/////////////////////////////////////////////////////////////////////////////// // File: top.cpp // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : august 2013 // This program is released under the GNU public license // // Modified by: Cesar Fuguet // Modified on: mars 2014 /////////////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture with an IO network emulating // an external bus (i.e. Hypertransport) to access external peripherals: // // - BROM : boot ROM // - FBUF : Frame Buffer // - MTTY : multi TTY (up to 15 channels) // - MNIC : Network controller (up to 2 channels) // - CDMA : Chained Buffer DMA controller (up to 4 channels) // - BDEV : Dlock Device controler (1 channel) // // The internal physical address space is 40 bits. // // It contains a 2D mesh of XMAX*YMAX clusters, and the cluster index // is encoded on 8 bits (X_WIDTH = 4 / Y_WIDTH = 4) whatever the mesh size. // // It contains 3 networks: // // 1) the INT network supports Read/Write transactions // between processors and L2 caches or peripherals. // (VCI ADDDRESS = 40 bits / VCI DATA width = 32 bits) // It supports also coherence transactions between L1 & L2 caches. // 3) the RAM network is emulating the 3D network between L2 caches // and L3 caches, and is implemented as a 2D mesh between the L2 caches, // the two IO bridges and the physical RAMs disributed in all clusters. // (VCI ADDRESS = 40 bits / VCI DATA = 64 bits) // 4) the IOX network connects the two IO bridge components to the // 6 external peripheral controllers. // (VCI ADDDRESS = 40 bits / VCI DATA width = 64 bits) // // The external peripherals IRQs are connected to the XPIC component // in IOX interconnect. // // All clusters are identical, but cluster(0,0) and cluster(XMAX-1,YMAX-1) // contain an extra IO bridge component. These IOB0 & IOB1 components are // connected to the three networks (INT, RAM, IOX). // The number of clusters cannot be larger than 256. // The number of processors per cluster cannot be larger than 4. // // - It uses two dspin_local_crossbar per cluster to implement the // local interconnect correponding to the INT network. // - It uses three dspin_local_crossbar per cluster to implement the // local interconnect correponding to the coherence INT network. // - It uses two virtual_dspin_router per cluster to implement // the INT network (routing both the direct and coherence trafic). // - It uses two dspin_router per cluster to implement the RAM network. // - It uses the vci_cc_vcache_wrapper. // - It uses the vci_mem_cache. // - It contains one vci_xicu and one vci_multi_dma per cluster. // - It contains one vci_simple ram per cluster to model the L3 cache. // - It contains one vci_simple_rom per cluster which can be used for a // distributed boot. // - It contains one vci_multi_tty per cluster for debug purposes (number // of channels can be 0). This TTY is mostly useful when using distributed // boot. // // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (x_width + y_width) MSB bits define the cluster index, and the // LADR bits define the local index: // | X_ID | Y_ID |---| LADR | OFFSET | // |x_width|y_width|---| 8 | 24 | // // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // | X_ID | Y_ID |---| L_ID | // |x_width|y_width|---| 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_iob_cluster.h" #include "vci_chbuf_dma.h" #include "vci_multi_tty.h" #include "vci_multi_nic.h" #include "vci_block_device_tsar.h" #include "vci_framebuffer.h" #include "vci_iopic.h" #include "vci_iox_network.h" #include "alloc_elems.h" #include "hard_config.h" //////////////////////////////////////////////////////////////////////// // Parallelization //////////////////////////////////////////////////////////////////////// #define USE_OPENMP 0 #if USE_OPENMP #include #endif //////////////////////////////////////////////////////////////////////// // DSPIN parameters //////////////////////////////////////////////////////////////////////// #define dspin_int_cmd_width 39 #define dspin_int_rsp_width 32 #define dspin_ram_cmd_width 64 #define dspin_ram_rsp_width 64 //////////////////////////////////////////////////////////////////////// // VCI fields width for the 3 VCI networks //////////////////////////////////////////////////////////////////////// #define vci_cell_width_int 4 #define vci_cell_width_ext 8 #define vci_plen_width 8 #define vci_address_width 40 #define vci_rerror_width 1 #define vci_clen_width 1 #define vci_rflag_width 1 #define vci_srcid_width 14 #define vci_pktid_width 4 #define vci_trdid_width 4 #define vci_wrplen_width 1 //////////////////////////////////////////////////////////////////////// // Secondary Hardware Parameters values //////////////////////////////////////////////////////////////////////// #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define FBUF_X_SIZE 128 #define FBUF_Y_SIZE 128 #define BDEV_SECTOR_SIZE 512 #define BDEV_IMAGE_NAME "/dev/null" #define NIC_RX_NAME "/dev/null" #define NIC_TX_NAME "/dev/null" #define NIC_TIMEOUT 10000 #define cluster(x,y) TsarIobClusterType::clusterId((x),(y)) //////////////////////////////////////////////////////////////////////// // Software to be loaded in ROM & RAM //////////////////////////////////////////////////////////////////////// #define BOOT_SOFT_NAME "/dev/null" //////////////////////////////////////////////////////////////////////// // DEBUG Parameters default values //////////////////////////////////////////////////////////////////////// #define MAX_FROZEN_CYCLES 10000 //////////////////////////////////////////////////////////////////////// // SRCID definition //////////////////////////////////////////////////////////////////////// // All initiators are in the same indexing space (14 bits). // The SRCID is structured in two fields: // - The 10 MSB bits define the cluster index // - The 4 LSB bits define the local index. // Two different initiators cannot have the same SRCID, but a given // initiator can have two alias SRCIDs: // - Internal initiators (procs, mdma) are replicated in all clusters, // and each initiator has one single SRCID. // - External initiators (bdev, cdma) are not replicated, but can be // accessed in 2 clusters : cluster_iob0 and cluster_iob1. // They have the same local index, but two different cluster indexes. // As cluster_iob0 and cluster_iob1 contain both internal initiators // and external initiators, they must have different local indexes. // Consequence: For a local interconnect, the INI_ID port index // is NOT equal to the SRCID local index, and the local interconnect // must make a translation: SRCID => INI_ID (port index) //////////////////////////////////////////////////////////////////////// #define PROC_LOCAL_SRCID 0x0 // from 0 to 7 #define MDMA_LOCAL_SRCID 0x8 #define IOBX_LOCAL_SRCID 0x9 #define CDMA_LOCAL_SRCID 0xA #define BDEV_LOCAL_SRCID 0xB #define XPIC_LOCAL_SRCID 0xC /////////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for IOX local interconnect /////////////////////////////////////////////////////////////////////// #define IOX_FBUF_TGT_ID 0 #define IOX_BDEV_TGT_ID 1 #define IOX_MNIC_TGT_ID 2 #define IOX_CDMA_TGT_ID 3 #define IOX_MTTY_TGT_ID 4 #define IOX_XPIC_TGT_ID 5 #define IOX_IOB0_TGT_ID 6 #define IOX_IOB1_TGT_ID 7 #define IOX_BDEV_INI_ID 0 #define IOX_CDMA_INI_ID 1 #define IOX_XPIC_INI_ID 2 #define IOX_IOB0_INI_ID 3 #define IOX_IOB1_INI_ID 4 //////////////////////////////////////////////////////////////////////// int _main(int argc, char *argv[]) { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; char soft_name[256] = BOOT_SOFT_NAME; // path: binary code uint64_t ncycles = 1000000000; // simulated cycles char disk_name[256] = BDEV_IMAGE_NAME; // path: disk image char nic_rx_name[256] = NIC_RX_NAME; // path: rx packets file char nic_tx_name[256] = NIC_TX_NAME; // path: tx packets file ssize_t threads_nr = 1; // simulator's threads bool debug_ok = false; size_t debug_period = 1; // trace period size_t debug_memc_id = 0xFFFFFFFF; // idx of traced memc size_t debug_proc_id = 0xFFFFFFFF; // idx of traced proc bool debug_iob = false; // trace iobs when true uint32_t debug_from = 0; // trace start cycle uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen procs bool distboot = false; // distributed boot const size_t block_size = BDEV_SECTOR_SIZE; // disk block size const size_t x_size = X_SIZE; const size_t y_size = Y_SIZE; assert((X_WIDTH == 4) and (Y_WIDTH == 4)); ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n],"-NCYCLES") == 0) && ((n+1) < argc)) { ncycles = strtoll(argv[n+1], NULL, 0); continue; } if ((strcmp(argv[n],"-SOFT") == 0) && ((n+1) < argc) ) { strcpy(soft_name, argv[n+1]); continue; } if ((strcmp(argv[n],"-DISK") == 0) && ((n+1) < argc) ) { strcpy(disk_name, argv[n+1]); continue; } if ((strcmp(argv[n],"-DEBUG") == 0) && ((n+1) < argc) ) { debug_ok = true; debug_from = strtol(argv[n+1], NULL, 0); continue; } if ((strcmp(argv[n],"-MEMCID") == 0) && ((n+1) < argc) ) { debug_memc_id = strtol(argv[n+1], NULL, 0); size_t x = debug_memc_id >> Y_WIDTH; size_t y = debug_memc_id & ((1 << Y_WIDTH) - 1); assert((x < x_size) && (y < y_size)); continue; } if ((strcmp(argv[n],"-IOB") == 0) && ((n+1) < argc) ) { debug_iob = (strtol(argv[n+1], NULL, 0) != 0) ? 1 : 0; continue; } if ((strcmp(argv[n],"-PROCID") == 0) && ((n+1) < argc) ) { debug_proc_id = strtol(argv[n+1], NULL, 0); size_t cluster_xy = debug_proc_id / NB_PROCS ; size_t x = cluster_xy >> Y_WIDTH; size_t y = cluster_xy & ((1 << Y_WIDTH) - 1); assert((x < x_size) && (y < y_size)); continue; } if ((strcmp(argv[n], "-THREADS") == 0) && ((n+1) < argc)) { threads_nr = strtol(argv[n+1], NULL, 0); assert(threads_nr > 0); continue; } if ((strcmp(argv[n], "-FROZEN") == 0) && ((n+1) < argc)) { frozen_cycles = strtol(argv[n+1], NULL, 0); assert(frozen_cycles > 0); continue; } if ((strcmp(argv[n], "-PERIOD") == 0) && ((n+1) < argc)) { debug_period = strtol(argv[n+1], NULL, 0); assert(debug_period > 0); continue; } if ((strcmp(argv[n], "-DISTBOOT") == 0)) { distboot = true; continue; } std::cout << "\nArguments are (key,value) couples." << "\nThe order is not important." << "\nAccepted arguments are :\n" << "\n -NCYCLES number of simulated_cycles" << "\n -SOFT pathname for embedded soft" << "\n -DISK pathname for disk image" << "\n -DEBUG debug start cycle" << "\n -MEMCID index of memc to trace" << "\n -IOB debug IOBs if non_zero_value" << "\n -PROCID index of proc to trace" << "\n -THREADS simulator's threads number" << "\n -FROZEN max number of frozen cycles" << "\n -PERIOD number of cycles between trace" << "\n -DISTBOOT use distributed boot ROM" << "\n (processors physical address extention is" << "\n initialized with local cluster id)" << std::endl; exit(0); } } assert( (NB_TTY_CHANNELS < 16) and "The NB_TTY_CHANNELS parameter must be smaller than 16" ); assert( (NB_NIC_CHANNELS == 1) and "The NB_NIC_CHANNELS parameter must be 1" ); assert( (x_size > 0) and (y_size > 0) and "Number of clusters on X and Y must be at least 1" ); std::cout << "\n- X_SIZE = " << x_size << "\n- Y_SIZE = " << y_size << "\n- NB_PROCS = " << NB_PROCS << "\n- NB_DMA_CHANNELS = " << NB_DMA_CHANNELS << "\n- NB_TTY_CHANNELS = " << NB_TTY_CHANNELS << "\n- NB_NIC_CHANNELS = " << NB_NIC_CHANNELS << "\n- MEMC_WAYS = " << MEMC_WAYS << "\n- MEMC_SETS = " << MEMC_SETS << "\n- RAM_LATENCY = " << XRAM_LATENCY << "\n- MAX_FROZEN = " << frozen_cycles << "\n- DISTBOOT = " << distboot << std::endl; std::cout << std::endl; #if USE_OPENMP omp_set_dynamic(false); omp_set_num_threads(threads_nr); std::cerr << "Built with openmp