2.0 MEMORY ORGANIZATION

There are three memory blocks in each of the PIC16F87X MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The EEPROM data memory block is detailed in Section 4.0.

Additional information on device memory may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023).

FIGURE 2-1:	PIC16F877/876 PROGRAM
	MEMORY MAP AND
	STACK

2.1 Program Memory Organization

The PIC16F87X devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16F877/876 devices have 8K x 14 words of FLASH program memory, and the PIC16F873/874 devices have 4K x 14. Accessing a location above the physically implemented address will cause a wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

PIC16F87X

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	EEPROM Data Memory description can be
	found in Section 4.0 of this data sheet.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register (FSR).

FIGURE 2-3: PIC16F877/876 REGISTER FILE MAP

	File Address	,	File Address		File Address		File Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dł
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General	117h	General	197h
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah	,	11Ah	,	19Ał
CCPR2L	1Bh		9Bh		11Bh		19Bł
CCPR2H	1Ch		9Ch		11Ch		19Cł
CCP2CON	1Dh		9Dh		11Dh		19Dł
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eł
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0ł
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EEb	General Purpose Register 80 Bytes	1655	General Purpose Register 80 Bytes	1EFt
	7Eb	accesses 70h-7Fh	F0h	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1F0h
Bank 0		Bank 1		Bank 2		Bank 3	

Unimplemented data memory locations, read as '0'.

* Not a physical register.

Note 1: These registers are not implemented on the PIC16F876. 2: These registers are reserved, maintain these registers clear.

PIC16F87X

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1.

The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address dat	a memory (no	t a physical i	register)	0000 0000	27
01h	TMR0	Timer0 Mo	dule Registe	er						хххх хххх	47
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
04h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					хххх хххх	27
05h	PORTA	—	-	PORTA Da	ta Latch whe	n written: PO	RTA pins whe	n read		0x 0000	29
06h	PORTB	PORTB Da	ata Latch wh	en written: P	ORTB pins w	/hen read				хххх хххх	31
07h	PORTC	PORTC D	ata Latch wh	en written: P	ORTC pins v	vhen read				хххх хххх	33
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	en written: P	ORTD pins v	vhen read				хххх хххх	35
09h ⁽⁴⁾	PORTE	—		—	—	—	RE2	RE1	RE0	xxx	36
0Ah ^(1,3)	PCLATH	-	_	_	Write Buffer	for the uppe	r 5 bits of the I	Program Cou	unter	0 0000	26
0Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	20
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	22
0Dh	PIR2	_	(5)	_	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	24
0Eh	TMR1L	Holding re	gister for the	Least Signif	ficant Byte of	the 16-bit TN	IR1 Register			хххх хххх	52
0Fh	TMR1H	Holding re	gister for the	Most Signifi	cant Byte of	the 16-bit TM	R1 Register			хххх хххх	52
10h	T1CON	_	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	51
11h	TMR2	Timer2 Mo	dule Registe	er						0000 0000	55
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	55
13h	SSPBUF	Synchrono	us Serial Po	rt Receive B	uffer/Transm	it Register				хххх хххх	70, 73
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67
15h	CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					хххх хххх	57
16h	CCPR1H	Capture/C	ompare/PWI	A Register1	(MSB)					хххх хххх	57
17h	CCP1CON	-	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	58
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	99
1Ah	RCREG	USART Re	eceive Data I	Register						0000 0000	101
1Bh	CCPR2L	Capture/C	ompare/PWI	A Register2	(LSB)					xxxx xxxx	57
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					XXXX XXXX	57
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	58
1Eh	ADRESH	A/D Result	t Register Hi	gh Byte						xxxx xxxx	116
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	111

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Not 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 Sits PSPIE and PSPIF are reserved on PIC16P873/876 devices; always maintain these bits clear.

