/////////////////////////////////////////////////////////////////////////////// // File: top.cpp // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : august 2013 // This program is released under the GNU public license // // Modified by: Cesar Fuguet // Modified on: mars 2014 /////////////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture with an IO network emulating // an external bus (i.e. Hypertransport) to access external peripherals: // // - BROM : boot ROM // - FBUF : Frame Buffer // - MTTY : multi TTY (up to 15 channels) // - MNIC : Network controller (up to 2 channels) // - CDMA : Chained Buffer DMA controller (up to 4 channels) // - BDEV : Dlock Device controler (1 channel) // // The internal physical address space is 40 bits. // // It contains a 2D mesh of XMAX*YMAX clusters, and the cluster index // is encoded on 8 bits (X_WIDTH = 4 / Y_WIDTH = 4) whatever the mesh size. // // It contains 3 networks: // // 1) the INT network supports Read/Write transactions // between processors and L2 caches or peripherals. // (VCI ADDDRESS = 40 bits / VCI DATA width = 32 bits) // It supports also coherence transactions between L1 & L2 caches. // 3) the RAM network is emulating the 3D network between L2 caches // and L3 caches, and is implemented as a 2D mesh between the L2 caches, // the two IO bridges and the physical RAMs disributed in all clusters. // (VCI ADDRESS = 40 bits / VCI DATA = 64 bits) // 4) the IOX network connects the two IO bridge components to the // 6 external peripheral controllers. // (VCI ADDDRESS = 40 bits / VCI DATA width = 64 bits) // // The external peripherals IRQs are connected to the XICU component // in cluster(0,0): therefore, the number of channels for the external // peripherals (MTTY, MNIC, CDMA) is limited by the number of IRQ ports... // // In cluster(0,0), the XICU HWI input ports are connected as follow: // - IRQ_IN[0] to IRQ_IN[7] grounded (reserved for PTI or SWI) // - IRQ_IN[8] to IRQ_IN[9] are connected to 2 NIC_RX channels. // - IRQ_IN[10] to IRQ_IN[11] are connected to 2 NIC_TX channels. // - IRQ_IN[12] to IRQ_IN[15] are connected to 4 CDMA channels // - IRQ_IN[16] to IRQ_IN[30] are connected to 15 TTY channels // - IRQ_IN[31] is connected to BDEV // In other clusters, the XICU HWI input ports are grounded. // // All clusters are identical, but cluster(0,0) and cluster(XMAX-1,YMAX-1) // contain an extra IO bridge component. These IOB0 & IOB1 components are // connected to the three networks (INT, RAM, IOX). // The number of clusters cannot be larger than 256. // The number of processors per cluster cannot be larger than 4. // // - It uses two dspin_local_crossbar per cluster to implement the // local interconnect correponding to the INT network. // - It uses two dspin_local_crossbar per cluster to implement the // local interconnect correponding to the coherence INT network. // - It uses two virtual_dspin_router per cluster to implement // the INT network (routing both the direct and coherence trafic). // - It uses two dspin_router per cluster to implement the RAM network. // - It uses the vci_cc_vcache_wrapper. // - It uses the vci_mem_cache. // - It contains one vci_xicu and one vci_multi_dma per cluster. // - It contains one vci_simple ram per cluster to model the L3 cache. // // The TsarIobCluster component is defined in files // tsar_iob_cluster.* (with * = cpp, h, sd) // // The main hardware parameters must be defined in the hard_config.h file : // - XMAX : number of clusters in a row (power of 2) // - YMAX : number of clusters in a column (power of 2) // - CLUSTER_SIZE : size of the segment allocated to a cluster // - NB_PROCS_MAX : number of processors per cluster (power of 2) // - NB_DMA_CHANNELS : number of DMA channels per cluster (< 9) // - NB_TTY_CHANNELS : number of TTY channels in I/O network (< 16) // - NB_NIC_CHANNELS : number of NIC channels in I/O network (< 9) // // Some secondary hardware parameters must be defined in this top.cpp file: // - XRAM_LATENCY : external ram latency // - MEMC_WAYS : L2 cache number of ways // - MEMC_SETS : L2 cache number of sets // - L1_IWAYS // - L1_ISETS // - L1_DWAYS // - L1_DSETS // - FBUF_X_SIZE : width of frame buffer (pixels) // - FBUF_Y_SIZE : heigth of frame buffer (lines) // - BDEV_SECTOR_SIZE : block size for block drvice // - BDEV_IMAGE_NAME : file pathname for block device // - NIC_RX_NAME : file pathname for NIC received packets // - NIC_TX_NAME : file pathname for NIC transmited packets // - NIC_TIMEOUT : max number of cycles before closing a container // // General policy for 40 bits physical address decoding: // All physical segments base addresses are multiple of 1 Mbytes // (=> the 24 LSB bits = 0, and the 16 MSB bits define the target) // The (x_width + y_width) MSB bits (left aligned) define // the cluster index, and the LADR bits define the local index: // | X_ID | Y_ID |---| LADR | OFFSET | // |x_width|y_width|---| 8 | 24 | // // General policy for 14 bits SRCID decoding: // Each component is identified by (x_id, y_id, l_id) tuple. // | X_ID | Y_ID |---| L_ID | // |x_width|y_width|---| 6 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsar_iob_cluster.h" #include "vci_chbuf_dma.h" #include "vci_multi_tty.h" #include "vci_multi_nic.h" #include "vci_block_device_tsar.h" #include "vci_framebuffer.h" #include "vci_iox_network.h" #include "alloc_elems.h" /////////////////////////////////////////////////// // OS /////////////////////////////////////////////////// #define USE_ALMOS 0 #define almos_bootloader_pathname "bootloader.bin" #define almos_kernel_pathname "kernel-soclib.bin@0xbfc10000:D" #define almos_archinfo_pathname "arch-info.bin@0xBFC08000:D" /////////////////////////////////////////////////// // Parallelisation /////////////////////////////////////////////////// #define USE_OPENMP 0 #if USE_OPENMP #include #endif /////////////////////////////////////////////////////////// // DSPIN parameters /////////////////////////////////////////////////////////// #define dspin_int_cmd_width 39 #define dspin_int_rsp_width 32 #define dspin_ram_cmd_width 64 #define dspin_ram_rsp_width 64 /////////////////////////////////////////////////////////// // VCI fields width for the 3 VCI networks /////////////////////////////////////////////////////////// #define vci_cell_width_int 4 #define vci_cell_width_ext 8 #define vci_plen_width 8 #define vci_address_width 40 #define vci_rerror_width 1 #define vci_clen_width 1 #define vci_rflag_width 1 #define vci_srcid_width 14 #define vci_pktid_width 4 #define vci_trdid_width 4 #define vci_wrplen_width 1 //////////////////////////////////////////////////////////// // Main Hardware Parameters values //////////////////////i///////////////////////////////////// #define X_WIDTH 4 #define Y_WIDTH 4 #define X_MAX (1< INI_ID (port index) //////////////////////////////////////////////////////////////////////// #define PROC_LOCAL_SRCID 0x0 // from 0 to 7 #define MDMA_LOCAL_SRCID 0x8 #define IOBX_LOCAL_SRCID 0x9 #define MEMC_LOCAL_SRCID 0xA #define CDMA_LOCAL_SRCID 0xE // hard-coded in dspin_tsar #define BDEV_LOCAL_SRCID 0xF // hard-coded in dspin_tsar /////////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for INT local interconnect /////////////////////////////////////////////////////////////////////// #define INT_MEMC_TGT_ID 0 #define INT_XICU_TGT_ID 1 #define INT_BROM_TGT_ID 2 #define INT_MDMA_TGT_ID 3 #define INT_IOBX_TGT_ID 4 #define INT_PROC_INI_ID 0 // from 0 to 7 #define INT_MDMA_INI_ID nb_procs #define INT_IOBX_INI_ID (nb_procs + 1) /////////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for RAM local interconnect /////////////////////////////////////////////////////////////////////// #define RAM_XRAM_TGT_ID 0 #define RAM_MEMC_INI_ID 0 #define RAM_IOBX_INI_ID 1 /////////////////////////////////////////////////////////////////////// // TGT_ID and INI_ID port indexing for I0X local interconnect /////////////////////////////////////////////////////////////////////// #define IOX_IOB0_TGT_ID 0 // don't change this value #define IOX_IOB1_TGT_ID 1 // don't change this value #define IOX_FBUF_TGT_ID 2 #define IOX_BDEV_TGT_ID 3 #define IOX_MNIC_TGT_ID 4 #define IOX_CDMA_TGT_ID 5 #define IOX_MTTY_TGT_ID 6 #define IOX_IOB0_INI_ID 0 // Don't change this value #define IOX_IOB1_INI_ID 1 // Don't change this value #define IOX_BDEV_INI_ID 2 #define IOX_CDMA_INI_ID 3 //////////////////////////////////////////////////////////////////////// int _main(int argc, char *argv[]) //////////////////////////////////////////////////////////////////////// { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; char soft_name[256] = BOOT_SOFT_NAME; // pathname: binary code size_t ncycles = 1000000000; // simulated cycles char disk_name[256] = BDEV_IMAGE_NAME; // pathname: disk image char nic_rx_name[256] = NIC_RX_NAME; // pathname: rx packets file char nic_tx_name[256] = NIC_TX_NAME; // pathname: tx packets file ssize_t threads_nr = 1; // simulator's threads number bool debug_ok = false; // trace activated size_t debug_period = 1; // trace period size_t debug_memc_id = 0xFFFFFFFF; // idx of traced memc size_t debug_proc_id = 0xFFFFFFFF; // idx of traced proc bool debug_iob = false; // trace iobs when true uint32_t debug_from = 0; // trace start cycle uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen procs size_t block_size = BDEV_SECTOR_SIZE; // disk block size size_t nb_procs = 1; size_t x_size = 2; size_t y_size = 2; size_t nb_tty_channels = 1; size_t nb_nic_channels = 1; assert((X_WIDTH == 4) and (Y_WIDTH == 4)); ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n],"-NCYCLES") == 0) && (n+1 0) && (nb_procs < 5)); continue; } if ((strcmp(argv[n],"-XSIZE") == 0) && (n+1 0) && (x_size < X_MAX)); continue; } if ((strcmp(argv[n],"-YSIZE") == 0) && (n+1 0) && (y_size < Y_MAX)); continue; } if ((strcmp(argv[n],"-DEBUG") == 0) && (n+1> Y_WIDTH; size_t y = debug_memc_id & ((1 << Y_WIDTH) - 1); assert((x < x_size) && (y < y_size)); continue; } if ((strcmp(argv[n],"-IOB") == 0) && (n+1> Y_WIDTH; size_t y = cluster_xy & ((1 << Y_WIDTH) - 1); assert((x < x_size) && (y < y_size)); continue; } if ((strcmp(argv[n], "-THREADS") == 0) && ((n+1) < argc)) { threads_nr = atoi(argv[n+1]); assert(threads_nr > 0); continue; } if ((strcmp(argv[n], "-FROZEN") == 0) && (n+1 < argc)) { frozen_cycles = atoi(argv[n+1]); assert(frozen_cycles > 0); continue; } if ((strcmp(argv[n], "-PERIOD") == 0) && (n+1 < argc)) { debug_period = atoi(argv[n+1]); assert(debug_period > 0); continue; } std::cout << " Arguments are (key,value) couples.\n" << " The order is not important.\n" << " Accepted arguments are :\n\n" << " -NCYCLES number of simulated_cycles\n" << " -SOFT pathname for embedded soft\n" << " -DISK pathname for disk image\n" << " -NPROCS number of processors per cluster\n" << " -XSIZE number of clusters on X\n" << " -YSIZE number of clusters on Y\n" << " -DEBUG debug start cycle\n" << " -MEMCID index of memc to trace\n" << " -IOB debug IOBs if non_zero_value\n\n" << " -PROCID index of proc to trace\n" << " -THREADS simulator's threads number\n" << " -FROZEN max number of frozen cycles\n" << " -PERIOD number of cycles between trace\n\n"; exit(0); } } // one DMA channel per proc size_t nb_dma_channels = nb_procs; // clusters containing IOB0 and IOB1 size_t cluster_iob0 = cluster(0,0); size_t cluster_iob1 = cluster(x_size - 1, y_size - 1); assert( (nb_tty_channels < 16) and "The NB_TTY_CHANNELS parameter must be smaller than 16" ); assert( (nb_nic_channels == 1) and "The NB_NIC_CHANNELS parameter must be 1" ); std::cout << std::endl; std::cout << " - X_SIZE = " << x_size << std::endl; std::cout << " - Y_SIZE = " << y_size << std::endl; std::cout << " - NB_PROCS = " << nb_procs << std::endl; std::cout << " - NB_DMA_CHANNELS = " << nb_dma_channels << std::endl; std::cout << " - NB_TTY_CHANNELS = " << nb_tty_channels << std::endl; std::cout << " - NB_NIC_CHANNELS = " << nb_nic_channels << std::endl; std::cout << " - MEMC_WAYS = " << MEMC_WAYS << std::endl; std::cout << " - MEMC_SETS = " << MEMC_SETS << std::endl; std::cout << " - RAM_LATENCY = " << XRAM_LATENCY << std::endl; std::cout << " - MAX_FROZEN = " << frozen_cycles << std::endl; std::cout << std::endl; #if USE_OPENMP omp_set_dynamic(false); omp_set_num_threads(threads_nr); std::cerr << "Built with openmp version " << _OPENMP << std::endl; #endif // Define VciParams objects typedef soclib::caba::VciParams vci_param_int; typedef soclib::caba::VciParams vci_param_ext; ///////////////////////////////////////////////////////////////////// // INT network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - NB_PROCS_MAX + 2 (MDMA, IOBX) local initiators per cluster // - 4 local targets (MEMC, XICU, MDMA, IOBX) per cluster ///////////////////////////////////////////////////////////////////// MappingTable maptab_int( vci_address_width, IntTab(X_WIDTH + Y_WIDTH, 16 - X_WIDTH - Y_WIDTH), IntTab(X_WIDTH + Y_WIDTH, vci_srcid_width - X_WIDTH - Y_WIDTH), 0x00FF000000); for (size_t x = 0; x < x_size; x++) { for (size_t y = 0; y < y_size; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width - X_WIDTH - Y_WIDTH); bool config = true; bool cacheable = true; // the five following segments are defined in all clusters std::ostringstream smemc_conf; smemc_conf << "int_seg_memc_conf_" << x << "_" << y; maptab_int.add(Segment(smemc_conf.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y),INT_MEMC_TGT_ID), not cacheable, config )); std::ostringstream smemc_xram; smemc_xram << "int_seg_memc_xram_" << x << "_" << y; maptab_int.add(Segment(smemc_xram.str(), XRAM_BASE+offset, XRAM_SIZE, IntTab(cluster(x,y),INT_MEMC_TGT_ID), cacheable)); std::ostringstream sxicu; sxicu << "int_seg_xicu_" << x << "_" << y; maptab_int.add(Segment(sxicu.str(), XICU_BASE+offset, XICU_SIZE, IntTab(cluster(x,y),INT_XICU_TGT_ID), not cacheable)); std::ostringstream sbrom; sbrom << "int_seg_brom_" << x << "_" << y; maptab_int.add(Segment(sbrom.str(), BROM_BASE+offset, BROM_SIZE, IntTab(cluster(x,y),INT_BROM_TGT_ID), cacheable)); std::ostringstream smdma; smdma << "int_seg_mdma_" << x << "_" << y; maptab_int.add(Segment(smdma.str(), MDMA_BASE+offset, MDMA_SIZE, IntTab(cluster(x,y),INT_MDMA_TGT_ID), not cacheable)); // the following segments are only defined in cluster_iob0 or in // cluster_iob1 if ((cluster(x,y) == cluster_iob0) || (cluster(x,y) == cluster_iob1)) { std::ostringstream siobx; siobx << "int_seg_iobx_" << x << "_" << y; maptab_int.add(Segment(siobx.str(), IOBX_BASE+offset, IOBX_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable, config )); std::ostringstream stty; stty << "int_seg_mtty_" << x << "_" << y; maptab_int.add(Segment(stty.str(), MTTY_BASE+offset, MTTY_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sfbf; sfbf << "int_seg_fbuf_" << x << "_" << y; maptab_int.add(Segment(sfbf.str(), FBUF_BASE+offset, FBUF_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sbdv; sbdv << "int_seg_bdev_" << x << "_" << y; maptab_int.add(Segment(sbdv.str(), BDEV_BASE+offset, BDEV_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream snic; snic << "int_seg_mnic_" << x << "_" << y; maptab_int.add(Segment(snic.str(), MNIC_BASE+offset, MNIC_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); std::ostringstream sdma; sdma << "int_seg_cdma_" << x << "_" << y; maptab_int.add(Segment(sdma.str(), CDMA_BASE+offset, CDMA_SIZE, IntTab(cluster(x,y), INT_IOBX_TGT_ID), not cacheable)); } // This define the mapping between the SRCIDs // and the port index on the local interconnect. maptab_int.srcid_map(IntTab(cluster(x,y), MDMA_LOCAL_SRCID), IntTab(cluster(x,y), INT_MDMA_INI_ID)); maptab_int.srcid_map(IntTab(cluster(x,y), IOBX_LOCAL_SRCID), IntTab(cluster(x,y), INT_IOBX_INI_ID)); for ( size_t p = 0 ; p < nb_procs ; p++ ) { maptab_int.srcid_map(IntTab(cluster(x,y), PROC_LOCAL_SRCID + p), IntTab(cluster(x,y), INT_PROC_INI_ID + p)); } } } std::cout << "INT network " << maptab_int << std::endl; ///////////////////////////////////////////////////////////////////////// // RAM network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - 2 local initiators (MEMC, IOBX) per cluster // (IOBX component only in cluster_iob0 and cluster_iob1) // - 1 local target (XRAM) per cluster //////////////////////////////////////////////////////////////////////// MappingTable maptab_ram( vci_address_width, IntTab(X_WIDTH + Y_WIDTH, 16 - X_WIDTH - Y_WIDTH), IntTab(X_WIDTH + Y_WIDTH, vci_srcid_width - X_WIDTH - Y_WIDTH), 0x00FF000000); for (size_t x = 0; x < x_size; x++) { for (size_t y = 0; y < y_size ; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width - X_WIDTH - Y_WIDTH); std::ostringstream sxram; sxram << "ext_seg_xram_" << x << "_" << y; maptab_ram.add(Segment(sxram.str(), XRAM_BASE+offset, XRAM_SIZE, IntTab(cluster(x,y), 0), false)); } } // This define the mapping between the initiators SRCID // and the port index on the RAM local interconnect. // External initiator have two alias SRCID (iob0 / iob1) maptab_ram.srcid_map(IntTab(cluster_iob0, CDMA_LOCAL_SRCID), IntTab(cluster_iob0, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob1, CDMA_LOCAL_SRCID), IntTab(cluster_iob1, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob0, BDEV_LOCAL_SRCID), IntTab(cluster_iob0, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob1, BDEV_LOCAL_SRCID), IntTab(cluster_iob1, RAM_IOBX_INI_ID)); maptab_ram.srcid_map(IntTab(cluster_iob1, MEMC_LOCAL_SRCID), IntTab(cluster_iob1, RAM_MEMC_INI_ID)); std::cout << "RAM network " << maptab_ram << std::endl; /////////////////////////////////////////////////////////////////////// // IOX