version " << _OPENMP << std::endl; #endif // Define VciParams objects typedef soclib::caba::VciParams vci_param_int; typedef soclib::caba::VciParams vci_param_ext; // Clusters typedef TsarIobCluster TsarIobClusterType; // clusters containing IOB0 and IOB1 size_t cluster_iob0 = cluster(0, 0); size_t cluster_iob1 = cluster(x_size - 1, y_size - 1); // using mono cluster configuration (only one IO bridge) ? bool is_mono_cluster = ((x_size == 1) && (y_size == 1)); ///////////////////////////////////////////////////////////////////// // INT network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - NB_PROCS_MAX + 2 (MDMA, IOBX) local initiators per cluster // - 4 local targets (MEMC, XICU, MDMA, IOBX) per cluster ///////////////////////////////////////////////////////////////////// MappingTable maptab_int( vci_address_width, IntTab(X_WIDTH + Y_WIDTH, 16 - X_WIDTH - Y_WIDTH), IntTab(X_WIDTH + Y_WIDTH, vci_param_int::S - X_WIDTH - Y_WIDTH), 0x00FF000000); for (size_t x = 0; x < x_size; x++) { for (size_t y = 0; y < y_size; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width - X_WIDTH - Y_WIDTH); const bool config = true; const bool cacheable = true; // the five following segments are defined in all clusters std::ostringstream smemc_conf; smemc_conf << "int_seg_memc_conf_" << x << "_" << y; maptab_int.add(Segment(smemc_conf.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y),INT_MEMC_TGT_ID), not cacheable, config )); std::ostringstream smemc_xram; smemc_xram << "int_seg_memc_xram_" << x << "_" << y; maptab_int.add(Segment(smemc_xram.str(), XRAM_BASE+offset, XRAM_SIZE, IntTab(cluster(x,y),INT_MEMC_TGT_ID), cacheable)); std::ostringstream sxicu; sxicu << "int_seg_xicu_" << x << "_" << y; maptab_int.add(Segment(sxicu.str(), XICU_BASE+offset, XICU_SIZE, IntTab(cluster(x,y),INT_XICU_TGT_ID), not cacheable)); std::ostringstream sbrom; sbrom << "int_seg_brom_" << x << "_" << y; maptab_int.add(Segment(sbrom.str(), BROM_BASE+offset, BROM_SIZE, IntTab(cluster(x,y),INT_BROM_TGT_ID), cacheable)); std::ostringstream smtty; smtty << "int_seg_mtty_" << x << "_" << y; maptab_int.add(Segment(smtty.str(), MTTY_BASE+offset, MTTY_SIZE, IntTab(cluster(x,y),INT_MTTY_TGT_ID), not cacheable)); std::ostringstream smdma; smdma << "int_seg_mdma_" << x << "_" << y; maptab_int.add(Segment(smdma.str(), MDMA_BASE+offset, MDMA_SIZE, IntTab(cluster(x,y),INT_MDMA_TGT_ID), not cacheable)); // the following segments are only defined in cluster_iob0 or in // cluster_iob1 if ((cluster(x,y) == cluster_iob0) || (cluster(x,y) == cluster_iob1)) { std::ostringstream siobx; siobx << "int_seg_iobx_" << x << "_" << y; maptab_int.add(Segment(siobx.str(), IOBX_BASE+offset, IOBX_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable, config )); std::ostringstream stty; stty << "int_seg_mtty_" << x << "_" << y; maptab_int.add(Segment(stty.str(), XTTY_BASE+offset, XTTY_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sfbf; sfbf << "int_seg_fbuf_" << x << "_" << y; maptab_int.add(Segment(sfbf.str(), FBUF_BASE+offset, FBUF_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sbdv; sbdv << "int_seg_bdev_" << x << "_" << y; maptab_int.add(Segment(sbdv.str(), BDEV_BASE+offset, BDEV_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream snic; snic << "int_seg_mnic_" << x << "_" << y; maptab_int.add(Segment(snic.str(), MNIC_BASE+offset, MNIC_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sdma; sdma << "int_seg_cdma_" << x << "_" << y; maptab_int.add(Segment(sdma.str(), CDMA_BASE+offset, CDMA_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream spic; sdma << "int_seg_xpic_" << x << "_" << y; maptab_int.add(Segment(spic.str(), XPIC_BASE+offset, XPIC_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); } // This define the mapping between the SRCIDs // and the port index on the local interconnect. maptab_int.srcid_map(IntTab(cluster(x,y), MDMA_LOCAL_SRCID), IntTab(cluster(x,y), INT_MDMA_INI_ID)); maptab_int.srcid_map(IntTab(cluster(x,y), IOBX_LOCAL_SRCID), IntTab(cluster(x,y), INT_IOBX_INI_ID)); maptab_int.srcid_map(IntTab(cluster(x,y), XPIC_LOCAL_SRCID), IntTab(cluster(x,y), INT_IOBX_INI_ID)); for ( size_t p = 0 ; p < NB_PROCS ; p++ ) { maptab_int.srcid_map(IntTab(cluster(x,y), PROC_LOCAL_SRCID + p), IntTab(cluster(x,y), INT_PROC_INI_ID + p)); } } } std::cout << "INT network " << maptab_int << std::endl; ///////////////////////////////////////////////////////////////////////// // RAM network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - 2 local initiators (MEMC, IOBX) per cluster // (IOBX component only in cluster_iob0 and cluster_iob1) // - 1 local target (XRAM) per cluster //////////////////////////////////////////////////////////////////////// MappingTable maptab_ram( vci_address_width, IntTab(X_WIDTH + Y_WIDTH, 0), IntTab(X_WIDTH + Y_WIDTH, vci_param_int::S - X_WIDTH - Y_WIDTH), 0x00FF000000); for (size_t x = 0; x < x_size; x++) { for (size_t y = 0; y < y_size ; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width - X_WIDTH - Y_WIDTH); std::ostringstream sxram; sxram << "ext_seg_xram_" << x << "_" << y; maptab_ram.add(Segment(sxram.str(), XRAM_BASE+offset, XRAM_SIZE, IntTab(cluster(x,y), RAM_XRAM_TGT_ID), false)); } } // This define the mapping between the initiators SRCID // and the port index on the RAM local interconnect. // External initiator have two alias SRCID (iob0 / iob1) maptab_ram.srcid_map(IntTab(cluster_iob0, CDMA_LOCAL_SRCID), IntTab(cluster_iob0, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob0, BDEV_LOCAL_SRCID), IntTab(cluster_iob0, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob0, XPIC_LOCAL_SRCID), IntTab(cluster_iob0, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob0, RAM_MEMC_INI_ID), IntTab(cluster_iob0, RAM_MEMC_INI_ID)); if (not