These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear

PIC16F87X

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 2-1:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 1											
80h ⁽³⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address dat	a memory (no	t a physical i	register)	0000 0000	27
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	19
82h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
84h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					XXXX XXXX	27
85h	TRISA	_	_	PORTA Da	ta Direction F	Register				11 1111	29
86h	TRISB	PORTB D	ata Direction	Register						1111 1111	31
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	33
88h ⁽⁴⁾	TRISD	PORTD D	ata Direction	Register						1111 1111	35
89h ⁽⁴⁾	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Data	a Direction B	its	0000 -111	37
8Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the I	Program Cou	unter	0 0000	26
8Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	20
8Ch	PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	21
8Dh	PIE2	-	(5)	_	EEIE	BCLIE	-	-	CCP2IE	-r-0 00	23
8Eh	PCON	_	_	_	_	_	_	POR	BOR	qq	25
8Fh	_	Unimplem	ented		•					_	_
90h	-	Unimplem	ented							_	-
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	68
92h	PR2	Timer2 Pe	riod Register	r						1111 1111	55
93h	SSPADD	Synchrono	ous Serial Po	rt (I ² C mode	e) Address Re	egister				0000 0000	73, 74
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	66
95h	_	Unimplem	ented							_	_
96h	—	Unimplem	ented							_	—
97h	—	Unimplem	ented							_	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	95
99h	SPBRG	Baud Rate	e Generator F	Register						0000 0000	97
9Ah	—	Unimplem	ented							-	—
9Bh	—	Unimplem	ented							-	-
9Ch	—	Unimplem	ented							-	—
9Dh	—	Unimplem	ented							_	_
9Eh	ADRESL	A/D Resul	t Register Lo	w Byte						xxxx xxxx	116
9Fh	ADCON1	ADEM	_	_	_	PCEG3	PCEG2	PCEG1	PCEG0	0 0000	112

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose

The upper type of the program counter is not unequy accessible. PCLATHS a holding register for the PCR12.c contents are transferred to the upper byte of the program counter.
 Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.
 These registers can be addressed from any bank.
 PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.
 PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 2											
100h ⁽³⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address dat	a memory (no	t a physical r	egister)	0000 0000	27
101h	TMR0	Timer0 Mo	dule Registe	er						хххх хххх	47
102h ⁽³⁾	PCL	Program C	counter's (PC	C) Least Sign	nificant Byte					0000 0000	26
103h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
104h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter	•	•	•		XXXX XXXX	27
105h	_	Unimplem	ented							_	—
106h	PORTB	PORTB Da	ata Latch wh	en written: P	ORTB pins w	/hen read				хххх хххх	31
107h	—	Unimplem	ented							—	—
108h	_	Unimplem	ented							_	—
109h	—	Unimplem	ented							_	—
10Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the l	Program Cou	unter	0 0000	26
10Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	x000 000x	20
10Ch	EEDATA	EEPROM	Data Registe	er Low Byte						хххх хххх	41
10Dh	EEADR	EEPROM	Address Reg	gister Low By	yte					хххх хххх	41
10Eh	EEDATH	_	_	EEPROM D	Data Register	High Byte				хххх хххх	41
10Fh	EEADRH	_	_	_	EEPROM A	ddress Regis	ster High Byte			XXXX XXXX	41
Bank 3											
180h ⁽³⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address dat	a memory (no	t a physical r	egister)	0000 0000	27
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	19
182h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signi	ficant Byte	•	•	•		0000 0000	26
183h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
184h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					хххх хххх	27
185h	—	Unimplem	ented							—	—
186h	TRISB	PORTB Da	ata Direction	Register						1111 1111	31
187h	—	Unimplem	ented							-	—
188h	_	Unimplem	ented							_	_
189h	_	Unimplem	ented							_	—
18Ah ^(1,3)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the l	Program Cou	unter	0 0000	26
18Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	20
18Ch	EECON1	EEPGD	-	_	_	WRERR	WREN	WR	RD	x x000	41, 42
18Dh	EECON2	EEPROM	Control Regi	ster2 (not a	physical regis	ster)					41
18Eh	—	Reserved	maintain clea	ar						0000 0000	
18Fh	_	Reserved	maintain clea	ar						0000 0000	_

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Legend: Shaded locations are unimplemented, read as '0'.

