
Building examples applications
MutekH comes with some examples applications available in trunk/mutekh/examples. This page briefly explains
how to build these examples.

Required tools

Building MutekH requires the following software packages:

A GNU compiler or cross-compiler. You can use the trunk/mutekh/tools/crossgen.mk script to compile and
install a tool chain easily.

•

GNU make and a perl interpreter available in most GNU/Linux and BSD operating system.•

Some builds may require the following additional tools

The flattened device tree compiler (dtc): ?http://git.jdl.com/gitweb/•
The heterogeneous linker found in trunk/mutekh/tools/hlink•

You may need real hardware or a simulator to run MutekH:

?Qemu to run native x86 binaries•
?SoCLib to experiment with various multiprocessor platforms (see ?soclib:InstallationNotes)•

You may need extra tools to deals with kernel images for some targets:

GNU mtools or mkisofs to create a x86 bootable disk images.•
GNU grub or etherboot to boot compiled kernel images.•

The trunk/mutekh/tools/x86_cdrom.sh and trunk/mutekh/tools/x86_floppy.sh scripts are available to easily create
boot disk images.

Building cross-compilers

MutekH comes with a tool to build a complete cross-compilation toolchain:

The script is tools/crossgen.mk.

There is an inline help:

 $ tools/crossgen.mk
[prints some help]

You can try a line like this one to get a Mips cross-compiler installed under ~/gnu:

 $ tools/crossgen.mk all TARGET=mipsel-unknown-elf PREFIX=$HOME/gnu

Building examples

Each example comes with its own config file which is used to configure the MutekH kernel build. This file contains
application specific configuration to enable kernel features.

Building examples applications 1

http://git.jdl.com/gitweb/
http://www.qemu.org/
https://www.soclib.fr/
http://www.soclib.fr/trac/dev/intertrac/InstallationNotes

Some other configuration options are related to target architecture. Some ready to use configuration sets for specific
targets are factored in the trunk/mutekh/examples/common directory. These configuration files are organized in
sections that can be enabled from the build command line. Look at the chosen example config file to determine if it
contains custom standalone configuration or if it relies on common configuration sets by including files from
trunk/mutekh/examples/common.

Please refer to the BuildSystem page for in depth description of the build system.

Some working examples are listed in trunk/mutekh/examples/README file.

You are encouraged to read platform specific tutorials and subscribe to the ?mutekh-users mailing list to get help or
report issues.

Using standalone and specific configuration file

Here is a make invocation for the hello example using a custom and standalone config file which targets x86 Linux
process (see QuickStartUnix):

$ make CONF=examples/hello/config_emu

Relying on common configuration files

Here are make invocations for various target architectures to build examples which are using common
configuration files:

As unix process (see QuickStartUnix), on x86_64 machine running Linux:

$ make CONF=examples/hello/config BUILD=emu-linux-x86_64

•

Pc, x86 machine boot image

$ make CONF=examples/hello/config BUILD=ibmpc-x86

•

For SoCLib simulator (see MutekH/SoCLib tutorial), Mips32 Little endian, for
caba-vgmn-mutekh_soclib_tutorial or caba-vgmn-mutekh_kernel_tutorial platforms:

$ make CONF=examples/hello/config BUILD=soclib-mips32el:pf-tutorial

•

Heterogeneous builds for SoCLib simulator, Mips32 and Arm processors for
caba-vgmn-mutekh_kernel_tutorial platform:

$ make kernel-het CONF=examples/hello_het/config BUILD=pf-het EACH=soclib-mips32el:soclib-arm

•

Building examples 2

https://www.mutekh.org/wws/subscribe/mutekh-users