is_mono_cluster) { maptab_ram.srcid_map(IntTab(cluster_iob1, CDMA_LOCAL_SRCID), IntTab(cluster_iob1, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob1, BDEV_LOCAL_SRCID), IntTab(cluster_iob1, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob1, XPIC_LOCAL_SRCID), IntTab(cluster_iob1, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob1, RAM_MEMC_INI_ID), IntTab(cluster_iob1, RAM_MEMC_INI_ID)); } std::cout << "RAM network " << maptab_ram << std::endl; /////////////////////////////////////////////////////////////////////// // IOX network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - 4 initiators (IOB0, IOB1, BDEV, CDMA) // - 8 targets (IOB0, IOB1, BDEV, CDMA, MTTY, FBUF, BROM, MNIC) /////////////////////////////////////////////////////////////////////// const size_t iox_addr_drop_bits = X_WIDTH + Y_WIDTH - 1; const size_t iox_addr_decd_bits = 16 - X_WIDTH - Y_WIDTH + 1; MappingTable maptab_iox( vci_address_width, IntTab(iox_addr_drop_bits, iox_addr_decd_bits), IntTab(X_WIDTH + Y_WIDTH , vci_param_ext::S - X_WIDTH - Y_WIDTH), 0x00FF000000); // Each peripheral can be accessed through two segments, // depending on the used IOB (IOB0 or IOB1). uint64_t iob0_base = ((uint64_t)cluster_iob0) << (vci_address_width - X_WIDTH - Y_WIDTH); maptab_iox.add(Segment("iox_seg_mtty_0", XTTY_BASE + iob0_base, XTTY_SIZE, IntTab(0, IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_0", FBUF_BASE + iob0_base, FBUF_SIZE, IntTab(0, IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_bdev_0", BDEV_BASE + iob0_base, BDEV_SIZE, IntTab(0, IOX_BDEV_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_0", MNIC_BASE + iob0_base, MNIC_SIZE, IntTab(0, IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_0", CDMA_BASE + iob0_base, CDMA_SIZE, IntTab(0, IOX_CDMA_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_xpic_0", XPIC_BASE + iob0_base, XPIC_SIZE, IntTab(0, IOX_XPIC_TGT_ID), false)); if (not is_mono_cluster) { uint64_t iob1_base = ((uint64_t)cluster_iob1) << (vci_address_width - X_WIDTH - Y_WIDTH); maptab_iox.add(Segment("iox_seg_mtty_1", XTTY_BASE + iob1_base, XTTY_SIZE, IntTab(0, IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_1", FBUF_BASE + iob1_base, FBUF_SIZE, IntTab(0, IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_bdev_1", BDEV_BASE + iob1_base, BDEV_SIZE, IntTab(0, IOX_BDEV_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_1", MNIC_BASE + iob1_base, MNIC_SIZE, IntTab(0, IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_1", CDMA_BASE + iob1_base, CDMA_SIZE, IntTab(0, IOX_CDMA_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_xpic_1", XPIC_BASE + iob1_base, XPIC_SIZE, IntTab(0, IOX_XPIC_TGT_ID), false)); } /////////////////////////////////////////////////////////////////////////// // - For external DMA peripherals, each physical RAM and replicated // XICU can be accessed through IOB0, or through IOB1 depending on address // bit A[32] (0 => IOB0, 1 => IOB1). // // NOTE: the special attribute in the XICU segments is used by the IOB to // route commands through the INT network. The commands on not special // segments (RAM) are routed by the IOB through the RAM network // // NOTE: The IOX interconnect is implemented as a local interconnect because // the global bits need to be dropped, but no locality check is // performed /////////////////////////////////////////////////////////////////////////// for (size_t x = 0; x < x_size; x++) { for (size_t y = 0; y < y_size ; y++) { const bool special = true; const bool cacheable = true; const uint64_t offset = static_cast(cluster(x,y)) << (vci_address_width - X_WIDTH - Y_WIDTH); const uint64_t xicu_base = XICU_BASE + offset; if ( (y & 0x1) == 0 ) { // segments mapped to IOB0 std::ostringstream sxcu0; sxcu0 << "iox_seg_xcu0_" << x << "_" << y; maptab_iox.add(Segment(sxcu0.str(), xicu_base, XICU_SIZE, IntTab(0, IOX_IOB0_TGT_ID), not cacheable, special)); std::ostringstream sram0; sram0 << "iox_seg_ram0_" << x << "_" << y; maptab_iox.add(Segment(sram0.str(), offset, XICU_BASE, IntTab(0, IOX_IOB0_TGT_ID), not cacheable, not special)); } else { // segments mapped to IOB1 std::ostringstream sxcu1; sxcu1 << "iox_seg_xcu1_" << x << "_" << y; maptab_iox.add(Segment(sxcu1.str(), xicu_base | (1ULL<<32), XICU_SIZE, IntTab(0, IOX_IOB1_TGT_ID), not cacheable, special)); std::ostringstream sram1; sram1 << "iox_seg_ram1_" << x << "_" << y; maptab_iox.add(Segment(sram1.str(), offset | (1ULL<<32), XICU_BASE, IntTab(0, IOX_IOB1_TGT_ID), not cacheable, not special)); } } } // This define the mapping between the initiators (identified by the SRCID) // and the port index on the IOX local interconnect. maptab_iox.srcid_map(IntTab(0, CDMA_LOCAL_SRCID), IntTab(0, IOX_CDMA_INI_ID)); maptab_iox.srcid_map(IntTab(0, BDEV_LOCAL_SRCID), IntTab(0, IOX_BDEV_INI_ID)); maptab_iox.srcid_map(IntTab(0, XPIC_LOCAL_SRCID), IntTab(0, IOX_XPIC_INI_ID)); maptab_iox.srcid_map(IntTab(0, IOX_IOB0_INI_ID), IntTab(0, IOX_IOB0_INI_ID)); if (not is_mono_cluster) { maptab_iox.srcid_map(IntTab(0, IOX_IOB1_INI_ID), IntTab(0, IOX_IOB1_INI_ID)); } std::cout << "IOX network " << maptab_iox << std::endl; //////////////////// // Signals //////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); sc_signal signal_irq_false; sc_signal signal_irq_bdev; sc_signal signal_irq_mnic_rx[NB_NIC_CHANNELS]; sc_signal signal_irq_mnic_tx[NB_NIC_CHANNELS]; sc_signal signal_irq_mtty[NB_TTY_CHANNELS]; sc_signal signal_irq_cdma[NB_NIC_CHANNELS*2]; // DSPIN signals for loopback in cluster_iob0 & cluster_iob1 DspinSignals signal_dspin_cmd_iob0_loopback; DspinSignals signal_dspin_rsp_iob0_loopback; DspinSignals signal_dspin_cmd_iob1_loopback; DspinSignals signal_dspin_rsp_iob1_loopback; // VCI signals for IOX network VciSignals signal_vci_ini_iob0("signal_vci_ini_iob0"); VciSignals