The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose Note 1:

contents are transferred to the upper byte of the program counter.
2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

Dist for L glato for in addressed for the for to do do to be overloss, always maintain trees or to clear.
 These registers can be addressed form any bank.
 PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.
 PIR26-s and PIE26-s are reserved on these devices; always maintain these bits clear.

PIC16F87X

bit

bit

bit

bit

bit

bit

bit

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
,	IRP: Regis	ster Bank Se	lect bit (use	ed for indired	t addressing)			
	1 = Bank 2 0 = Bank (2, 3 (100h - 1), 1 (00h - Ff	IFFh) Fh)					
6-5	RP1:RP0:	Register Ba	nk Select b	its (used for	direct addressi	ing)		
	11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	3 (180h - 1F 2 (100h - 17 1 (80h - FF 0 (00h - 7Ff s is 128 bytes	=Fh) 7Fh) h) า) ร					
Ļ	TO: Time-	out bit						
	1 = After p 0 = A WD	ower-up, CL F time-out oc	RWDT instru	uction, or SL	EEP instruction			
3	PD: Power	r-down bit						
	1 = After p 0 = By exe	ower-up or t ocution of the	by the CLRW SLEEP ins	IDT instruction	on			
2	Z: Zero bit							
	1 = The re 0 = The re	sult of an ari sult of an ari	ithmetic or I ithmetic or I	logic operati logic operati	on is zero on is not zero			
	DC: Digit of (for borrow	arry/borrow	bit (ADDWF, / is reverse	ADDLW, SUI d)	BLW, SUBWF ins	tructions)		
	1 = A carry 0 = No car	/-out from th ry-out from t	e 4th Iow o he 4th Iow	rder bit of th order bit of t	e result occurre he result	ed		
)	C: Carry/b	orrow bit (AI	DWF, ADDL	W,SUBLW,S	UBWF instruction	ons)		
	1 = A carry 0 = No car	/-out from th ry-out from t	e Most Sigr he Most Sig	nificant bit of gnificant bit	f the result occu of the result occ	urred curred		
	Note:	For borrow, complemer loaded with	the polarity of the sec either the l	y is reversed cond operan high, or low	d. A subtraction d. For rotate (R order bit of the	n is execute RF, RLF) source regi	ed by adding instructions ister.	g the two's s, this bit is

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.2 OPTION_REG Register

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
hit 7							bit 0

oit 7	RBPU: PORTB Pull-up	Enable bit		
	1 = PORTB pull-ups ar	e disabled		
	0 = PORTB pull-ups ar	e enabled by individual	port latch values	
oit 6	INTEDG: Interrupt Edg	e Select bit		
	1 = Interrupt on rising e	edge of RB0/INT pin		
bit 5	TOCS: TMR0 Clock So	urce Select bit		
	1 = Transition on RA4/	TOCKI pin		
	0 = Internal instruction	cycle clock (CLKOUT)		
oit 4	TOSE: TMR0 Source E	dge Select bit		
	1 = Increment on high- 0 = Increment on low-to	to-low transition on RA4 p-high transition on RA4	/T0CKI pin /T0CKI pin	
oit 3	PSA: Prescaler Assign	ment bit		
	1 = Prescaler is assign	ed to the WDT		
	0 = Prescaler is assign	ed to the Timer0 module	9	
oit 2-0	PS2:PS0: Prescaler Ra	ate Select bits		
	Bit Value TMR0 Rate	WDT Rate		
	000 1:2	1:1		
	001 1:4	1:2		
	011 1:16	1:8		
	100 1:32	1:16		
	1:64	1:32		
	111 1:256	1 : 128		
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
				,