network mapping table // - two levels address decoding for commands // - two levels srcid decoding for responses // - 4 initiators (IOB0, IOB1, BDEV, CDMA) // - 8 targets (IOB0, IOB1, BDEV, CDMA, MTTY, FBUF, BROM, MNIC) /////////////////////////////////////////////////////////////////////// MappingTable maptab_iox( vci_address_width, IntTab(X_WIDTH + Y_WIDTH, 16 - X_WIDTH - Y_WIDTH), IntTab(X_WIDTH + Y_WIDTH, vci_srcid_width - X_WIDTH - Y_WIDTH), 0x00FF000000); // compute base addresses for cluster_iob0 and cluster_iob1 uint64_t iob0_base = ((uint64_t)cluster_iob0) << (vci_address_width - X_WIDTH - Y_WIDTH); uint64_t iob1_base = ((uint64_t)cluster_iob1) << (vci_address_width - X_WIDTH - Y_WIDTH); // Each peripheral can be accessed through two segments, // depending on the used IOB (IOB0 or IOB1). maptab_iox.add(Segment("iox_seg_mtty_0", MTTY_BASE + iob0_base, MTTY_SIZE, IntTab(cluster_iob0, IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mtty_1", MTTY_BASE + iob1_base, MTTY_SIZE, IntTab(cluster_iob1, IOX_MTTY_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_0", FBUF_BASE + iob0_base, FBUF_SIZE, IntTab(cluster_iob0, IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_fbuf_1", FBUF_BASE + iob1_base, FBUF_SIZE, IntTab(cluster_iob1, IOX_FBUF_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_bdev_0", BDEV_BASE + iob0_base, BDEV_SIZE, IntTab(cluster_iob0, IOX_BDEV_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_bdev_1", BDEV_BASE + iob1_base, BDEV_SIZE, IntTab(cluster_iob1, IOX_BDEV_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_0", MNIC_BASE + iob0_base, MNIC_SIZE, IntTab(cluster_iob0, IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_mnic_1", MNIC_BASE + iob1_base, MNIC_SIZE, IntTab(cluster_iob1, IOX_MNIC_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_0", CDMA_BASE + iob0_base, CDMA_SIZE, IntTab(cluster_iob0, IOX_CDMA_TGT_ID), false)); maptab_iox.add(Segment("iox_seg_cdma_1", CDMA_BASE + iob1_base, CDMA_SIZE, IntTab(cluster_iob1, IOX_CDMA_TGT_ID), false)); // Each physical RAM can be accessed through IOB0, or through IOB1. // if IOMMU is not activated, addresses are 40 bits (physical addresses), // and the choice depends on on address bit A[39]. // if IOMMU is activated the addresses use only 32 bits (virtual // addresses), and the choice depends on address bit A[31]. for (size_t x = 0; x < x_size; x++) { for (size_t y = 0; y < y_size ; y++) { uint64_t offset = ((uint64_t)cluster(x,y)) << (vci_address_width - X_WIDTH - Y_WIDTH); // send command to XRAM through IOB0 if ( x < (x_size/2) ) { std::ostringstream siob0; siob0 << "iox_seg_xram_" << x << "_" << y; maptab_iox.add(Segment(siob0.str(), offset, 0x80000000, IntTab(cluster_iob0,IOX_IOB0_TGT_ID), false)); } // send command to XRAM through IOB1 else { std::ostringstream siob1; siob1 << "iox_seg_xram_" << x << "_" << y; maptab_iox.add(Segment(siob1.str(), offset, 0x80000000, IntTab(cluster_iob1,IOX_IOB1_TGT_ID), false)); } } } // useful when IOMMU activated maptab_iox.add(Segment("iox_seg_xram", 0xc0000000, 0x40000000, IntTab(cluster_iob1,IOX_IOB1_TGT_ID), false)); // This define the mapping between the initiators (identified by the SRCID) // and the port index on the IOX local interconnect. // External initiator have two alias SRCID (iob0 / iob1 access) maptab_iox.srcid_map(IntTab(cluster_iob0, CDMA_LOCAL_SRCID), IntTab(cluster_iob0, IOX_CDMA_INI_ID)); maptab_iox.srcid_map(IntTab(cluster_iob1, CDMA_LOCAL_SRCID), IntTab(cluster_iob1, IOX_CDMA_INI_ID)); maptab_iox.srcid_map(IntTab(cluster_iob0, BDEV_LOCAL_SRCID), IntTab(cluster_iob0, IOX_BDEV_INI_ID)); maptab_iox.srcid_map(IntTab(cluster_iob1, BDEV_LOCAL_SRCID), IntTab(cluster_iob0, IOX_BDEV_INI_ID)); for (size_t x = 0; x < x_size; x++) { for (size_t y = 0; y < y_size ; y++) { size_t iob = (x < (x_size / 2)) ? IOX_IOB0_INI_ID : IOX_IOB1_INI_ID; for (size_t p = 0 ; p < nb_procs ; p++) { maptab_iox.srcid_map(IntTab(cluster(x,y), PROC_LOCAL_SRCID + p), IntTab(cluster(x,y), iob)); } maptab_iox.srcid_map(IntTab( cluster(x,y), MDMA_LOCAL_SRCID), IntTab( cluster(x,y), IOX_IOB0_INI_ID)); } } std::cout << "IOX network " << maptab_iox << std::endl; //////////////////// // Signals //////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); sc_signal signal_irq_false; sc_signal signal_irq_bdev; sc_signal signal_irq_mnic_rx[1]; sc_signal signal_irq_mnic_tx[1]; sc_signal signal_irq_mtty[16]; sc_signal signal_irq_cdma[1*2]; // DSPIN signals for loopback in cluster_iob0 & cluster_iob1 DspinSignals signal_dspin_cmd_iob0_loopback; DspinSignals signal_dspin_rsp_iob0_loopback; DspinSignals signal_dspin_cmd_iob1_loopback; DspinSignals signal_dspin_rsp_iob1_loopback; // VCI signals for IOX network VciSignals signal_vci_ini_iob0("signal_vci_ini_iob0"); VciSignals signal_vci_ini_iob1("signal_vci_ini_iob1"); VciSignals signal_vci_ini_bdev("signal_vci_ini_bdev"); VciSignals signal_vci_ini_cdma("signal_vci_ini_cdma"); VciSignals signal_vci_tgt_iob0("signal_vci_tgt_iob0"); VciSignals signal_vci_tgt_iob1("signal_vci_tgt_iob1"); VciSignals signal_vci_tgt_mtty("signal_vci_tgt_mtty"); VciSignals signal_vci_tgt_fbuf("signal_vci_tgt_fbuf"); VciSignals signal_vci_tgt_mnic("signal_vci_tgt_mnic"); VciSignals signal_vci_tgt_bdev("signal_vci_tgt_bdev"); VciSignals signal_vci_tgt_cdma("signal_vci_tgt_cdma"); // Horizontal inter-clusters INT network DSPIN DspinSignals*** signal_dspin_int_cmd_h_inc = alloc_elems >( "signal_dspin_int_cmd_h_inc", x_size-1, y_size, 3); DspinSignals*** signal_dspin_int_cmd_h_dec = alloc_elems >( "signal_dspin_int_cmd_h_dec", x_size-1, y_size, 3); DspinSignals*** signal_dspin_int_rsp_h_inc = alloc_elems >( "signal_dspin_int_rsp_h_inc", x_size-1, y_size, 2); DspinSignals*** signal_dspin_int_rsp_h_dec = alloc_elems >( "signal_dspin_int_rsp_h_dec", x_size-1, y_size, 2); // Vertical inter-clusters INT