signal_vci_ini_iob1("signal_vci_ini_iob1"); VciSignals signal_vci_ini_bdev("signal_vci_ini_bdev"); VciSignals signal_vci_ini_cdma("signal_vci_ini_cdma"); VciSignals signal_vci_ini_xpic("signal_vci_ini_xpic"); VciSignals signal_vci_tgt_iob0("signal_vci_tgt_iob0"); VciSignals signal_vci_tgt_iob1("signal_vci_tgt_iob1"); VciSignals signal_vci_tgt_mtty("signal_vci_tgt_mtty"); VciSignals signal_vci_tgt_fbuf("signal_vci_tgt_fbuf"); VciSignals signal_vci_tgt_mnic("signal_vci_tgt_mnic"); VciSignals signal_vci_tgt_bdev("signal_vci_tgt_bdev"); VciSignals signal_vci_tgt_cdma("signal_vci_tgt_cdma"); VciSignals signal_vci_tgt_xpic("signal_vci_tgt_xpic"); // Horizontal inter-clusters INT network DSPIN DspinSignals*** signal_dspin_int_cmd_h_inc = alloc_elems >( "signal_dspin_int_cmd_h_inc", x_size-1, y_size, 3); DspinSignals*** signal_dspin_int_cmd_h_dec = alloc_elems >( "signal_dspin_int_cmd_h_dec", x_size-1, y_size, 3); DspinSignals*** signal_dspin_int_rsp_h_inc = alloc_elems >( "signal_dspin_int_rsp_h_inc", x_size-1, y_size, 2); DspinSignals*** signal_dspin_int_rsp_h_dec = alloc_elems >( "signal_dspin_int_rsp_h_dec", x_size-1, y_size, 2); // Vertical inter-clusters INT network DSPIN DspinSignals*** signal_dspin_int_cmd_v_inc = alloc_elems >( "signal_dspin_int_cmd_v_inc", x_size, y_size-1, 3); DspinSignals*** signal_dspin_int_cmd_v_dec = alloc_elems >( "signal_dspin_int_cmd_v_dec", x_size, y_size-1, 3); DspinSignals*** signal_dspin_int_rsp_v_inc = alloc_elems >( "signal_dspin_int_rsp_v_inc", x_size, y_size-1, 2); DspinSignals*** signal_dspin_int_rsp_v_dec = alloc_elems >( "signal_dspin_int_rsp_v_dec", x_size, y_size-1, 2); // Mesh boundaries INT network DSPIN DspinSignals**** signal_dspin_false_int_cmd_in = alloc_elems >( "signal_dspin_false_int_cmd_in", x_size, y_size, 4, 3); DspinSignals**** signal_dspin_false_int_cmd_out = alloc_elems >( "signal_dspin_false_int_cmd_out", x_size, y_size, 4, 3); DspinSignals**** signal_dspin_false_int_rsp_in = alloc_elems >( "signal_dspin_false_int_rsp_in", x_size, y_size, 4, 2); DspinSignals**** signal_dspin_false_int_rsp_out = alloc_elems >( "signal_dspin_false_int_rsp_out", x_size, y_size, 4, 2); // Horizontal inter-clusters RAM network DSPIN DspinSignals** signal_dspin_ram_cmd_h_inc = alloc_elems >( "signal_dspin_ram_cmd_h_inc", x_size-1, y_size); DspinSignals** signal_dspin_ram_cmd_h_dec = alloc_elems >( "signal_dspin_ram_cmd_h_dec", x_size-1, y_size); DspinSignals** signal_dspin_ram_rsp_h_inc = alloc_elems >( "signal_dspin_ram_rsp_h_inc", x_size-1, y_size); DspinSignals** signal_dspin_ram_rsp_h_dec = alloc_elems >( "signal_dspin_ram_rsp_h_dec", x_size-1, y_size); // Vertical inter-clusters RAM network DSPIN DspinSignals** signal_dspin_ram_cmd_v_inc = alloc_elems >( "signal_dspin_ram_cmd_v_inc", x_size, y_size-1); DspinSignals** signal_dspin_ram_cmd_v_dec = alloc_elems >( "signal_dspin_ram_cmd_v_dec", x_size, y_size-1); DspinSignals** signal_dspin_ram_rsp_v_inc = alloc_elems >( "signal_dspin_ram_rsp_v_inc", x_size, y_size-1); DspinSignals** signal_dspin_ram_rsp_v_dec = alloc_elems >( "signal_dspin_ram_rsp_v_dec", x_size, y_size-1); // Mesh boundaries RAM network DSPIN DspinSignals*** signal_dspin_false_ram_cmd_in = alloc_elems >( "signal_dspin_false_ram_cmd_in", x_size, y_size, 4); DspinSignals*** signal_dspin_false_ram_cmd_out = alloc_elems >( "signal_dspin_false_ram_cmd_out", x_size, y_size, 4); DspinSignals*** signal_dspin_false_ram_rsp_in = alloc_elems >( "signal_dspin_false_ram_rsp_in", x_size, y_size, 4); DspinSignals*** signal_dspin_false_ram_rsp_out = alloc_elems >( "signal_dspin_false_ram_rsp_out", x_size, y_size, 4); //////////////////////////// // Loader //////////////////////////// soclib::common::Loader loader(soft_name); typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); //////////////////////////////////////// // Instanciated Hardware Components //////////////////////////////////////// std::cout << std::endl << "External Bus and Peripherals" << std::endl << std::endl; const size_t nb_iox_initiators = (not is_mono_cluster) ? 5 : 4; const size_t nb_iox_targets = (not is_mono_cluster) ? 8 : 7; // IOX network VciIoxNetwork* iox_network; iox_network = new VciIoxNetwork("iox_network", maptab_iox, nb_iox_targets, // number of targets nb_iox_initiators ); // number of initiators // Network Controller VciMultiNic* mnic; mnic = new VciMultiNic("mnic", IntTab(0, IOX_MNIC_TGT_ID), maptab_iox, NB_NIC_CHANNELS, 0, // mac_4 address 0, // mac_2 address nic_rx_name, nic_tx_name); // Frame Buffer VciFrameBuffer* fbuf; fbuf = new VciFrameBuffer("fbuf", IntTab(0, IOX_FBUF_TGT_ID), maptab_iox, FBUF_X_SIZE, FBUF_Y_SIZE ); // Block Device // for AHCI // std::vector filenames; // filenames.push_back(disk_name); // one single disk VciBlockDeviceTsar* bdev; bdev = new VciBlockDeviceTsar("bdev", maptab_iox, IntTab(0, BDEV_LOCAL_SRCID), IntTab(0, IOX_BDEV_TGT_ID), disk_name, block_size, 64, // burst size (bytes) 0 ); // disk latency // Chained Buffer DMA controller VciChbufDma* cdma; cdma = new VciChbufDma("cdma", maptab_iox, IntTab(0, CDMA_LOCAL_SRCID), IntTab(0, IOX_CDMA_TGT_ID), 64, // burst size (bytes) NB_CMA_CHANNELS); // Multi-TTY controller std::vector vect_names; for( size_t tid = 0 ; tid < NB_TTY_CHANNELS ; tid++ ) { std::ostringstream term_name; term_name << "mtty_iox_" << tid; vect_names.push_back(term_name.str().c_str()); } VciMultiTty* mtty; mtty = new VciMultiTty("mtty_iox", IntTab(0, IOX_MTTY_TGT_ID), maptab_iox, vect_names); // IOPIC VciIopic* xpic; xpic = new VciIopic( "xpic", maptab_iox, IntTab(0, XPIC_LOCAL_SRCID), IntTab(0, IOX_XPIC_TGT_ID), 32 ); // number of input HWI TsarIobClusterType* clusters[x_size][y_size]; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for(size_t i = 0; i < (x_size * y_size); i++) { size_t x = i / y_size; size_t y = i % y_size; #if USE_OPENMP #pragma omp critical { #endif std::cout << std::endl; std::cout << "Cluster_" << std::dec << x << "_" << y << std::endl; std::cout << std::endl; std::ostringstream sc; sc << "cluster_" << x << "_" << y; bool memc_debug = (cluster(x,y) == debug_memc_id); bool proc_debug = (cluster(x,y) == (debug_proc_id / NB_PROCS)); bool is_io0 = (cluster(x,y) == cluster_iob0); bool is_io1 = (cluster(x,y) == cluster_iob1); bool is_io = is_io0 || is_io1; IntTab iox_iob_tgtid = IntTab(0, is_io0 ? IOX_IOB0_TGT_ID : IOX_IOB1_TGT_ID); IntTab iox_iob_srcid = IntTab(0, is_io0 ? IOX_IOB0_INI_ID : IOX_IOB1_INI_ID); TsarIobClusterType::ClusterParams params = { .insname = sc.str().c_str(), .x_id = x, .y_id = y, .mt_int = maptab_int, .mt_ext = maptab_ram, .mt_iox = maptab_iox, .is_io = is_io, .iox_iob_tgtid = iox_iob_tgtid, .iox_iob_srcid = iox_iob_srcid, .memc_ways = MEMC_WAYS, .memc_sets = MEMC_SETS, .l1_i_ways = L1_IWAYS, .l1_i_sets = L1_ISETS, .l1_d_ways = L1_DWAYS, .l1_d_sets = L1_DSETS, .xram_latency = XRAM_LATENCY, .loader = loader, .distboot = distboot, .frozen_cycles = frozen_cycles, .debug_start_cycle = debug_from, .memc_debug_ok = memc_debug, .proc_debug_ok = proc_debug, .iob_debug_ok = debug_iob }; clusters[x][y] = new TsarIobClusterType(params); #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif std::cout << std::endl; /////////////////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////////////////// // IOX network connexion iox_network->p_clk (signal_clk); iox_network->p_resetn (signal_resetn); iox_network->p_to_ini[IOX_BDEV_INI_ID] (signal_vci_ini_bdev); iox_network->p_to_ini[IOX_CDMA_INI_ID] (signal_vci_ini_cdma); iox_network->p_to_ini[IOX_XPIC_INI_ID] (signal_vci_ini_xpic); iox_network->p_to_ini[IOX_IOB0_INI_ID] (signal_vci_ini_iob0); iox_network->p_to_tgt[IOX_MTTY_TGT_ID] (signal_vci_tgt_mtty); iox_network->p_to_tgt[IOX_FBUF_TGT_ID] (signal_vci_tgt_fbuf); iox_network->p_to_tgt[IOX_MNIC_TGT_ID] (signal_vci_tgt_mnic); iox_network->p_to_tgt[IOX_BDEV_TGT_ID] (signal_vci_tgt_bdev); iox_network->p_to_tgt[IOX_CDMA_TGT_ID] (signal_vci_tgt_cdma); iox_network->p_to_tgt[IOX_XPIC_TGT_ID] (signal_vci_tgt_xpic); iox_network->p_to_tgt[IOX_IOB0_TGT_ID] (signal_vci_tgt_iob0); if (not is_mono_cluster) { iox_network->p_to_ini[IOX_IOB1_INI_ID] (signal_vci_ini_iob1); iox_network->p_to_tgt[IOX_IOB1_TGT_ID] (signal_vci_tgt_iob1); } // BDEV connexion bdev->p_clk (signal_clk); bdev->p_resetn (signal_resetn); bdev->p_irq (signal_irq_bdev); bdev->p_vci_target (signal_vci_tgt_bdev); bdev->p_vci_initiator (signal_vci_ini_bdev); std::cout << " - BDEV connected" << std::endl; // FBUF connexion fbuf->p_clk (signal_clk); fbuf->p_resetn (signal_resetn); fbuf->p_vci (signal_vci_tgt_fbuf); std::cout << " - FBUF connected" << std::endl; // MNIC connexion mnic->p_clk (signal_clk); mnic->p_resetn (signal_resetn); mnic->p_vci (signal_vci_tgt_mnic); for ( size_t i=0 ; ip_rx_irq[i] (signal_irq_mnic_rx[i]); mnic->p_tx_irq[i] (signal_irq_mnic_tx[i]); } std::cout << " - MNIC connected" << std::endl; // MTTY connexion mtty->p_clk (signal_clk); mtty->p_resetn (signal_resetn); mtty->p_vci (signal_vci_tgt_mtty); for ( size_t i=0 ; ip_irq[i] (signal_irq_mtty[i]); } std::cout << " - MTTY connected" << std::endl; // CDMA connexion cdma->p_clk (signal_clk); cdma->p_resetn (signal_resetn); cdma->p_vci_target (signal_vci_tgt_cdma); cdma->p_vci_initiator (signal_vci_ini_cdma); for ( size_t i=0 ; ip_irq[i] (signal_irq_cdma[i]); } std::cout << " - CDMA connected" << std::endl; // XPIC connexion xpic->p_clk (signal_clk); xpic->p_resetn (signal_resetn); xpic->p_vci_target (signal_vci_tgt_xpic); xpic->p_vci_initiator (signal_vci_ini_xpic); for ( size_t i=0 ; i<32 ; i++) { if (i < NB_NIC_CHANNELS) xpic->p_hwi[i] (signal_irq_mnic_rx[i]); else if (i < 2) xpic->p_hwi[i] (signal_irq_false); else if (i < 2+NB_NIC_CHANNELS) xpic->p_hwi[i] (signal_irq_mnic_tx[i-2]); else if (i < 4) xpic->p_hwi[i] (signal_irq_false); else if (i < 4+NB_CMA_CHANNELS) xpic->p_hwi[i] (signal_irq_cdma[i-4]); else if (i < 8) xpic->p_hwi[i] (signal_irq_false); else if (i < 9) xpic->p_hwi[i] (signal_irq_bdev); else if (i < 9+NB_TTY_CHANNELS) xpic->p_hwi[i] (signal_irq_mtty[i-9]); else xpic->p_hwi[i] (signal_irq_false); } std::cout << " - XPIC connected" << std::endl; // IOB0 cluster connexion to IOX network (*clusters[0][0]->p_vci_iob_iox_ini) (signal_vci_ini_iob0); (*clusters[0][0]->p_vci_iob_iox_tgt) (signal_vci_tgt_iob0); // IOB1 cluster connexion to IOX network if (not is_mono_cluster) { (*clusters[x_size-1][y_size-1]->p_vci_iob_iox_ini) (signal_vci_ini_iob1); (*clusters[x_size-1][y_size-1]->p_vci_iob_iox_tgt) (signal_vci_tgt_iob1); } // All clusters Clock & RESET connexions for ( size_t x = 0; x < (x_size); x++ ) { for (size_t y = 0; y < y_size; y++) { clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } const int& NORTH = VirtualDspinRouter::NORTH; const int& SOUTH = VirtualDspinRouter::SOUTH; const int& EAST = VirtualDspinRouter::EAST; const int& WEST = VirtualDspinRouter::WEST; // Inter Clusters horizontal connections if (x_size > 1) { for (size_t x = 0; x < (x_size-1); x++) { for (size_t y = 0; y < y_size; y++) { for (size_t k = 0; k < 