Note: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device

PIC16F87X

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF				
	bit 7							bit 0				
bit 7	GIE: Globa	al Interrupt E	nable bit									
	1 = Enable	s all unmas	ked interrup	ots								
hit C	0 – Disables all Interrupts PEIE : Perinheral Interrupt Enable hit											
DILO	1 – Enables all unmasked peripheral interrupts											
	0 = Disables all peripheral interrupts											
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit								
	1 = Enable	s the TMR0	interrupt									
	0 = Disable	es the TMR) interrupt									
bit 4	INTE: RB0	/INT Externa	al Interrupt	Enable bit								
	1 = Enable	s the RB0/II	NT external	interrupt								
	0 = Disable	es the RB0/I	NI externa	Interrupt								
bit 3	RBIE: RB I	Port Change	e Interrupt E	nable bit								
	\perp = Enables the RB port change interrupt 0 = Disables the RB port change interrupt											
bit 2	TOIF: TMR	0 Overflow	Interrupt Fla	a bit								
	1 = TMR0 register has overflowed (must be cleared in software)											
	0 = TMR0	register did	not overflow	v								
bit 1	INTF: RB0/	/INT Externa	al Interrupt	Flag bit								
	1 = The RE	B0/INT exter	nal interrup	t occurred (n	nust be cleared	d in softwar	e)					
	0 = The RE	30/INT exter	nal interrup	t did not occ	ur							
bit 0	RBIF: RB F	Port Change	Interrupt F	lag bit								
	1 = At leas	t one of the Reading P(ہ RB7:RB4 p NRTB will ہ	ins changed	state; a misma	atch conditions and allow the	on will conti	nue to set				
	(must b	be cleared in	software).					cleared				
	0 = None o	of the RB7:R	B4 pins ha	ve changed s	state							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for	Note:	Bit PEIE (INTCON<6>) must be set to
the peripheral interrupts.		enable any peripheral interrupt.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
oit 7	PSPIE ⁽¹⁾ : P	Parallel Slav	e Port Read	/Write Inter	rupt Enable bit			
	1 = Enable	s the PSP r	ead/write in	terrupt				
	0 = Disable	s the PSP i	read/write in	iterrupt				
Dit 6	ADIE: A/D	Converter II	nterrupt Ena	able bit				
	1 = Enables 0 = Disable	s the A/D co s the A/D c	onverter inte	errupt				
oit 5	RCIE: USA	RT Receive	Interrupt E	nable bit				
	1 = Enable	s the USAR	T receive in	terrupt				
	0 = Disable	s the USAF	RT receive in	nterrupt				
oit 4	TXIE: USA	RT Transmi	t Interrupt E	nable bit				
	1 = Enable	s the USAR	T transmit i	nterrupt				
	0 = Disable	s the USAF	RT transmit	interrupt				
oit 3	SSPIE: Syr	nchronous S	Serial Port Ir	nterrupt Ena	ible bit			
	1 = Enables	s the SSP ii	nterrupt					
nit 2		CP1 Interru	nt Enable b	it				
511 2	1 = Enable:	s the CCP1	interrupt	it.				
	0 = Disable	s the CCP1	interrupt					
oit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	rrupt Enabl	e bit			
	1 = Enable	s the TMR2	to PR2 ma	tch interrupt	İ			
	0 = Disable	es the TMR2	2 to PR2 ma	tch interrup	t			
oit 0	TMR1IE: T	MR1 Overfl	ow Interrupt	Enable bit				
	1 = Enable	s the TMR1	overflow in	terrupt				
	0 = Disable		overflow if	nerrupt				
	Note 1: P	SPIE is res	erved on PI	C16F873/8	76 devices: alw	avs mainta	in this bit cl	ear.
						.,		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16F87X

