the

road for conventional microarchitectures. In Proceedings of



the 27th annual international symposium on Computer archi-

tecture, ISCA ’00, pages 248–259, New York, USA, Jun 2000.

ACM.

[4] G. Almaless and F. Wajsburt. Does shared-memory, highly

multi-threaded, single-application scale on many-cores? In

Proceedings of the 4th USENIX Workshop on Hot Topics in

Parallelism, Berkeley, California, USA, Jun 2012.

[5] J. Appavoo and al. Experience distributing objects in an smmp

os. In ACM Transactions on Computer Systems, 25(3), 2007.

[6] D. H. Bailey. Ffts in external or hierarchical memory. J. Su-

percomput., 4:23–35, March 1990.

[7] A. Baumann and al. The multikernel: a new os architecture

for scalable multicore systems. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles,

Big Sky, Montana, USA, Oct 2009.

[8] S. Bell and al. Tile64 - processor: A 64-core soc with mesh

interconnect. In Solid-State Circuits Conference, 2008. ISSCC

2008. Digest of Technical Papers. IEEE International, pages

88 –598, feb. 2008.

[9] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele.

Many-core key-value store. International Green Computing

Conference and Workshops, 0:1–8, 2011.

[10] W. J. Bolosky and al. Numa policies and their relation to mem-

ory architecture. In Proceedings of the fourth international

conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 212–221, Santa Clara,

California, USA, Apr 1991.

[11] S. Borkar. Thousand core chips: a technology perspective. In

Proceedings of the 44th annual conference on Design automa-

tion, San Diego, California, USA, Jun 2007.

[12] S. Boyd-Wickizer and al. Corey: An operating system for

many cores. In In Proceedings of the 8th USENIX Symposium

on Operating Systems Design and Implementation, 2008.

[13] T. Brecht. On the importance of parallel application placement

in numa multiprocessors. In USENIX Systems on USENIX Ex-

periences with Distributed and Multiprocessor Systems,, pages

1–1, San Diego, USA, Sep 1993.

[14] R. Buchmann and A. Greiner. A fully static scheduling ap-

proach for fast cycle accurate systemc simulation of mpsocs.

In Microelectronics, 2007. ICM 2007. Internatonal Conference

on, pages 101–104, dec. 2007.

[15] B. Goglin and N. Furmento. Enabling high-performance mem-

ory migration for multithreaded applications on linux. In Pro-

ceedings of the 2009 IEEE International Symposium on Paral-

lel&Distributed Processing, pages 1–9, May 2009.

[16] F. Guim, I. Rodero, J. Corbalan, and M. Parashar. Enabling gpu

and many-core systems in heterogeneous hpc environments us-

ing memory considerations. In Proceedings of the 2010 IEEE

12th International Conference on High Performance Comput-

ing and Communications, HPCC ’10, pages 146–155, Wash-

ington, DC, USA, 2010. IEEE Computer Society.

[17] Kalray. Mppa: Multi-purpose processor array.

http://www.kalray.eu/en/products/mppa.html.

[18] R. Kessler. Cavium 32 core octeon ii cn68xx. Hot Chip 23,

Aug. 2011.

[19] H. Löf and S. Holmgren. Affinity-on-next-touch: increasing

the performance of an industrial pde solver on a cc-numa sys-

tem. In Proceedings of the 19th annual international confer-

ence on Supercomputing,, Cambridge, Massachusetts, USA,

Apr 2005.

[20] J. Marathe and F. Mueller. Hardware profile-guided automatic

page placement for ccnuma systems. In Proceedings of the

eleventh ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, New York, NY, USA, Mar 2006.

[21] I. Miro-Panades, A. Greiner, and A. Sheibanyrad. A low cost

network-on-chip with guaranteed service well suited to the gals

approach. In IEEE 1st Internationnal Conference on Nano-

Networks, 2006.

[22] P. Paulin. Programming challenges & solutions for multi-

processor socs: an industrial perspective. In Proceedings of

the 48th Design Automation Conference, DAC ’11, pages 262–

267, New York, NY, USA, 2011. ACM.

[23] Picochip. Pc205. http://www.picochip.com/page/76/Multi-

core-PC205.

[24] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and

C. Kozyrakis. Evaluating mapreduce for multi-core and mul-

tiprocessor systems. In Proceedings of the 2007 IEEE 13th

International Symposium on High Performance Computer Ar-

chitecture, HPCA ’07, pages 13–24, Washington, DC, USA,

2007. IEEE Computer Society.

[25] K. Schwan and A. K. Jones. Specifying resource allocation for

the cm* multiprocessor. In IEEE Software, pages 3(3): 60–70,

May 1984.

[26] J. Shalf, K. Asanovic, D. Patterson, K. Keutzer, T. Mattson, and

K. Yelick. The manycore revolution: Will hpc lead or follow?

In SciDAC Review, No. 14, pages 40–49. IOP in association

with ANL, US DoE and Office of Science, 2009.

[27] V. Soundararajan and al. Flexible use of memory for repli-

cation/migration in cache-coherent dsm multiprocessors. In

Proceedings of the 25th annual International Symposium on

Computer Architecture, pages 342–355, Barcelona, Spain, Jun

1998.

[28] J. Stone. An efficient library for parallel ray tracing and ani-

mation. Technical report, In Intel Supercomputer Users Group

Proceedings, 1995.

[29] R. J. Swan, S. H. Fuller, and D. P. Siewiorek. cm* a modular,

multi-microprocessor. In Proceedings of the national computer

conference, Dallas, USA, Jun 1977.

[30] Tilera. Tile-gx processors family.

http://www.tilera.com/products/TILE-Gx.php.

[31] D. Wentzla and A. Agarwal. Factored operating systems (fos):

The case for a scalable operating system for multicores. In

Operating Systems Review, 43(2),, 2009.

[32] W. Wolf, A. Jerraya, and G. Martin. Multiprocessor

system-on-chip (mpsoc) technology. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on,

27(10):1701 –1713, oct. 2008.