3; k++) { clusters[x][y]->p_dspin_int_cmd_out[EAST][k]( signal_dspin_int_cmd_h_inc[x][y][k]); clusters[x+1][y]->p_dspin_int_cmd_in[WEST][k]( signal_dspin_int_cmd_h_inc[x][y][k]); clusters[x][y]->p_dspin_int_cmd_in[EAST][k]( signal_dspin_int_cmd_h_dec[x][y][k]); clusters[x+1][y]->p_dspin_int_cmd_out[WEST][k]( signal_dspin_int_cmd_h_dec[x][y][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][y]->p_dspin_int_rsp_out[EAST][k]( signal_dspin_int_rsp_h_inc[x][y][k]); clusters[x+1][y]->p_dspin_int_rsp_in[WEST][k]( signal_dspin_int_rsp_h_inc[x][y][k]); clusters[x][y]->p_dspin_int_rsp_in[EAST][k]( signal_dspin_int_rsp_h_dec[x][y][k]); clusters[x+1][y]->p_dspin_int_rsp_out[WEST][k]( signal_dspin_int_rsp_h_dec[x][y][k]); } clusters[x][y]->p_dspin_ram_cmd_out[EAST]( signal_dspin_ram_cmd_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_in[WEST]( signal_dspin_ram_cmd_h_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[EAST]( signal_dspin_ram_cmd_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_out[WEST]( signal_dspin_ram_cmd_h_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[EAST]( signal_dspin_ram_rsp_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_in[WEST]( signal_dspin_ram_rsp_h_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[EAST]( signal_dspin_ram_rsp_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_out[WEST]( signal_dspin_ram_rsp_h_dec[x][y]); } } } std::cout << std::endl << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (y_size > 1) { for (size_t y = 0; y < (y_size-1); y++) { for (size_t x = 0; x < x_size; x++) { for (size_t k = 0; k < 3; k++) { clusters[x][y]->p_dspin_int_cmd_out[NORTH][k]( signal_dspin_int_cmd_v_inc[x][y][k]); clusters[x][y+1]->p_dspin_int_cmd_in[SOUTH][k]( signal_dspin_int_cmd_v_inc[x][y][k]); clusters[x][y]->p_dspin_int_cmd_in[NORTH][k]( signal_dspin_int_cmd_v_dec[x][y][k]); clusters[x][y+1]->p_dspin_int_cmd_out[SOUTH][k]( signal_dspin_int_cmd_v_dec[x][y][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][y]->p_dspin_int_rsp_out[NORTH][k]( signal_dspin_int_rsp_v_inc[x][y][k]); clusters[x][y+1]->p_dspin_int_rsp_in[SOUTH][k]( signal_dspin_int_rsp_v_inc[x][y][k]); clusters[x][y]->p_dspin_int_rsp_in[NORTH][k]( signal_dspin_int_rsp_v_dec[x][y][k]); clusters[x][y+1]->p_dspin_int_rsp_out[SOUTH][k]( signal_dspin_int_rsp_v_dec[x][y][k]); } clusters[x][y]->p_dspin_ram_cmd_out[NORTH]( signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_in[SOUTH]( signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[NORTH]( signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_out[SOUTH]( signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[NORTH]( signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_in[SOUTH]( signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[NORTH]( signal_dspin_ram_rsp_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_out[SOUTH]( signal_dspin_ram_rsp_v_dec[x][y]); } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < y_size; y++) { // L1-L2 cmd network boundary connections for (size_t k = 0; k < 3; k++) { clusters[0][y]->p_dspin_int_cmd_in[WEST][k]( signal_dspin_false_int_cmd_in[0][y][WEST][k]); clusters[0][y]->p_dspin_int_cmd_out[WEST][k]( signal_dspin_false_int_cmd_out[0][y][WEST][k]); clusters[x_size-1][y]->p_dspin_int_cmd_in[EAST][k]( signal_dspin_false_int_cmd_in[x_size-1][y][EAST][k]); clusters[x_size-1][y]->p_dspin_int_cmd_out[EAST][k]( signal_dspin_false_int_cmd_out[x_size-1][y][EAST][k]); } // L1-L2 rsp network boundary connections for (size_t k = 0; k < 2; k++) { clusters[0][y]->p_dspin_int_rsp_in[WEST][k]( signal_dspin_false_int_rsp_in[0][y][WEST][k]); clusters[0][y]->p_dspin_int_rsp_out[WEST][k]( signal_dspin_false_int_rsp_out[0][y][WEST][k]); clusters[x_size-1][y]->p_dspin_int_rsp_in[EAST][k]( signal_dspin_false_int_rsp_in[x_size-1][y][EAST][k]); clusters[x_size-1][y]->p_dspin_int_rsp_out[EAST][k]( signal_dspin_false_int_rsp_out[x_size-1][y][EAST][k]); } // L2-XRAM cmd network boundary connections clusters[0][y]->p_dspin_ram_cmd_in[WEST]( signal_dspin_false_ram_cmd_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_cmd_out[WEST]( signal_dspin_false_ram_cmd_out[0][y][WEST]); clusters[x_size-1][y]->p_dspin_ram_cmd_in[EAST]( signal_dspin_false_ram_cmd_in[x_size-1][y][EAST]); clusters[x_size-1][y]->p_dspin_ram_cmd_out[EAST]( signal_dspin_false_ram_cmd_out[x_size-1][y][EAST]); // L2-XRAM rsp network boundary connections clusters[0][y]->p_dspin_ram_rsp_in[WEST]( signal_dspin_false_ram_rsp_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_rsp_out[WEST]( signal_dspin_false_ram_rsp_out[0][y][WEST]); clusters[x_size-1][y]->p_dspin_ram_rsp_in[EAST]( signal_dspin_false_ram_rsp_in[x_size-1][y][EAST]); clusters[x_size-1][y]->p_dspin_ram_rsp_out[EAST]( signal_dspin_false_ram_rsp_out[x_size-1][y][EAST]); } std::cout << "East & West boundaries established" << std::endl; // North & South boundary clusters connections for (size_t x = 0; x < x_size; x++) { for (size_t k = 0; k < 3; k++) { clusters[x][0]->p_dspin_int_cmd_in[SOUTH][k]( signal_dspin_false_int_cmd_in[x][0][SOUTH][k]); clusters[x][0]->p_dspin_int_cmd_out[SOUTH][k]( signal_dspin_false_int_cmd_out[x][0][SOUTH][k]); clusters[x][y_size-1]->p_dspin_int_cmd_in[NORTH][k]( signal_dspin_false_int_cmd_in[x][y_size-1][NORTH][k]); clusters[x][y_size-1]->p_dspin_int_cmd_out[NORTH][k]( signal_dspin_false_int_cmd_out[x][y_size-1][NORTH][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][0]->p_dspin_int_rsp_in[SOUTH][k]( signal_dspin_false_int_rsp_in[x][0][SOUTH][k]); clusters[x][0]->p_dspin_int_rsp_out[SOUTH][k]( signal_dspin_false_int_rsp_out[x][0][SOUTH][k]); clusters[x][y_size-1]->p_dspin_int_rsp_in[NORTH][k]( signal_dspin_false_int_rsp_in[x][y_size-1][NORTH][k]); clusters[x][y_size-1]->p_dspin_int_rsp_out[NORTH][k]( signal_dspin_false_int_rsp_out[x][y_size-1][NORTH][k]); } clusters[x][0]->p_dspin_ram_cmd_in[SOUTH]( signal_dspin_false_ram_cmd_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_cmd_out[SOUTH]( signal_dspin_false_ram_cmd_out[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_rsp_in[SOUTH]( signal_dspin_false_ram_rsp_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_rsp_out[SOUTH]( signal_dspin_false_ram_rsp_out[x][0][SOUTH]); clusters[x][y_size-1]->p_dspin_ram_cmd_in[NORTH]( signal_dspin_false_ram_cmd_in[x][y_size-1][NORTH]); clusters[x][y_size-1]->p_dspin_ram_cmd_out[NORTH]( signal_dspin_false_ram_cmd_out[x][y_size-1][NORTH]); clusters[x][y_size-1]->p_dspin_ram_rsp_in[NORTH]( signal_dspin_false_ram_rsp_in[x][y_size-1][NORTH]); clusters[x][y_size-1]->p_dspin_ram_rsp_out[NORTH]( signal_dspin_false_ram_rsp_out[x][y_size-1][NORTH]); } std::cout << "North & South boundaries established" << std::endl << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; signal_irq_false = false; // network boundaries signals for (size_t x = 0; x < x_size ; x++) { for (size_t y = 0; y < y_size ; y++) { for (size_t a = 0; a < 4; a++) { for (size_t k = 0; k < 3; k++) { signal_dspin_false_int_cmd_in[x][y][a][k].write = false; signal_dspin_false_int_cmd_in[x][y][a][k].read = true; signal_dspin_false_int_cmd_out[x][y][a][k].write = false; signal_dspin_false_int_cmd_out[x][y][a][k].read = true; } for (size_t k = 0; k < 2; k++) { signal_dspin_false_int_rsp_in[x][y][a][k].write = false; signal_dspin_false_int_rsp_in[x][y][a][k].read = true; signal_dspin_false_int_rsp_out[x][y][a][k].write = false; signal_dspin_false_int_rsp_out[x][y][a][k].read = true; } signal_dspin_false_ram_cmd_in[x][y][a].write = false; signal_dspin_false_ram_cmd_in[x][y][a].read = true; signal_dspin_false_ram_cmd_out[x][y][a].write = false; signal_dspin_false_ram_cmd_out[x][y][a].read = true; signal_dspin_false_ram_rsp_in[x][y][a].write = false; signal_dspin_false_ram_rsp_in[x][y][a].read = true; signal_dspin_false_ram_rsp_out[x][y][a].write = false; signal_dspin_false_ram_rsp_out[x][y][a].read = true; } } } sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; struct timeval t1, t2; const uint64_t stats_period = 100000; gettimeofday(&t1, NULL); for (uint64_t n = 1; n < ncycles; n++) { // stats display if((n % stats_period) == 0) { gettimeofday(&t2, NULL); uint64_t ms1 = (uint64_t) t1.tv_sec * 1000 + (uint64_t) t1.tv_usec / 1000; uint64_t ms2 = (uint64_t) t2.tv_sec * 1000 + (uint64_t) t2.tv_usec / 1000; double freq = (double) stats_period / (ms2 - ms1); std::cerr << "Platform Clock Frequency: " << freq << " Khz" << std::endl; gettimeofday(&t1, NULL); } if (debug_ok and (n > debug_from) and ((n % debug_period) == 0)) { std::cout << " ***********************" << " cycle " << std::dec << n << " ***********************" << std::endl; // trace proc[debug_proc_id] if ( debug_proc_id != 0xFFFFFFFF ) { size_t l = debug_proc_id % NB_PROCS ; size_t cluster_xy = debug_proc_id / NB_PROCS ; size_t x = cluster_xy >> Y_WIDTH; size_t y = cluster_xy & ((1 << Y_WIDTH) - 1); clusters[x][y]->proc[l]->print_trace(1); std::ostringstream proc_signame; proc_signame << "[SIG]PROC_" << x << "_" << y << "_" << l ; clusters[x][y]->signal_int_vci_ini_proc[l].print_trace( proc_signame.str()); clusters[x][y]->xicu->print_trace(l); std::ostringstream xicu_signame; xicu_signame << "[SIG]XICU_" << x << "_" << y; clusters[x][y]->signal_int_vci_tgt_xicu.print_trace( xicu_signame.str()); if( clusters[x][y]->signal_proc_it[l].read() ) { std::cout << "### IRQ_PROC_" << std::dec << x << "_" << y << "_" << l << " ACTIVE" << std::endl; } } // trace RAM xbar (between MEMC and IOB) // clusters[0][0]->ram_xbar_cmd->print_trace(); // clusters[0][0]->ram_xbar_rsp->print_trace(); // clusters[x_size-1][y_size-1]->ram_xbar_cmd->print_trace(); // clusters[x_size-1][y_size-1]->ram_xbar_rsp->print_trace(); // trace INT network // clusters[0][0]->int_xbar_d->print_trace(); // clusters[0][0]->signal_int_dspin_cmd_l2g_d.print_trace( // "[SIG] INT_CMD_L2G_D_0_0"); // clusters[0][0]->signal_int_dspin_rsp_g2l_d.print_trace( // "[SIG] INT_RSP_G2L_D_0_0"); // clusters[0][0]->int_router_cmd->print_trace(0); // clusters[0][0]->int_router_rsp->print_trace(0); // trace INT_CMD_D xbar and router in cluster 0_1 // clusters[0][1]->int_router_cmd->print_trace(0); // clusters[0][1]->int_router_rsp->print_trace(0); // clusters[0][1]->signal_int_dspin_cmd_g2l_d.print_trace( // "[SIG] INT_CMD_G2L_D_0_0"); // clusters[0][1]->signal_int_dspin_rsp_l2g_d.print_trace( // "[SIG] INT_RSP_L2G_D_0_0"); // clusters[0][1]->int_xbar_cmd_d->print_trace(); // trace memc[debug_memc_id] if ( debug_memc_id != 0xFFFFFFFF ) { size_t x = debug_memc_id >> Y_WIDTH; size_t y = debug_memc_id & ((1 << Y_WIDTH) - 1); clusters[x][y]->memc->print_trace(0); std::ostringstream smemc_tgt; smemc_tgt << "[SIG]MEMC_TGT_" << x << "_" << y; clusters[x][y]->signal_int_vci_tgt_memc.print_trace( smemc_tgt.str()); std::ostringstream smemc_ini; smemc_ini << "[SIG]MEMC_INI_" << x << "_" << y; clusters[x][y]->signal_ram_vci_ini_memc.print_trace( smemc_ini.str()); clusters[x][y]->xram->print_trace(); std::ostringstream sxram_tgt; sxram_tgt << "[SIG]XRAM_TGT_" << x << "_" << y; clusters[x][y]->signal_ram_vci_tgt_xram.print_trace( sxram_tgt.str()); } // trace iob, iox and external peripherals //if ( debug_iob ) { // clusters[0][0]->iob->print_trace(); // clusters[0][0]->signal_int_vci_tgt_iobx.print_trace( // "[SIG]IOB0_INT_TGT"); // clusters[0][0]->signal_int_vci_ini_iobx.print_trace( // "[SIG]IOB0_INT_INI"); // clusters[0][0]->signal_ram_vci_ini_iobx.print_trace( // "[SIG]IOB0_RAM_INI"); // signal_vci_ini_iob0.print_trace("[SIG]IOB0_IOX_INI"); // signal_vci_tgt_iob0.print_trace("[SIG]IOB0_IOX_TGT"); // cdma->print_trace(); // signal_vci_tgt_cdma.print_trace("[SIG]IOX_CDMA_TGT"); // signal_vci_ini_cdma.print_trace("[SIG]IOX_CDMA_INI"); // iox_network->print_trace(); // // interrupts // if (signal_irq_bdev) std::cout << "### IRQ_BDEV ACTIVATED" // << std::endl; //} } sc_start(sc_core::sc_time(1, SC_NS)); } delete iox_network; delete mnic; delete fbuf; delete bdev; delete cdma; delete mtty; delete xpic; for(size_t x = 0; x < x_size; x++) { for(size_t y = 0; y < y_size; y++) { delete clusters[x][y]; } } return EXIT_SUCCESS; } int sc_main (int argc, char *argv[]) { try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3