2.2.2.5 PIR1 Register Interrupt flag bits are set when an interrupt Note: condition occurs, regardless of the state of The PIR1 register contains the individual flag bits for the peripheral interrupts. its corresponding enable bit or the global enable bit. GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt. REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch) R/W-0 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 PSPIF⁽¹⁾ ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF bit 7 bit 0 PSPIF⁽¹⁾: Parallel Slave Port Read/Write Interrupt Flag bit bit 7 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred ADIF: A/D Converter Interrupt Flag bit bit 6 1 = An A/D conversion completed 0 = The A/D conversion is not complete bit 5 RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empty bit 4 TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full bit 3 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI A transmission/reception has taken place. I²C Slave - A transmission/reception has taken place. I²C Master - A transmission/reception has taken place. - The initiated START condition was completed by the SSP module. - The initiated STOP condition was completed by the SSP module. - The initiated Restart condition was completed by the SSP module. - The initiated Acknowledge condition was completed by the SSP module. A START condition occurred while the SSP module was idle (Multi-Master system). - A STOP condition occurred while the SSP module was idle (Multi-Master system). 0 = No SSP interrupt condition has occurred. bit 2 CCP1IF: CCP1 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred TMR1IF: TMR1 Overflow Interrupt Flag bit bit 0 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow Note 1: PSPIF is reserved on PIC16F873/876 devices; always maintain this bit clear.

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt, the SSP bus collision interrupt, and the EEPROM write operation interrupt.

REGISTER 2-6: PIE2 REGISTER (ADDRESS 8Dh)

U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
—	Reserved	—	EEIE	BCLIE	—	—	CCP2IE
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6 Reserved: Always maintain this bit clear
- bit 5 Unimplemented: Read as '0'
- bit 4 EEIE: EEPROM Write Operation Interrupt Enable
 - 1 = Enable EE Write Interrupt
 - 0 = Disable EE Write Interrupt
- bit 3 BCLIE: Bus Collision Interrupt Enable
 - 1 = Enable Bus Collision Interrupt
 - 0 = Disable Bus Collision Interrupt
- bit 2-1 Unimplemented: Read as '0'
- bit 0 CCP2IE: CCP2 Interrupt Enable bit
 - 1 = Enables the CCP2 interrupt
 - 0 = Disables the CCP2 interrupt

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bits for the CCP2 interrupt, the SSP bus collision interrupt and the EEPROM write operation interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2 REGISTER (ADDRESS 0Dh)

U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
—	Reserved		EEIF	BCLIF	—	—	CCP2IF
bit 7							bit 0

bit 7	Unimplemented: Read as '0'
bit 6	Reserved: Always maintain this bit clear

bit 5 Unimplemented: Read as '0'

- bit 4 EEIF: EEPROM Write Operation Interrupt Flag bit
 - 1 = The write operation completed (must be cleared in software)
 - 0 = The write operation is not complete or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit

 ${\tt 1}={\sf A}$ bus collision has occurred in the SSP, when configured for I2C Master mode

- 0 = No bus collision has occurred
- bit 2-1 Unimplemented: Read as '0'

bit 0 CCP2IF: CCP2 Interrupt Flag bit

Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in software)
- 0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred (must be cleared in software)

- 0 = No TMR1 register compare match occurred
- PWM mode:

Unused

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	—	—	—	—	—	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

- bit 1 **POR**: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 BOR: Brown-out Reset Status bit
 - 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16F87X

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (ANS56).

2.3.2 STACK

The PIC16F87X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interruot address.

2.4 Program Memory Paging

All PIC16F87X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH-4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH-4:3> bits is not required for the return instructions (which POPs the address from the stack).

Note: The contents of the PCLATH register are unchanged after a RETURN or RETFIE instruction is executed. The user must rewrite the contents of the PCLATH register for any subsequent subroutine calls or GOTO instructions.

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

JB1_P1	ORG 0x500 BCF PCLATH,4 BSF PCLATH,3	;Select page 1 .(800b-FFFb)
	CALL SUB1_P1 : :	;Call subroutine in ;page 1 (800h-FFFh)
	ORG 0x900	;page 1 (800h-FFFh)
	:	;called subroutine ;page 1 (800h-FFFh)
	RETURN	;return to ;Call subroutine ;in page 0 ;(000h-7FFh)

SI

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-6. A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPL	E 2-2:	IND	IRECT ADDRESSING
	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			
	:		;yes continue

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

DS30292C-page 26