
This document describes the MutekH build system.

Overview of the build process
The build system take a configuration file, processes the dependancies, and compiles the desired kernel.

Depending on the targeted architecture, the output file may be an ELF (.out), a plain binary file (.bin), an intel-hex
file (.hex) or an object file (.o).

The build system takes care of dependancies, file modifications, ...

User point of view

Makefile options (command line)

When building with MutekH, several options may be used to change the behavior of the build system. These
options are given through variables when calling make, in the form:

$ make VAR1=value1 VAR2=value2

The following options are mandatory:

CONF=
An absolute path to the root configuration file for the desired kernel instance.

The following options may be useful:

VERBOSE=1
Prints all the commands executed

The following options are useful when building out of the source tree:

MUTEK_SRC_DIR
An absolute path to the MutekH source tree. This defaults to .

BUILD_DIR
An absolute path to the directory containing the objects and results, this defaults to .

CONF_DIR
An absolute path to the directory containing the .config.* files, this defaults to $(BUILD_DIR)

Make targets

The following targets are available

kernel
This is the default target. It builds the kernel for the specified configuration file.

clean
This cleans all the compilation results

The following targets are for informational purposes

showpaths

User point of view 1

This prints the modules that will be built, their paths, ?
cflags

This prints the flags used for compilation

The following targets are available to get help about configuration

listconfig
Prints the current configuration as expanded by MutekH build system. It also prints available --- but
currently undefined --- configuration tokens.

listallconfig
Prints all the configuration tokens, even the ones incompatible with the current configuration.

showconfig
This prints detailed information about a given configuration token. Token must be specified with TOKEN=
variable argument.

$ make showconfig TOKEN=CONFIG_PTHREAD

MutekH configuration files

MutekH configuration files contain tokens defining the kernel we are currently building. They must contain:

the license for the application, enforcing license compatibility between some kernel parts and your code,•
the target architecture•
the libraries used, and their configurations•
the used drivers•
some global compilation switches (optimization, debugging, ?)•

Syntax is token space value. Tokens begin with CONFIG_, value may be unspecified thus defaults to
defined. e.g.

CONFIG_LICENSE_APP_LGPL

Platform type
CONFIG_ARCH_EMU

Processor type
CONFIG_CPU_X86_EMU

Mutek features
CONFIG_PTHREAD

CONFIG_MUTEK_CONSOLE

Device drivers
CONFIG_DRIVER_CHAR_EMUTTY

Code compilation options
CONFIG_COMPILE_DEBUG

A configuration file may declare a new module, telling the build system the directory where the configuration lies
has a local Makefile and some more objects to build.

New source code module to be compiled
CONFIG_MODULES hello:%CONFIGPATH

For the list of all available tokens, do

Make targets 2

$ make listallconfig

For a list of current available tokens depending on your configuration file, do

$ make CONF=path/to/config_file listconfig

Developer point of view
MutekH has a component-based architecture where each module declares its configuration tokens.

The xxx.config files

For each configuration token, one may use the following tags:

desc Description string without quotes
Short description about the token

default value
Set the token default value. defined and undefined values act as booleans.

depend TOKEN [?]
Dependencies, having at least one of the tokens on the line is required, if unsatisfied the current token gets
undefined and a warning is emitted. May be used to disable features because of missing prerequisites.

parent TOKEN
Hierarchical dependency, it ensures all token with a parent gets silently undefined if the parent is
undefined. This prevents options enabled by default to stay enabled if the parent is disabled; this way it
avoids errors due to unneeded requirements. This is also used to hide unrelevant tokens from the help
screen if the parent token is undefined.

require TOKEN [?]
Mandatory requirements, having at least one of the tokens on the line is mandatory, conflict yields error.
May be usd to enforce definition of some mandatory configuration values.

provide TOKEN [?]
Defining the current token enforce definition of the specified token.

provide TOKEN=value
Defining the current token enforce definition of the specified token with the given value.

provide TOKEN=+value
Defining the current token enforce definition of the specified token and concat the given value.

exclude TOKEN
Mandatory excluded tokens, the specified token must not be defined

suggest TOKEN [?]
Makes a token suggest other tokens when it is defined. This is for help listing.

single TOKEN [?]
Only one of the following tokens may be defined at the same time

fallback TOKEN
The fallback token will be enabled if the current one may not be enabled

The configuration tool may use multiple pass to find a valid configuration when tokens are disabled or enforced by
given rules.

Example:

%config CONFIG_SRL
desc MutekS API
provide CONFIG_MODULES=+libsrl:%CONFIGPATH
depend CONFIG_MUTEK_SCHEDULER
depend CONFIG_MWMR

Developer point of view 3

require CONFIG_SRL_SOCLIB CONFIG_SRL_STD
single CONFIG_SRL_SOCLIB CONFIG_SRL_STD
default undefined
%config end

Here we declare a CONFIG_SRL token

needing CONFIG_MUTEK_SCHEDULER and CONFIG_MWMR,•
needing one of CONFIG_SRL_SOCLIB or CONFIG_SRL_STD,•
adding the directory containing the .conf as the "libsrl" module•

The directories Makefile syntax & rules

Makefiles in directories may use the following variables:

objs
A list of .o files compiled from .c, .s or .S files

meta
A list of files that may be translated from .m4, .cpp or .def files

copy
A list of files that must be copied verbatim from source directory to object directory

subdirs
A list of subdirectories where more files are to be processed. These directories must exist and contain a
Makefile.

Makefiles may contain optional flags that may be used for compilation:

file.o_CFLAGS=?
CFLAGS to use for a given object

DIR_CFLAGS=?
CFLAGS to use for all the objects compiled by the current Makefile. Flags added by this setting add-up
with the object-specific ones above.

Moreover, one may use ifeq (?,?) make constructs to conditionally compile different things. Configuration
tokens are usable.

Example:

objs = main.o

ifeq ($(CONFIG_SRL_SOCLIB),defined)
objs += barrier.o sched_wait.o srl_log.o hw_init.o
else
objs += posix_wait_cycles.o
endif

main.o_CFLAGS = -O0 -ggdb

The arch & cpu specific parts

Architecture and CPU directories have some special files which are injected in the building process:

config.mk, included by make. It can define some compilation flags•
ldscript, invoked at link-time.

Architecture ldscript must create a loadable binary♦
•

The xxx.config files 4

CPU ldscript usually only specifies the entry point name♦

config.mk

The arch config.mk may override the following variables:

ARCHCFLAGS
C-compiler flags

ARCHLDFLAGS
Linker flags

LD_NO_Q
Linker for the current architecture does not support -q switch, this slightly changes the linking process.

HOSTCPPFLAGS
Flags to give to host's cpp (HOSTCPP) program. This is only used for expansion of .def files.

The cpu config.mk may override the following variables:

CPUCFLAGS
C-compiler flags

CPULDFLAGS
Linker flags

ldscript

Try info ld for a guide through ldscripts?

This ldscript is taken from architecture's object directory, thus it may be obtained from either:

copy•
m4 processing•
cpp processing•

See arch/emu/ldscript, arch/soclib/ldscript.m4, and arch/simple/ldscript.cpp for the three flavors !

Notes

Prerequisites

The MutekH build-system is based on GNU Make features. It makes intensive use of:

includes•
$(foreach) $(subst) $(eval) $(call) macros•
macro definitions•

Therefore, a Make-3.81 at least is mandatory.

Notes 5