network DSPIN DspinSignals*** signal_dspin_int_cmd_v_inc = alloc_elems >( "signal_dspin_int_cmd_v_inc", x_size, y_size-1, 3); DspinSignals*** signal_dspin_int_cmd_v_dec = alloc_elems >( "signal_dspin_int_cmd_v_dec", x_size, y_size-1, 3); DspinSignals*** signal_dspin_int_rsp_v_inc = alloc_elems >( "signal_dspin_int_rsp_v_inc", x_size, y_size-1, 2); DspinSignals*** signal_dspin_int_rsp_v_dec = alloc_elems >( "signal_dspin_int_rsp_v_dec", x_size, y_size-1, 2); // Mesh boundaries INT network DSPIN DspinSignals**** signal_dspin_false_int_cmd_in = alloc_elems >( "signal_dspin_false_int_cmd_in", x_size, y_size, 4, 3); DspinSignals**** signal_dspin_false_int_cmd_out = alloc_elems >( "signal_dspin_false_int_cmd_out", x_size, y_size, 4, 3); DspinSignals**** signal_dspin_false_int_rsp_in = alloc_elems >( "signal_dspin_false_int_rsp_in", x_size, y_size, 4, 2); DspinSignals**** signal_dspin_false_int_rsp_out = alloc_elems >( "signal_dspin_false_int_rsp_out", x_size, y_size, 4, 2); // Horizontal inter-clusters RAM network DSPIN DspinSignals** signal_dspin_ram_cmd_h_inc = alloc_elems >( "signal_dspin_ram_cmd_h_inc", x_size-1, y_size); DspinSignals** signal_dspin_ram_cmd_h_dec = alloc_elems >( "signal_dspin_ram_cmd_h_dec", x_size-1, y_size); DspinSignals** signal_dspin_ram_rsp_h_inc = alloc_elems >( "signal_dspin_ram_rsp_h_inc", x_size-1, y_size); DspinSignals** signal_dspin_ram_rsp_h_dec = alloc_elems >( "signal_dspin_ram_rsp_h_dec", x_size-1, y_size); // Vertical inter-clusters RAM network DSPIN DspinSignals** signal_dspin_ram_cmd_v_inc = alloc_elems >( "signal_dspin_ram_cmd_v_inc", x_size, y_size-1); DspinSignals** signal_dspin_ram_cmd_v_dec = alloc_elems >( "signal_dspin_ram_cmd_v_dec", x_size, y_size-1); DspinSignals** signal_dspin_ram_rsp_v_inc = alloc_elems >( "signal_dspin_ram_rsp_v_inc", x_size, y_size-1); DspinSignals** signal_dspin_ram_rsp_v_dec = alloc_elems >( "signal_dspin_ram_rsp_v_dec", x_size, y_size-1); // Mesh boundaries RAM network DSPIN DspinSignals*** signal_dspin_false_ram_cmd_in = alloc_elems >( "signal_dspin_false_ram_cmd_in", x_size, y_size, 4); DspinSignals*** signal_dspin_false_ram_cmd_out = alloc_elems >( "signal_dspin_false_ram_cmd_out", x_size, y_size, 4); DspinSignals*** signal_dspin_false_ram_rsp_in = alloc_elems >( "signal_dspin_false_ram_rsp_in", x_size, y_size, 4); DspinSignals*** signal_dspin_false_ram_rsp_out = alloc_elems >( "signal_dspin_false_ram_rsp_out", x_size, y_size, 4); //////////////////////////// // Loader //////////////////////////// #if USE_ALMOS soclib::common::Loader loader(almos_bootloader_pathname, almos_archinfo_pathname, almos_kernel_pathname); #else soclib::common::Loader loader(soft_name); #endif typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); //////////////////////////////////////// // Instanciated Hardware Components //////////////////////////////////////// std::cout << std::endl << "External Bus and Peripherals" << std::endl << std::endl; // IOX network VciIoxNetwork* iox_network; iox_network = new VciIoxNetwork("iox_network", maptab_iox, 7, // number of targets 4 ); // number of initiators // Network Controller VciMultiNic* mnic; mnic = new VciMultiNic("mnic", IntTab(0, IOX_MNIC_TGT_ID), maptab_iox, nb_nic_channels, 0, // mac_4 address 0, // mac_2 address nic_rx_name, nic_tx_name); // Frame Buffer VciFrameBuffer* fbuf; fbuf = new VciFrameBuffer("fbuf", IntTab(0, IOX_FBUF_TGT_ID), maptab_iox, FBUF_X_SIZE, FBUF_Y_SIZE ); // Block Device // for AHCI // std::vector filenames; // filenames.push_back(disk_name); // one single disk VciBlockDeviceTsar* bdev; bdev = new VciBlockDeviceTsar("bdev", maptab_iox, IntTab(0, BDEV_LOCAL_SRCID), IntTab(0, IOX_BDEV_TGT_ID), disk_name, block_size, 64, // burst size (bytes) 0 ); // disk latency // Chained Buffer DMA controller VciChbufDma* cdma; cdma = new VciChbufDma("cdma", maptab_iox, IntTab(0, CDMA_LOCAL_SRCID), IntTab(0, IOX_CDMA_TGT_ID), 64, // burst size (bytes) 2 * nb_nic_channels); // Multi-TTY controller std::vector vect_names; for( size_t tid = 0 ; tid < nb_tty_channels ; tid++ ) { std::ostringstream term_name; term_name << "term" << tid; vect_names.push_back(term_name.str().c_str()); } VciMultiTty* mtty; mtty = new VciMultiTty("mtty_iox", IntTab(0, IOX_MTTY_TGT_ID), maptab_iox, vect_names); // Clusters typedef TsarIobCluster TsarIobClusterType; TsarIobClusterType* clusters[x_size][y_size]; #if USE_OPENMP #pragma omp parallel { #pragma omp for #endif for(size_t i = 0; i < (x_size * y_size); i++) { size_t x = i / y_size; size_t y = i % y_size; #if USE_OPENMP #pragma omp critical { #endif std::cout << std::endl; std::cout << "Cluster_" << std::dec << x << "_" << y << std::endl; std::cout << std::endl; std::ostringstream sc; sc << "cluster_" << x << "_" << y; bool memc_debug = debug_ok && (cluster(x,y) == debug_memc_id); bool proc_debug = debug_ok && (cluster(x,y) == (debug_proc_id / nb_procs)); TsarIobClusterType::ClusterParams params = { .insname = sc.str().c_str(), .nb_procs = nb_procs, .nb_dmas = nb_dma_channels, .x_id = x, .y_id = y, .x_size = x_size, .y_size = y_size, .mt_int = maptab_int, .mt_ext = maptab_ram, .mt_iox = maptab_iox, .x_width = X_WIDTH, .y_width = Y_WIDTH, .l_width = vci_srcid_width - X_WIDTH - Y_WIDTH, .int_memc_tgtid = INT_MEMC_TGT_ID, .int_xicu_tgtid = INT_XICU_TGT_ID, .int_mdma_tgtid = INT_MDMA_TGT_ID, .int_iobx_tgtid = INT_IOBX_TGT_ID, .int_brom_tgtid = INT_BROM_TGT_ID, .int_proc_srcid = INT_PROC_INI_ID, .int_mdma_srcid = INT_MDMA_INI_ID, .int_iobx_srcid = INT_IOBX_INI_ID, .ext_xram_tgtid = RAM_XRAM_TGT_ID, .ext_memc_srcid = RAM_MEMC_INI_ID, .ext_iobx_srcid = RAM_IOBX_INI_ID, .memc_ways = MEMC_WAYS, .memc_sets = MEMC_SETS, .l1_i_ways = L1_IWAYS, .l1_i_sets = L1_ISETS, .l1_d_ways = L1_DWAYS, .l1_d_sets = L1_DSETS, .xram_latency = XRAM_LATENCY, .loader = loader, .frozen_cycles = frozen_cycles, .debug_start_cycle = debug_from, .memc_debug_ok = memc_debug, .proc_debug_ok = proc_debug, .iob_debug_ok = debug_ok and debug_iob }; clusters[x][y] = new TsarIobClusterType(params); #if USE_OPENMP } // end critical #endif } // end for #if USE_OPENMP } #endif std::cout << std::endl; /////////////////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////////////////// // IOX network connexion iox_network->p_clk (signal_clk); iox_network->p_resetn (signal_resetn); iox_network->p_to_ini[IOX_IOB0_INI_ID] (signal_vci_ini_iob0); iox_network->p_to_ini[IOX_IOB1_INI_ID] (signal_vci_ini_iob1); iox_network->p_to_ini[IOX_BDEV_INI_ID] (signal_vci_ini_bdev); iox_network->p_to_ini[IOX_CDMA_INI_ID] (signal_vci_ini_cdma); iox_network->p_to_tgt[IOX_IOB0_TGT_ID] (signal_vci_tgt_iob0); iox_network->p_to_tgt[IOX_IOB1_TGT_ID] (signal_vci_tgt_iob1); iox_network->p_to_tgt[IOX_MTTY_TGT_ID] (signal_vci_tgt_mtty); iox_network->p_to_tgt[IOX_FBUF_TGT_ID] (signal_vci_tgt_fbuf); iox_network->p_to_tgt[IOX_MNIC_TGT_ID] (signal_vci_tgt_mnic); iox_network->p_to_tgt[IOX_BDEV_TGT_ID] (signal_vci_tgt_bdev); iox_network->p_to_tgt[IOX_CDMA_TGT_ID] (signal_vci_tgt_cdma); // BDEV connexion bdev->p_clk (signal_clk); bdev->p_resetn (signal_resetn); bdev->p_irq (signal_irq_bdev); // For AHCI // bdev->p_channel_irq[0] (signal_irq_bdev); bdev->p_vci_target (signal_vci_tgt_bdev); bdev->p_vci_initiator (signal_vci_ini_bdev); std::cout << " - BDEV connected" << std::endl; // FBUF connexion fbuf->p_clk (signal_clk); fbuf->p_resetn (signal_resetn); fbuf->p_vci (signal_vci_tgt_fbuf); std::cout << " - FBUF connected" << std::endl; // MNIC connexion mnic->p_clk (signal_clk); mnic->p_resetn (signal_resetn); mnic->p_vci (signal_vci_tgt_mnic); for ( size_t i=0 ; ip_rx_irq[i] (signal_irq_mnic_rx[i]); mnic->p_tx_irq[i] (signal_irq_mnic_tx[i]); } std::cout << " - MNIC connected" << std::endl; // MTTY connexion mtty->p_clk (signal_clk); mtty->p_resetn (signal_resetn); mtty->p_vci (signal_vci_tgt_mtty); for ( size_t i=0 ; ip_irq[i] (signal_irq_mtty[i]); } std::cout << " - MTTY connected" << std::endl; // CDMA connexion cdma->p_clk (signal_clk); cdma->p_resetn (signal_resetn); cdma->p_vci_target (signal_vci_tgt_cdma); cdma->p_vci_initiator (signal_vci_ini_cdma); for ( size_t i=0 ; i<(nb_nic_channels*2) ; i++) { cdma->p_irq[i] (signal_irq_cdma[i]); } std::cout << " - CDMA connected" << std::endl; // IRQ connexions from external peripherals (cluster_iob0 only) // IRQ_MNIC_RX -> IRQ[08] to IRQ[09] // IRQ_MNIC_TX -> IRQ[10] to IRQ[11] // IRQ_CDMA -> IRQ[12] to IRQ[15] // IRQ_MTTY -> IRQ[16] to IRQ[30] // IRQ_BDEV -> IRQ[31] size_t mx = 16 + nb_tty_channels; for ( size_t n=0 ; n<32 ; n++ ) { if ( n < 8 ) (*clusters[0][0]->p_irq[n]) (signal_irq_false); else if ( n < 10 ) (*clusters[0][0]->p_irq[n]) (signal_irq_false); else if ( n < 12 ) (*clusters[0][0]->p_irq[n]) (signal_irq_false); else if ( n < 16 ) (*clusters[0][0]->p_irq[n]) (signal_irq_false); else if ( n < mx ) (*clusters[0][0]->p_irq[n]) (signal_irq_mtty[n-16]); else if ( n < 31 ) (*clusters[0][0]->p_irq[n]) (signal_irq_false); else (*clusters[0][0]->p_irq[n]) (signal_irq_bdev); } // IOB0 cluster connexion to IOX network (*clusters[0][0]->p_vci_iob_iox_ini) (signal_vci_ini_iob0); (*clusters[0][0]->p_vci_iob_iox_tgt) (signal_vci_tgt_iob0); // IOB1 cluster connexion to IOX network (*clusters[x_size-1][y_size-1]->p_vci_iob_iox_ini) (signal_vci_ini_iob1); (*clusters[x_size-1][y_size-1]->p_vci_iob_iox_tgt) (signal_vci_tgt_iob1); // All clusters Clock & RESET connexions for ( size_t x = 0; x < (x_size); x++ ) { for (size_t y = 0; y < y_size; y++) { clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } const int& NORTH = VirtualDspinRouter::NORTH; const int& SOUTH = VirtualDspinRouter::SOUTH; const int& EAST = VirtualDspinRouter::EAST; const int& WEST = VirtualDspinRouter::WEST; // Inter Clusters horizontal connections if (x_size > 1) { for (size_t x = 0; x < (x_size-1); x++) { for (size_t y = 0; y < y_size; y++) { for (size_t k = 0; k < 3; k++) { clusters[x][y]->p_dspin_int_cmd_out[EAST][k]( signal_dspin_int_cmd_h_inc[x][y][k]); clusters[x+1][y]->p_dspin_int_cmd_in[WEST][k]( signal_dspin_int_cmd_h_inc[x][y][k]); clusters[x][y]->p_dspin_int_cmd_in[EAST][k]( signal_dspin_int_cmd_h_dec[x][y][k]); clusters[x+1][y]->p_dspin_int_cmd_out[WEST][k]( signal_dspin_int_cmd_h_dec[x][y][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][y]->p_dspin_int_rsp_out[EAST][k]( signal_dspin_int_rsp_h_inc[x][y][k]); clusters[x+1][y]->p_dspin_int_rsp_in[WEST][k]( signal_dspin_int_rsp_h_inc[x][y][k]); clusters[x][y]->p_dspin_int_rsp_in[EAST][k]( signal_dspin_int_rsp_h_dec[x][y][k]); clusters[x+1][y]->p_dspin_int_rsp_out[WEST][k]( signal_dspin_int_rsp_h_dec[x][y][k]); } clusters[x][y]->p_dspin_ram_cmd_out[EAST]( signal_dspin_ram_cmd_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_in[WEST]( signal_dspin_ram_cmd_h_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[EAST]( signal_dspin_ram_cmd_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_cmd_out[WEST]( signal_dspin_ram_cmd_h_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[EAST]( signal_dspin_ram_rsp_h_inc[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_in[WEST]( signal_dspin_ram_rsp_h_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[EAST]( signal_dspin_ram_rsp_h_dec[x][y]); clusters[x+1][y]->p_dspin_ram_rsp_out[WEST]( signal_dspin_ram_rsp_h_dec[x][y]); } } } std::cout << std::endl << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (y_size > 1) { for (size_t y = 0; y < (y_size-1); y++) { for (size_t x = 0; x < x_size; x++) { for (size_t k = 0; k < 3; k++) { clusters[x][y]->p_dspin_int_cmd_out[NORTH][k]( signal_dspin_int_cmd_v_inc[x][y][k]); clusters[x][y+1]->p_dspin_int_cmd_in[SOUTH][k]( signal_dspin_int_cmd_v_inc[x][y][k]); clusters[x][y]->p_dspin_int_cmd_in[NORTH][k]( signal_dspin_int_cmd_v_dec[x][y][k]); clusters[x][y+1]->p_dspin_int_cmd_out[SOUTH][k]( signal_dspin_int_cmd_v_dec[x][y][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][y]->p_dspin_int_rsp_out[NORTH][k]( signal_dspin_int_rsp_v_inc[x][y][k]); clusters[x][y+1]->p_dspin_int_rsp_in[SOUTH][k]( signal_dspin_int_rsp_v_inc[x][y][k]); clusters[x][y]->p_dspin_int_rsp_in[NORTH][k]( signal_dspin_int_rsp_v_dec[x][y][k]); clusters[x][y+1]->p_dspin_int_rsp_out[SOUTH][k]( signal_dspin_int_rsp_v_dec[x][y][k]); } clusters[x][y]->p_dspin_ram_cmd_out[NORTH]( signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_in[SOUTH]( signal_dspin_ram_cmd_v_inc[x][y]); clusters[x][y]->p_dspin_ram_cmd_in[NORTH]( signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_cmd_out[SOUTH]( signal_dspin_ram_cmd_v_dec[x][y]); clusters[x][y]->p_dspin_ram_rsp_out[NORTH]( signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_in[SOUTH]( signal_dspin_ram_rsp_v_inc[x][y]); clusters[x][y]->p_dspin_ram_rsp_in[NORTH]( signal_dspin_ram_rsp_v_dec[x][y]); clusters[x][y+1]->p_dspin_ram_rsp_out[SOUTH]( signal_dspin_ram_rsp_v_dec[x][y]); } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < y_size; y++) { for (size_t k = 0; k < 3; k++) { clusters[0][y]->p_dspin_int_cmd_in[WEST][k]( signal_dspin_false_int_cmd_in[0][y][WEST][k]); clusters[0][y]->p_dspin_int_cmd_out[WEST][k]( signal_dspin_false_int_cmd_out[0][y][WEST][k]); clusters[x_size-1][y]->p_dspin_int_cmd_in[EAST][k]( signal_dspin_false_int_cmd_in[x_size-1][y][EAST][k]); clusters[x_size-1][y]->p_dspin_int_cmd_out[EAST][k]( signal_dspin_false_int_cmd_out[x_size-1][y][EAST][k]); } for (size_t k = 0; k < 2; k++) { clusters[0][y]->p_dspin_int_rsp_in[WEST][k]( signal_dspin_false_int_rsp_in[0][y][WEST][k]); clusters[0][y]->p_dspin_int_rsp_out[WEST][k]( signal_dspin_false_int_rsp_out[0][y][WEST][k]); clusters[x_size-1][y]->p_dspin_int_rsp_in[EAST][k]( signal_dspin_false_int_rsp_in[x_size-1][y][EAST][k]); clusters[x_size-1][y]->p_dspin_int_rsp_out[EAST][k]( signal_dspin_false_int_rsp_out[x_size-1][y][EAST][k]); } // handling IOB to RAM network connection in cluster_iob0 if( y == 0 ) { (*clusters[0][0]->p_dspin_iob_cmd_out)( signal_dspin_cmd_iob0_loopback); clusters[0][0]->p_dspin_ram_cmd_in[WEST]( signal_dspin_cmd_iob0_loopback); clusters[0][0]->p_dspin_ram_cmd_out[WEST]( signal_dspin_false_ram_cmd_out[0][0][WEST]); clusters[0][0]->p_dspin_ram_rsp_in[WEST]( signal_dspin_false_ram_rsp_in[0][0][WEST]); clusters[0][0]->p_dspin_ram_rsp_out[WEST]( signal_dspin_rsp_iob0_loopback); (*clusters[0][0]->p_dspin_iob_rsp_in)( signal_dspin_rsp_iob0_loopback); } else { clusters[0][y]->p_dspin_ram_cmd_in[WEST]( signal_dspin_false_ram_cmd_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_cmd_out[WEST]( signal_dspin_false_ram_cmd_out[0][y][WEST]); clusters[0][y]->p_dspin_ram_rsp_in[WEST]( signal_dspin_false_ram_rsp_in[0][y][WEST]); clusters[0][y]->p_dspin_ram_rsp_out[WEST]( signal_dspin_false_ram_rsp_out[0][y][WEST]); } // handling IOB to RAM network connection in cluster_iob1 if( y == y_size-1 ) { (*clusters[x_size-1][y_size-1]->p_dspin_iob_cmd_out)( signal_dspin_cmd_iob1_loopback); clusters[x_size-1][y_size-1]->p_dspin_ram_cmd_in[EAST]( signal_dspin_cmd_iob1_loopback); clusters[x_size-1][y_size-1]->p_dspin_ram_cmd_out[EAST]( signal_dspin_false_ram_cmd_out[x_size-1][y_size-1][EAST]); clusters[x_size-1][y_size-1]->p_dspin_ram_rsp_in[EAST]( signal_dspin_false_ram_rsp_in[x_size-1][y_size-1][EAST]); clusters[x_size-1][y_size-1]->p_dspin_ram_rsp_out[EAST]( signal_dspin_rsp_iob1_loopback); (*clusters[x_size-1][y_size-1]->p_dspin_iob_rsp_in)( signal_dspin_rsp_iob1_loopback); } else { clusters[x_size-1][y]->p_dspin_ram_cmd_in[EAST]( signal_dspin_false_ram_cmd_in[x_size-1][y][EAST]); clusters[x_size-1][y]->p_dspin_ram_cmd_out[EAST]( signal_dspin_false_ram_cmd_out[x_size-1][y][EAST]); clusters[x_size-1][y]->p_dspin_ram_rsp_in[EAST]( signal_dspin_false_ram_rsp_in[x_size-1][y][EAST]); clusters[x_size-1][y]->p_dspin_ram_rsp_out[EAST]( signal_dspin_false_ram_rsp_out[x_size-1][y][EAST]); } } std::cout << "East & West boundaries established" << std::endl; // North & South boundary clusters connections for (size_t x = 0; x < x_size; x++) { for (size_t k = 0; k < 3; k++) { clusters[x][0]->p_dspin_int_cmd_in[SOUTH][k]( signal_dspin_false_int_cmd_in[x][0][SOUTH][k]); clusters[x][0]->p_dspin_int_cmd_out[SOUTH][k]( signal_dspin_false_int_cmd_out[x][0][SOUTH][k]); clusters[x][y_size-1]->p_dspin_int_cmd_in[NORTH][k]( signal_dspin_false_int_cmd_in[x][y_size-1][NORTH][k]); clusters[x][y_size-1]->p_dspin_int_cmd_out[NORTH][k]( signal_dspin_false_int_cmd_out[x][y_size-1][NORTH][k]); } for (size_t k = 0; k < 2; k++) { clusters[x][0]->p_dspin_int_rsp_in[SOUTH][k]( signal_dspin_false_int_rsp_in[x][0][SOUTH][k]); clusters[x][0]->p_dspin_int_rsp_out[SOUTH][k]( signal_dspin_false_int_rsp_out[x][0][SOUTH][k]); clusters[x][y_size-1]->p_dspin_int_rsp_in[NORTH][k]( signal_dspin_false_int_rsp_in[x][y_size-1][NORTH][k]); clusters[x][y_size-1]->p_dspin_int_rsp_out[NORTH][k]( signal_dspin_false_int_rsp_out[x][y_size-1][NORTH][k]); } clusters[x][0]->p_dspin_ram_cmd_in[SOUTH]( signal_dspin_false_ram_cmd_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_cmd_out[SOUTH]( signal_dspin_false_ram_cmd_out[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_rsp_in[SOUTH]( signal_dspin_false_ram_rsp_in[x][0][SOUTH]); clusters[x][0]->p_dspin_ram_rsp_out[SOUTH]( signal_dspin_false_ram_rsp_out[x][0][SOUTH]); clusters[x][y_size-1]->p_dspin_ram_cmd_in[NORTH]( signal_dspin_false_ram_cmd_in[x][y_size-1][NORTH]); clusters[x][y_size-1]->p_dspin_ram_cmd_out[NORTH]( signal_dspin_false_ram_cmd_out[x][y_size-1][NORTH]); clusters[x][y_size-1]->p_dspin_ram_rsp_in[NORTH]( signal_dspin_false_ram_rsp_in[x][y_size-1][NORTH]); clusters[x][y_size-1]->p_dspin_ram_rsp_out[NORTH]( signal_dspin_false_ram_rsp_out[x][y_size-1][NORTH]); } std::cout << "North & South boundaries established" << std::endl << std::endl; //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; signal_irq_false = false; // network boundaries signals for (size_t x = 0; x < x_size ; x++) { for (size_t y = 0; y < y_size ; y++) { for (size_t a = 0; a < 4; a++) { for (size_t k = 0; k < 3; k++) { signal_dspin_false_int_cmd_in[x][y][a][k].write = false; signal_dspin_false_int_cmd_in[x][y][a][k].read = true; signal_dspin_false_int_cmd_out[x][y][a][k].write = false; signal_dspin_false_int_cmd_out[x][y][a][k].read = true; } for (size_t k = 0; k < 2; k++) { signal_dspin_false_int_rsp_in[x][y][a][k].write = false; signal_dspin_false_int_rsp_in[x][y][a][k].read = true; signal_dspin_false_int_rsp_out[x][y][a][k].write = false; signal_dspin_false_int_rsp_out[x][y][a][k].read = true; } signal_dspin_false_ram_cmd_in[x][y][a].write = false; signal_dspin_false_ram_cmd_in[x][y][a].read = true; signal_dspin_false_ram_cmd_out[x][y][a].write = false; signal_dspin_false_ram_cmd_out[x][y][a].read = true; signal_dspin_false_ram_rsp_in[x][y][a].write = false; signal_dspin_false_ram_rsp_in[x][y][a].read = true; signal_dspin_false_ram_rsp_out[x][y][a].write = false; signal_dspin_false_ram_rsp_out[x][y][a].read = true; } } } sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; for (size_t n = 1; n < ncycles; n++) { // Monitor a specific address for one L1 cache // clusters[1][1]->proc[0]->cache_monitor(0x50090ULL); // Monitor a specific address for one L2 cache // clusters[0][0]->memc->cache_monitor( 0x170000ULL); // Monitor a specific address for one XRAM // if (n == 3000000) // clusters[0][0]->xram->start_monitor( 0x170000ULL , 64); if (debug_ok and (n > debug_from) and (n % debug_period == 0)) { std::cout << " ***********************" << " cycle " << std::dec << n << " ***********************" << std::endl; // trace proc[debug_proc_id] if ( debug_proc_id != 0xFFFFFFFF ) { size_t l = debug_proc_id % nb_procs ; size_t cluster_xy = debug_proc_id / nb_procs ; size_t x = cluster_xy >> Y_WIDTH; size_t y = cluster_xy & ((1 << Y_WIDTH) - 1); clusters[x][y]->proc[l]->print_trace(1); std::ostringstream proc_signame; proc_signame << "[SIG]PROC_" << x << "_" << y << "_" << l ; clusters[x][y]->signal_int_vci_ini_proc[l].print_trace( proc_signame.str()); clusters[x][y]->xicu->print_trace(l); std::ostringstream xicu_signame; xicu_signame << "[SIG]XICU_" << x << "_" << y; clusters[x][y]->signal_int_vci_tgt_xicu.print_trace( xicu_signame.str()); if( clusters[x][y]->signal_proc_it[l].read() ) std::cout << "### IRQ_PROC_" << std::dec << x << "_" << y << "_" << l << " ACTIVE" << std::endl; } // trace INT network // clusters[0][0]->int_xbar_cmd_d->print_trace(); // clusters[0][0]->int_xbar_rsp_d->print_trace(); // clusters[0][0]->signal_int_dspin_cmd_l2g_d.print_trace( // "[SIG] INT_CMD_L2G_D_0_0"); // clusters[0][0]->signal_int_dspin_rsp_g2l_d.print_trace( // "[SIG] INT_RSP_G2L_D_0_0"); // clusters[0][0]->int_router_cmd->print_trace(0); // clusters[0][0]->int_router_rsp->print_trace(0); // trace INT_CMD_D xbar and router in cluster 0_1 // clusters[0][1]->int_router_cmd->print_trace(0); // clusters[0][1]->int_router_rsp->print_trace(0); // clusters[0][1]->signal_int_dspin_cmd_g2l_d.print_trace( // "[SIG] INT_CMD_G2L_D_0_0"); // clusters[0][1]->signal_int_dspin_rsp_l2g_d.print_trace( // "[SIG] INT_RSP_L2G_D_0_0"); // clusters[0][1]->int_xbar_cmd_d->print_trace(); // clusters[0][1]->int_xbar_rsp_d->print_trace(); // trace memc[debug_memc_id] if ( debug_memc_id != 0xFFFFFFFF ) { size_t x = debug_memc_id >> Y_WIDTH; size_t y = debug_memc_id & ((1 << Y_WIDTH) - 1); clusters[x][y]->memc->print_trace(0); std::ostringstream smemc_tgt; smemc_tgt << "[SIG]MEMC_TGT_" << x << "_" << y; clusters[x][y]->signal_int_vci_tgt_memc.print_trace( smemc_tgt.str()); std::ostringstream smemc_ini; smemc_ini << "[SIG]MEMC_INI_" << x << "_" << y; clusters[x][y]->signal_ram_vci_ini_memc.print_trace( smemc_ini.str()); clusters[x][y]->xram->print_trace(); std::ostringstream sxram_tgt; sxram_tgt << "[SIG]XRAM_TGT_" << x << "_" << y; clusters[x][y]->signal_ram_vci_tgt_xram.print_trace( sxram_tgt.str()); } // trace RAM network routers // for( size_t cluster = 0 ; cluster < XMAX*YMAX ; cluster++ ) // { // size_t x = cluster / YMAX; // size_t y = cluster % YMAX; // clusters[x][y]->ram_router_cmd->print_trace(); // clusters[x][y]->ram_router_rsp->print_trace(); // } // trace iob, iox and external peripherals if ( debug_iob ) { clusters[0][0]->iob->print_trace(); clusters[0][0]->signal_int_vci_tgt_iobx.print_trace( "[SIG]IOB0_INT_TGT"); clusters[0][0]->signal_int_vci_ini_iobx.print_trace( "[SIG]IOB0_INT_INI"); clusters[0][0]->signal_ram_vci_ini_iobx.print_trace( "[SIG]IOB0_RAM_INI"); signal_vci_ini_iob0.print_trace("[SIG]IOB0_IOX_INI"); signal_vci_tgt_iob0.print_trace("[SIG]IOB0_IOX_TGT"); // signal_dspin_cmd_iob0_loopback.print_trace( // "[SIG]IOB0_CMD_LOOPBACK"); // signal_dspin_rsp_iob0_loopback.print_trace( // "[SIG]IOB0_RSP_LOOPBACK"); cdma->print_trace(); signal_vci_tgt_cdma.print_trace("[SIG]IOX_CDMA_TGT"); signal_vci_ini_cdma.print_trace("[SIG]IOX_CDMA_INI"); // mtty->print_trace(); // signal_vci_tgt_mtty.print_trace("[SIG]IOX_MTTY_TGT"); // bdev->print_trace(); // signal_vci_tgt_bdev.print_trace("[SIG]IOX_BDEV_TGT"); // signal_vci_ini_bdev.print_trace("[SIG]IOX_BDEV_INI"); // fbuf->print_trace(); // signal_vci_tgt_fbuf.print_trace("[SIG]FBUF"); iox_network->print_trace(); // interrupts if (signal_irq_bdev) std::cout << "### IRQ_BDEV ACTIVATED" << std::endl; } } sc_start(sc_core::sc_time(1, SC_NS)); } delete iox_network; delete mnic; delete fbuf; delete bdev; delete cdma; delete mtty; for(size_t x = 0; x < x_size; x++) { for(size_t y = 0; y < y_size; y++) { delete clusters[x][y]; } } return EXIT_SUCCESS; } int sc_main (int argc, char *argv[]) { try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3